10^2x+3=5
Solve, expressing your answer in an exact form involving a common logarithm and showing your steps.

Help please

Answers

Answer 1
the answer is x= log(2)/2

Related Questions

A medicine bottle contains 8 grams of medicine. One dose is 400 milligrams. How many milligrams does the bottle contain?

Answers

Answer:

8×1000 milligrams

8000 milligrams

Can someone please help me thank you !!!!!

Answers

im pretty sure it is A?

Joanna set a goal to drink more water daily. The number of ounces of water she drank each of the last seven days is shown below.

60, 58, 64, 64, 68, 50, 57

On the eighth day, she drinks 82 ounces of water. Select all the true statements about the effect of the eighth day's amount on Joanna's daily amount distribution.
PLZ HELP ME I NEED AN ANSWER ASAP WILL NAME BRAINLIEST

Answers

(a) Data with the eight day's measurement.

Raw data:      [60,58,64,64,68,50,57,82],  

Sorted data:  [50,57,58,60,64,64,68,82]

Sample size = 8 (even)

mean            = 62.875

median         = (60+64)/2 = 62

1st quartile   = (57+58)/2 = 57.5

3rd quartile  = (64+68)/2 =  66

IQR = 66 - 57.5 = 8.5

(b) Data without the eight day's measurement.

Raw data:      [60,58,64,64,68,50,57]

Sorted data:  [50,57,58,60,64,64,68]

Sample size = 7 (odd)

mean            = 60.143

median         = 60

1st quartile   = 57

3rd quartile = 64

IQR = 64 -57 = 7

Answers:

1. The average is the same with or without the 8th day's data.  FALSE

2. The median is the same with or without the 8th day's data.  FALSE

3. The IQR decreases when the 8th day is included.                  FALSE

4. The IQR increases when the 8th day is included.                   TRUE

5. The median is higher when the 8th day is included.              TRUE

Answer:

The Interquartile range increases when the 8th day is included.          

The median is higher when the 8th day is included.

Step-by-step explanation:

i got it right. Hope this helps.

Which of the following is equivalent to a real number?
A. (-46)^1/2
B. (-10596)^1/8
C. (-4099)^1/5
D. (-5403)^1/6​

Answers

Answer:

C. (-4099)^1/5

Step-by-step explanation:

[tex]x^{\frac{1}{2} } = \sqrt{x}[/tex]

you can not take roots (real roots) of a negative number if the exponent is

even ... A,B,D have even exponents (in the denominator of the exponent.. in other words the index of the radical is even)...

the only odd index is in "B" (the 5 in the 1/5)

(3) If a tire rotates at 400 revolutions per minute when the car is traveling 72km/h, what is the circumference of the tire?

Show all your steps.

Answers

Answer:

3 meters.

Step-by-step explanation:

400 rev / minute = 400 × 60 rev / 60 minutes

= 24,000 rev / hour

24,000 × C = 72,000 m : C is the circumference

C = 3 meters

Answer:

3 meters

Step-by-step explanation:

72 km / hour * 1 hour/ 60 min  * 1000m/ 1 km

72000 meters /60 minute

1200 meters / minute

velocity = radius * w

Where w is 2*pi * the revolutions per minute

1200 = r * 2 * pi *400

1200 / 800 pi = r

1.5 /pi = r meters

We want to find the circumference

C = 2 * pi *r

C = 2* pi ( 1.5 / pi)

C = 3 meters


If the cost of a 2.5 meter cloth is $30.5. What will be the cost of 22 meters ?

Answers

Answer:

268.40

Step-by-step explanation:

We can write a ratio to solve

2.5 meters        22 meters

-----------------  = --------------

30.5 dollars       x dollars

Using cross products

2.5 * x = 30.5 * 22

2.5x =671

Divide each side by 2.5

2.5x / 2.5 = 671/2.5

x =268.4

-28=7(x-7) what does x equal

Answers

Answer:

x=3

Step-by-step explanation:

7(x - 7) = -28

x - 7 = -4

x = 3

Answer:

x = 3

Step-by-step explanation:

Your goal is to isolate the x from the other numbers.

