Answer:i dont now
Step-by-step explanation:
Norman and Suzanne own 35 shares of a fast food restaurant stock and 63 shares of a toy company stock. At the close of the markets on a particular day in 2004, their stock portfolio consisting of these two stocks was worth $1596.00. The closing price of the fast food restaurant stock was $19 more per share than the closing price of the toy company stock on that day. What was the closing price of each stock on that day? The price per share of the fast food restaurant stock is
Answer:
closing price of the fast food stock was $997.50
closing price of the toy company stock was $598.50
the price per fast food share was $28.50
Step-by-step explanation:
x = price per share fast food
y = price per share toy company
35x + 63y = 1596
x = y + 19
=>
35(y+19) + 63y = 1596
35y + 665 + 63y = 1596
98y + 665 = 1596
98y = 931
y = $9.50
=>
x = 9.5 + 19 = $28.50
the value of the whole fast food stock was
35x = 35×28.5 = $997.50
the cake if the whole toy company stock was
63y = 63×9.5 = $598.50
annual cost of 35,000 expected to save 40,000 during the first year how many months will the take to recover investment
Answer:
500000
Step-by-step explanation:
Subtract 28.9 – 9.25 =_____
Answer:
19.65
Step-by-step explanation:
28.9-9.25=19.65
A scientist runs an experiment involving a culture of bacteria. She notices that the mass of the bacteria in the culture increases exponentially with the mass increasing by 249% per week. What is the 1-week growth factor for the mass of the bacteria
9514 1404 393
Answer:
3.49
Step-by-step explanation:
The growth factor is one more than the growth rate:
growth factor = 1 + growth rate
= 1 + 249% = 1 +2.49
growth factor = 3.49
A train is traveling at a speed of 60 miles per hour. What happens to the number of miles when the number of hours
changes?
Abebe babe
Answer:
It multiplies
Step-by-step explanation:
if the number of hours changes to example to 2 then you multiply 60 by 2 resulting in 120miles in 2 hours
A student researcher compares the ages of cars owned by students and cars owned by faculty at a local state college. A sample of 187 cars owned by students had an average age of 7.9 years. A sample of 221 cars owned by faculty had an average age of 5.04 years. Assume that the population standard deviation for cars owned by students is 3.07 years, while the population standard deviation for cars owned by faculty is 2.53 years. Determine the 98% confidence interval for the difference between the true mean ages for cars owned by students and faculty. Step 3 of 3 : Construct the 98% confidence interval. Round your answers to two decimal places.
Answer:
Hence the confidence interval (2.2, 3.52).
Step-by-step explanation:
Hence,
The point estimate = [tex]\bar x_{1} - \bar x_{2}[/tex]
= 7.9 - 5.04
= 2.86
Given CI level is 0.98, hence α = 1 - 0.98 = 0.02
α/2 = 0.02/2 = 0.01, tc = t(α/2, df) = 2.326
Margin of Error
ME = tc x sp
ME = 2.326 \ 0.2817
ME = 0.6552
CI = ([tex]\bar x_{1} - \bar x_{2}[/tex] - tc x sp , [tex]\bar x_{1} - \bar x_{2}[/tex] + tc x sp)
CI = (7.9 - 5.04 - 2.326 x 0.2817 , 7.9 - 5.04 - 2.326 x 0.2817
CI = (2.2 , 3.52)
Roll a pair of fair dice. Let X be the number of ones in the outcome and let Y be the number of twos in the outcome. Find E[XY].
Answer:
E(XY)=1/18
Step-by-step explanation:
x y P(x,y) xy*P(X,Y)
0 0 4/9 0
0 1 2/9 0
1 0 2/9 0
1 1 1/18 1/18
2 0 1/36 0
0 2 1/36 0
1 1/18
from above:
E(XY)=1/18
What is the value of the expression i 0 × i 1 × i 2 × i 3 × i 4?
1
–1
i
–i
Answer:
Answer is -1
Step-by-step explanation:
i1 = i
i2 = -1
i3 = -i
i4 = 1
i0 × i1 × i2 × i3 × i4 = 1 × i × (- 1) × (- i) × 1 = i2 = - 1
Answer:the answer is -1
Step-by-step explanation:
Which set of angles are supplementary
The theoretical mean of a distribution is also known as its ______________.
