Answer:
[tex] \boxed{ \boxed{ \bold{ \mathsf{3}}}}[/tex]Step-by-step explanation:
Let the missing number be 'x'
⇒[tex] \mathsf{15 + 9 = x(5 + 3)}[/tex]
Distribute x through the parentheses
⇒[tex] \mathsf{15 + 9 = 5x + 3x}[/tex]
Swap the sides of the equation
⇒[tex] \mathsf{5x + 3x = 15 + 9}[/tex]
Add the numbers
⇒[tex] \mathsf{5x + 3x = 24}[/tex]
Collect like terms
⇒[tex] \mathsf{8x = 24}[/tex]
Divide both sides of the equation by 8
⇒[tex] \mathsf{ \frac{8x}{8} = \frac{24}{8} }[/tex]
Calculate
⇒[tex] \mathsf{x = 3}[/tex]
Hope I helped!
Best regards!
5/2 + 6g = 11/4 solve it
Answer:
g = [tex]\frac{1}{24}[/tex]
Step-by-step explanation:
Given
[tex]\frac{5}{2}[/tex] + 6g = [tex]\frac{11}{4}[/tex]
Multiply through by 4 to clear the fractions
10 + 24g = 11 ( subtract 10 from both sides )
24g = 1 ( divide both sides by 24 )
g = [tex]\frac{1}{24}[/tex]
Ughhh this is hard for me!
Answer:
(x+4)/3. When x is 5 the answer is 3
Step-by-step explanation:
If the circumference of a circle is equal to 14, what is the diameter?
Answer:
7
Step-by-step explanation:
Factor: 2(4-y)-j(4-y)
Answer:
(2-j)(4-y)
Step-by-step explanation:
Factoring using grouping,
(2-j)(4-y)
If you’re good at statistics please help
Answer:
Step-by-step explanation:
probabilty distribution= interval of x/total area of the distribution
OR P(x)= frequency of x/total frequency(N)*the interval of x(w)
x f probabilty f/N*w
16 10 0.2
17 16 0.32
18 20 0.4
19 4 0.08
w is the width of the bar( interval) 17-16=1
N=10+16+20+4=50
( only need to draw histogram)
For a data set with Mean -20, SD-3 find the Z scores for each of the following raw scores: 23, 17, 15, 22, 30. 23: 17: 15: 22: 30:
A. 23
B. 17
C. 15
D. 22
E. 30
4. Look at your result from the previous question in regards to raw score of 15
Answer:
A. 1
B. -1
C. -1.67
D. 0.67
E. 3.33
Step-by-step explanation:
Mathematically;
z-score = (x-mean)/SD
From the question, mean = 20 , SD = 3 while x represents the individual values
A. 23
Z = (23-20)/3 = 3/3 = 1
B. 17
z = (17-20)/3 = -3/3 = -1
C. 15
z = (15-20)/3 = -5/3 = -1.67
D. 22
z = (22-20)/3 = 2/3 = 0.67
E. 30
z = (30-20)/3 = 10/3 = 3.33
Find three consecutive integers such that the sum of the largest and 5 times the smallest is -244. Find the smallest integer.
Let the largest integer equal x, the 3rd number ( smallest-number) would be x - 2
The sum of the two would be:
X + 5(x-2) = -244
Simplify:
X + 5x -10
Combine like terms
6x -10 = -244
Add 10 to both sides:
6x = -234
Divide both sides by 6
X = -234/6
X = -39
The smallest number is x-2 = -39-2 = -41
The answer is -41
Martin currently has a balance of $948 in an account he has held for 20 years. He opened the account with an initial deposit of $600. What is the simple interest on the account?
A - 1.8%
B - 2.9%
C - 3.2%
D - 7.9%
The position of an object at time t is given by s(t) = -9 - 3t. Find the instantaneous velocity at t = 8 by finding the derivative. I think its either -3 or -36
Answer:
[tex] \boxed{\sf Instantaneous \ velocity \ (v) = -3} [/tex]
Given:
Relation between position of an object at time t is given by:
s(t) = -9 - 3t
To Find:
Instantaneous velocity (v) at t = 8
Step-by-step explanation:
To find instantaneous velocity we will differentiate relation between position of an object at time t by t:
[tex] \sf \implies v = \frac{d}{dt} (s(t))[/tex]
[tex] \sf \implies v = \frac{d}{dt} ( - 9 - 3t)[/tex]
Differentiate the sum term by term and factor out constants:
[tex] \sf \implies v = \frac{d}{dt} ( - 9) - 3 (\frac{d}{dt} (t))[/tex]
The derivative of -9 is zero:
[tex] \sf \implies v = - 3( \frac{d}{dt} (t)) + 0[/tex]
Simplify the expression:
[tex] \sf \implies v = - 3( \frac{d}{dt} (t))[/tex]
The derivative of t is 1:
[tex] \sf \implies v = - 3 \times 1[/tex]
Simplify the expression:
[tex] \sf \implies v = - 3 [/tex]
(As, there is no variable after differentiating the relation between position of an object at time t by t so at time t = 8 is of no use.)