-28 = 7(x - 7)

Distribute the 7 to the (x - 7)

You will end up with:

-28 = 7x - 49

Add 49 to both sides of the equation to further isolate the x

21 = 7x

Finally, divide both sides by 7 so x is by itself

x = 3

A wire 9 meters long is cut into two pieces. One piece is bent into a equilateral triangle for a frame for a stained glass ornament, while the other piece is bent into a circle for a TV antenna. To reduce storage space, where should the wire be cut to minimize the total area of both figures? Give the length of wire used for each: For the equilateral triangle:

Answers

The length of wire used for the equilateral triangle is approximately 5.61 meters.

The remaining length of wire used for the circle will be 9 - 5.61 ≈ 3.39 meters.

Here,

To minimize the total area of both figures, we need to find the optimal cut point for the wire.

Let's assume the length of the wire used for the equilateral triangle is x meters, and the remaining length of the wire used for the circle is (9 - x) meters.

For the equilateral triangle:

An equilateral triangle has all three sides equal in length.

Let's call each side of the triangle s meters. Since the total length of the wire is x meters, each side will be x/3 meters.

The formula to find the area of an equilateral triangle with side length s is:

Area = (√(3)/4) * s²

Substitute s = x/3 into the area formula:

Area = (√(3)/4) * (x/3)²

Area = (√(3)/4) * (x²/9)

Now, for the circle:

The circumference (perimeter) of a circle is given by the formula:

Circumference = 2 * π * r

Since the remaining length of wire is (9 - x) meters, the circumference of the circle will be 2π(9 - x) meters.

The formula to find the area of a circle with radius r is:

Area = π * r²

To find the area of the circle, we need to find the radius.

Since the circumference is equal to 2πr, we can set up the equation:

2πr = 2π(9 - x)

Now, solve for r:

r = (9 - x)

Now, substitute r = (9 - x) into the area formula for the circle:

Area = π * (9 - x)²

Now, we want to minimize the total area, which is the sum of the areas of the triangle and the circle:

Total Area = (√(3)/4) * (x²/9) + π * (9 - x)²

To find the optimal value of x that minimizes the total area, we can take the derivative of the total area with respect to x, set it to zero, and solve for x.

d(Total Area)/dx = 0

Now, find the critical points and determine which one yields the minimum area.

Taking the derivative and setting it to zero:

d(Total Area)/dx = (√(3)/4) * (2x/9) - 2π * (9 - x)

Setting it to zero:

(√(3)/4) * (2x/9) - 2π * (9 - x) = 0

Now, solve for x:

(√(3)/4) * (2x/9) = 2π * (9 - x)

x/9 = (8π - 2πx) / (√(3))

Now, isolate x:

x = 9 * (8π - 2πx) / (√(3))

x(√(3)) = 9 * (8π - 2πx)

x(√(3) + 2π) = 9 * 8π

x = (9 * 8π) / (√(3) + 2π)

Now, we can calculate the value of x:

x ≈ 5.61 meters

So, the length of wire used for the equilateral triangle is approximately 5.61 meters.

The remaining length of wire used for the circle will be 9 - 5.61 ≈ 3.39 meters.

To learn more on derivative click:

brainly.com/question/12445967

#SPJ4

At the Fidelity Credit Union, a mean of 3.5 customers arrive hourly at the drive-through window. What is the probability that, in any hour, more than 5 customers will arrive? Round your answer to four decimal places.

Answers

Answer:

0.1423 = 14.23% probability that, in any hour, more than 5 customers will arrive.

Step-by-step explanation:

We have the mean, which means that the Poisson distribution is used to solve this question.

In a Poisson distribution, the probability that X represents the number of successes of a random variable is given by the following formula:

[tex]P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}[/tex]

In which

x is the number of sucesses

e = 2.71828 is the Euler number

[tex]\mu[/tex] is the mean in the given interval.