Answer:
skewness
Step-by-step explanation:
Average.
The average of a set of observations is the most important and useful measure of statistics and is a position measure, as it shows the positions of the numbers to which it refers. The average value is involved in several types of statistics and is examined in almost all statistical distributions. It is generally defined as the sum of the observations by their number. That is, it is the mathematical operation of finding the "mean distance" between two or more numbers.
Learn more about averages in https://brainly.com/question/22390452
If there is a die that has 12 sides, that are numbered 1 to 12, what is the probability that she will roll either a 3 or a 9
Answer:
2/12 = 1/6
Step-by-step explanation:
To find the probability of something with an equal chance of each outcome, we can apply the formula (number of favorable outcomes)/(number of total outcomes). Because there is an equal chance for each side of the die to be landed on, we can apply this.
On a 12 sided die, there are 12 sides. Two of those sides are 3 and 9. Therefore, there are two favorable outcomes (3 and 9). There are 12 sides to choose from, so there are 12 total outcomes, making the probability 2/12 = 1/6
I’m so bad at this pls-
Answer:
[tex]5 \sqrt{2} [/tex]
Step-by-step explanation:
[tex] \sqrt{5} \times \sqrt{10} \\ = \sqrt{5} \times \sqrt[]{5} \times \sqrt{2} \\ = 5\sqrt{2} [/tex]
Hope it is helpful....Which of the following
statements is true about
angle K?
K
R
a. Angle K is obtuse
b. angle K is acute
c. angle K is greater than
90
d. angle K is a right angle
Answer:
angle k is acute.
Step-by-step explanation:
it is less than 90 degrees
Answer:
a., b.
Step-by-step explanation:
Angle K looks like an acute angle with measure between 0 and 90 degrees.
Answer: a., b.
If 1 kilogram (kg) is equal to about 2.2046 pounds (lbs.), what is the value of 1kg/2.2046lbs? What is the value of 2.2046lbs/1kg?
Step-by-step explanation:
The relation between kg and lbs is :
1 kg = 2.2046 lbs
We need to find the values of 1kg/2.2046lbs and 2.2046lbs/1kg.
So,
[tex]\dfrac{1\ kg}{2.2046\ lbs}=\dfrac{2.2046\ lbs}{2.2046\ lbs}\\\\=1[/tex]
and
[tex]\dfrac{2.2046\ lbs}{1\ kg}=\dfrac{2.2046\ lbs}{2.2046\ lbs}\\\\=1[/tex]
Hence, this is the required solution.
Answer:
Both are same as 1.
Step-by-step explanation:
1 kg = 2.2046 lbs
So,
[tex]\frac{1 kg}{2.2046 lbs }=\frac{1 kg }{1 kg} = 1[/tex]
And
[tex]\frac{2.2046 lbs}{1 kg }=\frac{1 kg }{1 kg} = 1[/tex]
Suppose f"(x) = -9 sin(3x) and f'(0) = -4, and f(0) = -2
Find f(pi/4)
Answer:
9sin (3)and f,(0)=4,AND f(0)=2
Evaluate I=∫(sinx+9y)dx + (4x+y)dy for the nonclosed path ABCD in the figure.