A mean of 3.5 customers arrive hourly at the drive-through window.

This means that [tex]\mu = 3.5[/tex]

What is the probability that, in any hour, more than 5 customers will arrive?

This is:

[tex]P(X > 5) = 1 - P(X \leq 5)[/tex]

In which

[tex]P(X \leq 5) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5)[/tex]

Then

[tex]P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}[/tex]

[tex]P(X = 0) = \frac{e^{-3.5}*3.5^{0}}{(0)!} = 0.0302[/tex]

[tex]P(X = 1) = \frac{e^{-3.5}*3.5^{1}}{(1)!} = 0.1057[/tex]

[tex]P(X = 2) = \frac{e^{-3.5}*3.5^{2}}{(2)!} = 0.1850[/tex]

[tex]P(X = 3) = \frac{e^{-3.5}*3.5^{3}}{(3)!} = 0.2158[/tex]

[tex]P(X = 4) = \frac{e^{-3.5}*3.5^{4}}{(4)!} = 0.1888[/tex]

[tex]P(X = 5) = \frac{e^{-3.5}*3.5^{5}}{(5)!} = 0.1322[/tex]

Finally

[tex]P(X \leq 5) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5) = 0.0302 + 0.1057 + 0.1850 + 0.2158 + 0.1888 + 0.1322 = 0.8577[/tex]

[tex]P(X > 5) = 1 - P(X \leq 5) = 1 - 0.8577 = 0.1423[/tex]

0.1423 = 14.23% probability that, in any hour, more than 5 customers will arrive.

3.52 A coin is tossed twice. Let Z denote the number of heads on the first toss and W the total number of heads on the 2 tosses. If the coin is unbalanced and a head has a 40% chance of occurring, find (a) the joint probability distribution of W and Z; (b) the marginal distribution of W; (c) the marginal distribution of Z

Answers

Answer:

a)  The joint probability distribution

P(0,0) = 0.36, P(1,0) = 0.24,   P(2,0) = 0,   P(0,1) = 0,  P(1,1) = 0.24,  P(2,1)= 0.16

b)  P( W = 0 ) = 0.36,    P(W = 1 ) = 0.48,  P(W = 2 ) = 0.16

c) P ( z = 0 ) = 0.6

  P ( z = 1 ) = 0.4

Step-by-step explanation:

Number of head on first toss = Z

Total Number of heads on 2 tosses = W

% of head occurring = 40%

% of tail occurring = 60%

P ( head ) = 2/5 ,    P( tail ) = 3/5

a) Determine the joint probability distribution of W and Z

P( W =0 |Z = 0 ) = 0.6         P( W = 0 | Z = 1 ) = 0

P( W = 1 | Z = 0 ) = 0.4        P( W = 1 | Z = 1 ) = 0.6

P( W = 1 | Z = 0 ) = 0           P( W = 2 | Z = 1 ) = 0.4

The joint probability distribution

P(0,0) = 0.36, P(1,0) = 0.24,   P(2,0) = 0,   P(0,1) = 0,  P(1,1) = 0.24,  P(2,1)= 0.16

B) Marginal distribution of W

P( W = 0 ) = 0.36,    P(W = 1 ) = 0.48,  P(W = 2 ) = 0.16

C) Marginal distribution of Z ( pmf of Z )

P ( z = 0 ) = 0.6

P ( z = 1 ) = 0.4

Part(a): The required joint probability of W and Z is ,

[tex]P(0,0)=0.36,P(1,0)=0.24,P(2,0)=0,P(0,1)=0,P(1,1)=0.24,\\\\P(2,1)=0.16[/tex]

Part(b): The pmf (marginal distribution) of W is,

[tex]P(w=0)=0.36,P(w=1)=0.48,P(w=2)=0.16[/tex]

Part(c): The pmf (marginal distribution) of Z is,

[tex]P(z=0)=0.6,P(z=1)=0.4[/tex]

Part(a):

The joint distribution is,

[tex]P(w=0\z=0)=0.6,P(w=1|z=0)=0.4,P(w=2|z=0)=0[/tex]

Also,

[tex]P(w=0\z=1)=0,P(w=1|z=1)=0.6,P(w=2|z=1)=0.4[/tex]

Therefore,

[tex]P(0,0)=0.36,P(1,0)=0.24,P(2,0)=0,P(0,1)=0,P(1,1)=0.24,\\\\P(2,1)=0.16[/tex]

Learn More: https://brainly.com/question/13127182

[(2021-Y)-5]*X-X=XX cho biết X,Y,XX là gì?