Close the path by connecting D to A. Then by Green's theorem, the integral over the closed path ABCDA - which I'll just abbreviate C - is
[tex]\displaystyle \oint_C (\sin(x)+9y)\,\mathrm dx + (4x+y)\,\mathrm dy \\\\ = \iint_{\mathrm{int}(C)}\frac{\partial(4x+y)}{\partial x} - \frac{\partial(\sin(x)+9y)}{\partial y}\,\mathrm dx\,\mathrm dy \\\\ = -5\iint_{\mathrm{int}(C)}\mathrm dx\,\mathrm dy[/tex]
(where int(C ) denotes the region interior to the path C )
The remaining double integral is -5 times the area of the trapezoid, which is
[tex]\displaystyle -5\iint_{\mathrm{int}(C)}\mathrm dx\,\mathrm dy = -\frac52\times(12+4)\times4=-160[/tex]
To get the line integral you want, just subtract the integral taken over the path DA. On this line segment, we have x = 0 and dx = 0, so this integral reduces to
[tex]\displaystyle\int_{DA}y\,\mathrm dy = \int_{12}^0y\,\mathrm dy = -\int_0^{12}y\,\mathrm dy = -72[/tex]
Then
[tex]\displaystyle \int_{ABCD} (\sin(x)+9y)\,\mathrm dx + (4x+y)\,\mathrm dy = -160 - (-72) = \boxed{-88}[/tex]
A certain brand of coffee comes in two sizes. An 11.5-ounce package costs $.4.24 . A 27.8-ounce package costs $9.98.
Find the unit price for each size. Then state which size is the better buy based on the unit price.
Round your answers to the nearest cent.
Answer:
Small (11.5) is 37 cents per ounce.
Large (27.8) is 36 cents per ounce.
27.8 ounces is the better buy.
The triangles below are similar (being similar means there is a proportional relationship between the measures of each of the sides). What is the length of ED? (HINT: You can solve this question by using the MATH Ratio Table)
=================================================
Work Shown:
ED/DF = AB/AC
x/24 = 12/16
16x = 24*12
16x = 288
x = 288/16
x = 18
------------
Explanation:
Because the triangles are similar, we can form the proportion shown above. There are many variations of the proportion that can happen, but they all lead to the same result x = 18.
So for instance, another proportion you could solve is ED/AB = DF/AC.
The key is to keep up the same pattern when forming the ratios.
What I mean by that is when I formed ED/DF I divided the vertical side over the horizontal side for triangle EDF. So to form the second fraction, we must do the same division (vertical over horizontal) for triangle ABC.
Three ounces of cinnamon cost $2.40. If there are 16 ounces in 1 pound, how much does cinnamon cost per pound?
A formula for the normal systolic blood pressure for a man age A, measured in mmHg, is given as P = 0.006A*2-0.02A + 120. Find the age of a man whose normal blood pressure measures 129 mmHg. Round your answer to the nearest year. The man would be ? years old.
Answer:
The man would be 40 years old.
Step-by-step explanation:
Blood pressure as function of age:
Is given by the following equation:
[tex]P = 0.006A^2 - 0.02A + 120[/tex]
Find the age of a man whose normal blood pressure measures 129 mmHg.
This is A for which P = 129. So
[tex]129 = 0.006A^2 - 0.02A + 120[/tex]
[tex]0.006A^2 - 0.02A - 9 = 0[/tex]
Solving a quadratic equation:
Given a second order polynomial expressed by the following equation:
[tex]ax^{2} + bx + c, a\neq0[/tex].
This polynomial has roots [tex]x_{1}, x_{2}[/tex] such that [tex]ax^{2} + bx + c = a(x - x_{1})*(x - x_{2})[/tex], given by the following formulas:
[tex]x_{1} = \frac{-b + \sqrt{\Delta}}{2*a}[/tex]
[tex]x_{2} = \frac{-b - \sqrt{\Delta}}{2*a}[/tex]
[tex]\Delta = b^{2} - 4ac[/tex]
In this question:
Quadratic equation with [tex]a = 0.006, b = -0.02, C = -9[/tex]. So
[tex]\Delta = (-0.02)^2 - 4(0.006)(-9) = 0.2164[/tex]
[tex]A_{1} = \frac{-(-0.02) + \sqrt{0.2164}}{2*(0.006)} = 40.4[/tex]
[tex]A_{2} = \frac{-(-0.02) - \sqrt{0.2164}}{2*(0.006)} = -37.1[/tex]
Age has to be a positive number, so rounding to the nearest year:
The man would be 40 years old.
12. What is the solution of the system of equations?
y = - 2x + 5
y = -2x + 20
no solution
(1,3)
infinitely many solutions
Answer:
no solutions
Step-by-step explanation:
y = - 2x + 5
y = -2x + 20
Set the two equations equal
- 2x + 5 = -2x + 20
Add 2x to each side
- 2x+2x + 5 = -2x+2x + 20
5 = 20
This is never true so there are no solutions
Answer:
no solution
Step-by-step explanation:
Hi there!