Answers

nfbdjanckwochgducbenxikwks

There were 2,300 applicants for enrollment to the freshman class at a small college in the year 2010. The number of applicants has risen linearly by roughly 170 per year. The number of applications f(x) is given by f(x) = 2,300 + 170x, where x is the number of years since 2010. a. Determine if the function g(x) = * = 2,300 is the inverse of f. 170 b. Interpret the meaning of function g in the context of the problem.
a. No
b. The value g(x) represents the number of years since the year 2010 based on the number of applicants to the freshman class, x.
a. Yes
b. The value 8(x) represents the number of applicants to the freshman class based on the number of years since 2010,
a. No
b. The value slx) represents the number of applicants to the freshman class based on the number of years since 2010,
a. Yes
b. The value six) represents the number of years since the year 2010 based on the number of applicants to the freshman class x

Answers

Answer:

The inverse function is [tex]g(x) = \frac{x - 2300}{170}[/tex]

The value of g(x) represents the number of applicants to the freshman class based on the number of years since 2010.

Step-by-step explanation:

Number of applicants in x years after 2010:

Is given by the following function:

[tex]f(x) = 2300 + 170x[/tex]

Inverse function:

We exchange the values of y = f(x) and x in the original function, and then find y. So

[tex]x = 2300 + 170y[/tex]

[tex]170y = x - 2300[/tex]

[tex]y = \frac{x - 2300}{170}[/tex]

[tex]g(x) = \frac{x - 2300}{170}[/tex]

The inverse function is [tex]g(x) = \frac{x - 2300}{170}[/tex]

Meaning of g:

f(x): Number of students in x years:

g(x): Inverse of f(x), is the number of years it takes for there to be x applicants, so the answer is:

The value of g(x) represents the number of applicants to the freshman class based on the number of years since 2010.

[tex]i^0 +i^1+i^2+i^3+............+i^{2021} = ?[/tex]

Include work.

Answers

Answer:

1+i

Step-by-step explanation:

I do believe i to be the imaginary unit.

Let's write out some partial sums from power=0 to power=7 or whatever we need to see a pattern.

i^0=1

i^0+i^1=1+i

i^0+i^1+i^2=1+i+-1=i

i^0+i^1+i^2+i^3=i+i^3=i+-i=0

i^0+i^1+i^2+i^3+i^4=0+i^4=0+1=1

Hmmm.... we might see 1+i, then i, then 0 again.... let's see.

i^0+i^1+i^2+i^3+i^4+i^5=1+i

Coolness so we should see a pattern

Sum from power=0 to power=multiples of 4 will give us 1.

Sum from power=0 to power=remainder of 1 when final power is divided by 4 gives us 1+i.

Sum from power=0 to power=remainder of 2 when final power is divided by 4 gives us i.

Sum from power=0 to power=remainder of 3 when final power is divided by 4 gives us 1

0.

So 2021 divided by 4....

Since 2020 is a multiple of 4, then 2021 has a remainder of 1 when divided by 4.

So the answer is 1+i.

Hello, please help ASAP. Thank you!

Answers

Answer:

23) No

24) No

25) Yes

Step-by-step explanation:

Question 23)

We want to determine if a zero exists between 1 and 2 for the function:

[tex]f(x)=x^2-4x-5[/tex]

Find the zeros of the function. We can factor:

[tex]\displaystyle 0 = (x-5)(x+1)[/tex]

Zero Product Property:

[tex]x-5=0\text{ or } x+1=0[/tex]

Solve for each case. Hence:

[tex]\displaystyle x = 5\text{ or } x=-1[/tex]

Therefore, our zeros are at x = 5 and x = -1.

In conclusion, a zero does not exist between 1 and 2.

Question 24)

We have the function:

[tex]f(x)=2x^2-7x+3[/tex]

And we want to determine if a zero exists between 1 and 2.

Factor. We want to find two numbers that multiply to (2)(3) = 6 and that add to -7.

-6 and -1 suffice. Hence:

[tex]\displaystyle \begin{aligned} 0 & = 2x^2-7x + 3 \\ & = 2x^2 -6x -x + 3 \\ &= 2x(x-3) - (x-3) \\ &= (2x-1)(x-3) \end{aligned}[/tex]

By the Zero Product Property:

[tex]2x-1=0\text{ or } x-3=0[/tex]

Solve for each case:

[tex]\displaystyle x=\frac{1}{2} \text{ or } x=3[/tex]

Therefore, our zeros are at x = 1/2 and x = 3.

In conclusion, a zero does not exist between 1 and 2.

Question 25)

We have the function:

[tex]f(x)=3x^2-2x-5[/tex]

And we want to determine if a zero exists between -2 and 3.

Factor. Again, we want to find two numbers that multiply to 3(-5) = -15 and that add to -2.

-5 and 3 works perfectly. Hence:

[tex]\displaystyle \begin{aligned} 0&= 3x^2 -2x -5 \\ &= 3x^2 +3x - 5x -5 \\ &= 3x(x+1)-5(x+1) \\ &= (3x-5)(x+1)\end{aligned}[/tex]

By the Zero Product Property:

[tex]\displaystyle 3x-5=0\text{ or } x+1=0[/tex]

Solve for each case:

[tex]\displaystyle x = \frac{5}{3}\text{ or } x=-1[/tex]

In conclusion, there indeed exists a zero between -2 and 3.

The radius of the circle is 1/2 inches. Find the circumference

Answers

Answer:

[tex]\pi[/tex]

Step-by-step explanation:

1. [tex]c = 2\pi r[/tex]

2. [tex]c=2\pi \frac{1}{2}[/tex]

3. [tex]c=\pi[/tex]

A life insurance policy cost $8.52 for every $1000 of insurance at this rate what is the cost for 20,000 worth of life insurance

Answers

Answer:

$170.40

Step-by-step explanation:

cost of policy=$8.52

Groups of $1000=20,00÷1000

=20

20,000 worth=$8.52×20

$170.40

(3.5 x 10 ^ -4) ÷ (5 x 10 ^ 5) in standard form PLZZ ANSWER QUICK

Answers

Answer:

7x10 ^-10

Step-by-step explanation:

What is the common difference between successive terms in the sequence?

0.36, 0.26, 0.16, 0.06, –0.04, –0.14,

Answers

The correct answer is: -0.10. Explanation: The common difference between successive terms in a sequence is the number you add to each term to find the next one.

A line has a slope of 7 and passes through the point (-2,-1) What is its equation in point-slope form?

Answers

Answer:

y + 1 = 7(x + 2).

Step-by-step explanation:

Point slope form:

y - y1 =m(x - x1).

Here m = 7 and (x1,  y1) = (-2,  -1)

So the answer is;

y - (-1) = 7(x - (-2))

Using f(x)=2x+7 and g(x)=x-3, find f(g(-2))

Answers

It’s 2x+1 sorry if it’s wrong

Simplify this expression 3^-3
ASAPPPP PLSSSS

Answers

Step-by-step explanation:

-27 okay 3^-3 its same as 3^3

Answer: A)

[tex]3^{-3}[/tex]

[tex]3^{-3}=\frac{1}{3^3}[/tex]

[tex]=\frac{1}{3^3}[/tex]

[tex]3^3=27[/tex]

[tex]=\frac{1}{27}[/tex]

OAmalOHopeO

Determine the degree of the polynomial −65b+53x3y

Answers

Answer:

im pretty sure the degree is 4.