We are given this system of equations:
y=-2x+5
y=-2x+20
and we want to find the solution (the point in which the lines intersect)
There are 3 ways to solve a system, but let's use substitution in this case
Both equations are set to y, so they should be equal to each other via a property known as transitivity (if a=b and b=c, then a=c)
-2x+5=-2x+20 (the same as y=y)
Now let's solve for x
add 2x to both sides
5=20
In this case, we got an untrue statement. If this happens, then the lines won't intersect.
If they won't intersect, there's no solution
Hope this helps!
sin x =.3 what is the cos x =?
Answer:
If you're asking what cosine 3 is it's 0.9999986292247
Step-by-step explanation:
I don't really understand the question
Expresa de. Forma fraccionaria y decimal 7%
Answer:
7% = .07 = [tex]\frac{7}{100}[/tex]
Step-by-step explanation:
Find an equation of the line through these points (15,2.2) (5,1.6). Write answer in a slope-intercept form
Answer:
[tex]y=\frac{\displaystyle 3}{\displaystyle 50}x+\frac{\displaystyle 13}{\displaystyle 10}[/tex]
Step-by-step explanation:
Hi there!
Slope-intercept form: [tex]y=mx+b[/tex] where [tex]m[/tex] is the slope and [tex]b[/tex] is the y-intercept (the value of y when x is 0)
1) Determine the slope (m)
[tex]m=\frac{\displaystyle y_2-y_1}{\displaystyle x_2-x_1}[/tex] where two given points are [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex]
Plug in the given points (15,2.2) and (5,1.6):
[tex]m=\frac{\displaystyle 1.6-2.2}{\displaystyle 5-15}\\\\m=\frac{\displaystyle -0.6}{\displaystyle -10}\\\\m=\frac{\displaystyle 0.6}{\displaystyle 10}\\\\m=\frac{\displaystyle 0.3}{\displaystyle 5}\\\\m=\frac{\displaystyle 3}{\displaystyle 50}[/tex]
Therefore, the slope of the line is [tex]\frac{\displaystyle 3}{\displaystyle 50}[/tex]. Plug this into [tex]y=mx+b[/tex]:
[tex]y=\frac{\displaystyle 3}{\displaystyle 50}x+b[/tex]
2) Determine the y-intercept (b)
[tex]y=\frac{\displaystyle 3}{\displaystyle 50}x+b[/tex]
Plug in a given point and solve for b:
[tex]1.6=\frac{\displaystyle 3}{\displaystyle 50}(5)+b\\\\1.6=\frac{\displaystyle 3}{\displaystyle 10}+b\\\\1.6-\frac{\displaystyle 3}{\displaystyle 10}=\frac{\displaystyle 3}{\displaystyle 10}+b-\frac{\displaystyle 3}{\displaystyle 10}\\\\\frac{\displaystyle 13}{\displaystyle 10}=b[/tex]
Therefore, the y-intercept is [tex]\frac{\displaystyle 13}{\displaystyle 10}[/tex]. Plug this back into [tex]y=\frac{\displaystyle 3}{\displaystyle 50}x+b[/tex]:
[tex]y=\frac{\displaystyle 3}{\displaystyle 50}x+\frac{\displaystyle 13}{\displaystyle 10}[/tex]
I hope this helps!
Type the correct answer in each box. Use numerals instead of words.
What is the equation of the quadratic function shown in the graph?
Answer:
y - 8 = -2(x + 1)^2
Step-by-step explanation:
The vertex of this parabola is (-1, 8). It opens downward, so the x^2 term has a negative coefficient. The zeros are (-3, 0) and (1, 0), and the y-intercept is (0, 7).
Through the vertex form of the equation of a parabola we get:
y - (8) = a(x - (-1)) + 7, or
y - 8 = a(x + 1)^2. Find coefficient a by substituting the coordinates (-3, 0) in this equation:
0 - 8 = a(-3 + 1)^2, or
-8 = a(-2)^2, or a = -2
The desired equation is
y - 8 = -2(x + 1)^2
Noise levels at 5 volcanoes were measured in decibels yielding the following data: 127,174,157,120,161 Construct the 98% confidence interval for the mean noise level at such locations. Assume the population is approximately normal. Step 3 of 4 : Find the critical value that should be used in constructing the confidence interval. Round your answer to three decimal places.
Answer:
The critical value used is T = 3.747.
The 98% confidence interval for the mean noise level at such locations is (108.944, 186.656).
Step-by-step explanation:
Before building the confidence interval, we need to find the sample mean and the sample standard deviation.
Sample mean:
[tex]\overline{x} = \frac{127+174+157+120+161}{5} = 147.8[/tex]
Sample standard deviation:
[tex]s = \sqrt{\frac{(127-147.8)^2+(174-147.8)^2+(157-147.8)^2+(120-147.8)^2+(161-147.8)^2}{4}} = 23.188[/tex]
Confidence interval:
We have the standard deviation for the sample, which means that the t-distribution is used to solve this question.
The first step to solve this problem is finding how many degrees of freedom, we have. This is the sample size subtracted by 1. So
df = 5 - 1 = 4
98% confidence interval
Now, we have to find a value of T, which is found looking at the t table, with 4 degrees of freedom(y-axis) and a confidence level of [tex]1 - \frac{1 - 0.98}{2} = 0.99[/tex]. So we have T = 3.747, which is the critical value used.
The margin of error is:
[tex]M = T\frac{s}{\sqrt{n}} = 3.747\frac{23.188}{\sqrt{5}} = 38.856[/tex]
In which s is the standard deviation of the sample and n is the size of the sample.
The lower end of the interval is the sample mean subtracted by M. So it is 147.8 - 38.856 = 108.944
The upper end of the interval is the sample mean added to M. So it is 147.8 + 38.856 = 186.656.
The 98% confidence interval for the mean noise level at such locations is (108.944, 186.656).
the diameter of a circle is 7 inches.find it's area to the nearest 10th
Answer: d=7 inches
r=7/2
r=3.5
A=πr²
A=3.14(3.5inch)²
A=3.14×12.25inch²
A=38.465inch²
A≈38.47inch²
PLEASE HELP
Complete the table to find the different combinations of coin quantities that have a sum of $2.41. (See photo above)
Answer:
1st row 56 pennies
2nd row 36 pennies
3rd row 14 dimes
4th row 4 quarters
5th row 5 nickels
Step-by-step explanation:
1st row $1.85 + 56 cents = $2.41
2nd row $2.05 + 36 cents = $2.41
3rd row is $1.01 + $1.40 = $2.41
4th row $1.41 + $1.00 = 2.41
5th row $2.16 + 25 cents = $2.41
find the radius of the circle
help is VERY appreciated!!
Answer:
17/16 =x
Step-by-step explanation:
The triangle is a right triangle so we can use Pythagorean theorem
a^2+b^2 = c^2
x^2 + 9^2 = (x+8)^2
FOIL
x^2+81=x^2+16x+64
Subtract x^2 from each side
81 = 16x+64
Subtract 64 from each side
81 -64 = 16x+64-64
17 =16x
Divide by 16
17/16 =x
find m∠H
What does m∠H happened to equal
Answer:
[tex]m\angle H = 30^o[/tex]
Step-by-step explanation:
Given
See attachment
Required
Find [tex]m\angle H[/tex]
To calculate [tex]m\angle H[/tex], we make use of:
[tex]\cos(\theta) = \frac{Adjacent}{Hypotenuse}[/tex]
So, we have:
[tex]\cos(H) = \frac{GH}{HI}[/tex]
This gives:
[tex]\cos(H) = \frac{10\sqrt3}{20}[/tex]
[tex]\cos(H) = \frac{\sqrt3}{2}[/tex]
Take arccos of both sides
[tex]m\angle H = cos^{-1}(\frac{\sqrt3}{2})[/tex]
[tex]m\angle H = 30^o[/tex]