Step-by-step explanation:

On a coordinate plane, a curved line begins at point (negative 2, negative 3), crosses the y-axis at (0, negative .25), and the x-axis at (1, 0).
What is the domain of the function on the graph?

Answers

Answer:

Option D

Step-by-step explanation:

correct answer on edge :)

Answer:

D <3

Step-by-step explanation:

URGENT HELP!!!!
Picture included

Answers

Answer:

Length (L) = 72 feet

Step-by-step explanation:

From the question given above, the following data were obtained:

Period (T) = 9.42 s

Pi (π) = 3.14

Length (L) =?

The length of the pendulum can be obtained as follow:

T = 2π √(L/32)

9.42 = (2 × 3.14) √(L/32)

9.42 = 6.28 √(L/32)

Divide both side by 6.28

√(L/32) = 9.42 / 6.28

Take the square of both side

L/32 = (9.42 / 6.28)²

Cross multiply

L = 32 × (9.42 / 6.28)²

L = 72 feet

Thus, the Lenght is 72 feet

Seventeen individuals are scheduled to take a driving test at a particular DMV office on a certain day, nine of whom will be taking the test for the first time. Suppose that six of these individuals are randomly assigned to a particular examiner, and let X be the number among the six who are taking the test for the first time. (a) What kind of a distribution does X have (name and values of al parameters)? 17 hx;6, 9, 17) O h(x; 6,? 17 bx; 6, 9,17) (x; 6, 9, 17) 17 (b) Compute P(X = 4), P(X S 4), and P(X PLX = 4) 0.2851 PX S 4)-13946X RX24) -0.1096 X 4). (Round your answers to four decimal places.) (c) Calculaethe mean value and standard deviation of X. (Round your answers to three decimal places.)

Answers

Answer:  

a) h(x; 6, 9, 17).

b) P[X=2] = 0.2036

P[X ≤ 2] = 0.2466

P[X ≥ 2] = 0.9570.

c) Mean  = 3.176.

Variance = 1.028.

Standard deviation = 1.014.

Step-by-step explanation:

From the given details K=6, n=9, N=-17.

We conclude that it is the hypergeometric distribution:  

a) h(x; 6, 9, 17).

b)

[tex]P[X=2]=\frac{(^{g}C_{2})^{17-9}C_{6-2}}{^{17}C_{6}\textrm{}}[/tex]

P[X=2] = 0.2036

P[X ≤ 2] = P(x=0)+ P(x=1) + P(x=2)

P[X ≤ 2] = 0.2466

P[X ≥ 2] = 1-[P(x=0)+P(x=1)]

P[X ≥ 2] = 0.9570.

c)

Mean= [tex]n\frac{K}{N}[/tex]

            = 3.176.

Variance = [tex]n\frac{K}{N}( \frac{N-K}{N})(\frac{N-n}{n-1} )[/tex]

               = 2.824 x 0.6471 x 0.5625

               = 1.028.

Standard deviation = [tex]\sqrt{1.028}[/tex] = 1.014.

i need help. i will give brainiest as soon as possible

Answers

Answer:

B

Step-by-step explanation:

Let me know if you need an explanation.

Answer:

B

Step-by-step explanation:

4x^3+x^2+5x+2

4x^3 cannot cancel with others= 4x^3

4x^2-3x^2= x^2

5x cannot cancel with others= 5x

-3+5= 2

4x^3+x^2+5x+2

What is the area of the circle in terms of [tex]\pi[/tex]?

a. 3.4225[tex]\pi[/tex] m²
b. 6.845[tex]\pi[/tex] m²
c. 7.4[tex]\pi[/tex] m²
d. 13.69[tex]\pi[/tex] m²

Answers

[tex] \sf \: d \: = 3.7m \\ \sf \: r \: = \frac{3.7}{2} = 1.85 \: m\\ \\ \sf \: c \: = \pi {r}^{2} \\ \\ \sf \: c \: = \pi ({1.85})^{2} \\ \sf c = 1.85 \times 1.85 \times \pi \\ \sf \: c = \boxed {\underline{ \bf a. \: 3.4225\pi \: m ^{2} }}[/tex]

A bus driver makes roughly $3280 every month. How much does he make in one week at this rate.

Answers

Answer:

I think around $36

Hope it helps!

Answer:

It depends...

Step-by-step explanation:

It depends how much weeks are in the month if there are three weeks and no extra days then you would have an answer of about 1093 (exact: 1093.33333333). just divide the number of weeks by the number of money.

How many subsets of at least one element does a set of seven elements have?

Answers

[tex]\boxed{\large{\bold{\blue{ANSWER~:) }}}}[/tex]

For each subset it can either contain or not contain an element. For each element, there are 2 possibilities. Multiplying these together we get 27 or 128 subsets. For generalisation the total number of subsets of a set containing n elements is 2 to the power n.

n=7 elemens

total subsets

2^n2⁷128

Which property was used to simplify the expression 4(b+2)=4b+8

Answers

Answer: distributive property

Step-by-step explanation: the 4 is multiplied by everting in the parenthesis

Other Questions
What are the zeros of this function? A fruit company delivers its fruit in two types of boxes: large and small. A delivery of 3 large boxes and 5 small boxes has a total weight of 88 kilograms. A delivery of 12 large boxes and 2 small boxes has a total weight of 235 kilograms. How much does each type of box weigh? Which of the following sentences uses the present perfect correctly?Nosotros hemos resuelto comer menos.Nosotros han resolvido comer menos.Nosotros hemos resolvido comer menos.Nosotros han resuelto comer menos. What is the centripetal acceleration of a point on the perimeter of a bicycle wheel diameter 70.0 cm when the bike is moving 8.0 m/s? (160 m/s) Robi bought a toy car for $x. He sold it at a loss of 10%. Find the expressionfor the selling price. Im very confused abt this question: Look at the pic for clarification. Brad runs 4 miles in 18 minutes. at the same rate how long will it take him to run 24 miles Hydrocarbons do not dissolve in concentrated sulfuric acid, but methyl benzoate does. Explain this difference and write an equation showing the ions that are produced. Lee el fragmento del poema de Ricardo Mir.Ilustra el texto. Why does the battery give a reading of 9V even though there are no electrons flowing around the circuit? Which events increased tensions between the Japan and the United States in the late 1930s?Japan attacked the US at Pearl Harbor.Japan continued its expansion into China.Japan joined the Allied countries.Japan joined the Axis countries.Japan barred trade with the US.Japan invaded French Indochina. Select the appropriate pronoun.I present Ashley Manning,I believe will be able to answer our questions about the coming elections.whowhom PLEASE ANSWER ASAP THANK YOU!!! How much money will be in a bank account after 3 years if $9 is deposited at an interest rate of 5% compounded annually? Round to the nearest dollar..... Write an inequality for the shaded region shown in the figure. Which two phrases from the excerpt describe thesetting?Read the excerpt from "Home on the Range".Gray stone cliffs rose up around him. He filled hiscanteen at a sparkling clear spring. A brown jackrabbitdarted past him."gray stone cliffs" and "he filled""gray stone cliffs" and "sparkling clear spring""sparkling clear spring" and "brown jackrabbit""brown jackrabbit" and "darted past him"Mark this and returnSave and ExitNextSubar in triangle ABC the measure of angle A is 90. the length of AB is 1 unit the length of AC is 8 unit, find the legth of BC An automobile went 84 miles on 6.5 gallons of gasoline. At this rate, how many gallons would be needed to travel 126 miles Find the midpoint of the line segment defined by the points: (5, 4) and (2, 1) (2.5, 1.5) (3.5, 2.5) (1.5, 2.5) (3.5, 1.5) Dung dich NaCl 0.9% c 0.9g NaCl trong 100 mL dung dch plse help.....me[tex]a - 3 + a - 5[/tex]