So,
Instantaneous velocity (v) at t = 8 is -3
John can jog twice as fast as he can walk. He was able to jog the first 5 miles to his grandmother's house, but then he tired and walked the remaining 2 miles. If the total trip took 0.9 hours, then what was his average jogging speed?
Step-by-step explanation:
Suppose, John walks with a speed x
Then, John can jog at a speed 2x
[tex]total \: time \: = \frac{total \: distance}{average \: speed} [/tex]
TOTAL TIME
[tex]0.9 = \frac{5}{2x} + \frac{2}{x} [/tex]
Further solving :
x = 5 mph
Average jogging speed (2x) = 10 mph
Answer:
10mph
Step-by-step explanation:
We know that John's total trip is 0.9 hours, so let's try to figure out how much of that time is spent jogging, and how much of it is spent walking.
We can do that by naming the time he takes to jog a mile y.
An equation would be:
5y+2(2y)=0.9
5y+4y=0.9
y=0.1
It takes him 0.1 hours, or 6 minutes to jog a mile.
Since he jogged 5 miles, his jogging time is 0.5 hours, or 30 minutes.
Now,
Let's name the speed he jogs x (miles per hour)
This allows us to set up another equation.
Note that:
Speed=distance/time
His jogging speed is x.
x=5/0.5
x=10
His average jogging speed is 10 miles an hour.
10 points plssssss!!!
Answer:
A. rectangle
B. any of triangle, quadrilateral, pentagon, hexagon
Step-by-step explanation:
A. A plane perpendicular to the base will intersect 2 adjacent or 2 opposite lateral faces, as well as the two bases. Each plane intersected will result in an edge of the cross sectional figure. The figure will have two pairs of parallel edges, so is a rectangle.
__
B. If the intersecting plane is not constrained to be perpendicular to the base(s), it can intersect 3, 4, 5, or all 6 faces of the prism. Hence, the shape of the cross section can be any of ...
trianglequadrilateralpentagonhexagonWhat best explains whether a triangle with side links 5 cm 13 cm and 12 cm is a right triangle
Step-by-step explanation:
Pythagoras Theorem
If the sum of the squares of the smaller two sides is equal to the square if the third side then it is a right triangle
[tex] {a}^{2} + {b}^{2} = {c}^{2} [/tex]
So, (5)^2 + (12)^2
is 25 + 144 = 169
Which is equal to (13)^2 which is also 169
The sides of the given triangle follows pythagoras theorem, therefore it is a right triangle
Hope it helps:)
Answer:
Pythagorean theorem
Step-by-step explanation:
We can explain it using the Pythagorean theorem. Right triangles always have a hypotenuse which is the longest side. That means 13 must be the hypotenuse of the triangle. The Pythagorean theorem is a^2+b^2=c^2
We already know all the values since every side is given so we just fill it in.
5^2+12^2=13^2
25+144=169
169=169
It is a right triangle
slope=-3, passing through (-9, -9)
Hey there! I'm happy to help!
We want to find the equation of a line in y-intercept form, which is y=mx+b, where x and y are a point on the line, m is the slope, and b is the y-intercept.
We already know that our slope is -3.
y=-3x+b
We want to solve for b now. We can plug in our point (-9,-9) to solve for it.
-9=-3(-9)+b
-9=27+b
b=-36
So, our equation is y=-3x-36.
I hope that this helps! Have a wonderful day! :D
a shopping center form 300000 square feet to an excess of 1 million square feer that consists mostly of large national chain stores is called a
Answer: Honeymoon2871
Step-by-step explanation:
Assume that blood pressure readings are normally distributed with a mean of 117and a standard deviation of 6.4.If 64people are randomly selected, find the probability that their mean blood pressure will be less than 119.Round to four decimal places.
Answer:
0.9938
Step-by-step explanation:
We can find this probability using a test statistic.
The test statistic to use is the z-scores
Mathematically;
z-score = (x-mean)/SD/√n
from the question, x = 119 , mean = 117 , SD = 6.4 and n = 64
Plugging these values in the z-score equation above, we have;
z-score = (119-117)/6.4/√64
z-score = 2/6.4/8
z-score = 2.5
The probability we want to find is;
P(z < 2.5)
we can get this value from the standard normal distribution table
Thus; P(z < 2.5) = 0.99379
Which to four decimal places = 0.9938
Polar coordinates: which is not the same?
Answer:
The first option is not the same point in polar coordinates as (-3, 1.236). This proves that inverting the signs of r and θ does not generally give the same point in polar coordinates.
Step-by-step explanation:
Let's think about the position of this point. As you can tell it lies in the 4th quadrant, on the 3rd circle of this polar graph.
Remember that polar coordinates is expressed as (r,θ) where r = distance from the positive x - axis, and theta = angle from the terminal side of the positive x - axis. Now there are two cases you can consider here when r > 0.
Given : (- 3, 1.236), (3,5.047), (3, - 7.518), (- 3, 1.906)
We know that :
7.518 - 1.236 = 6.282 = ( About ) 2π
5.047 + 1.236 = 6.283 = ( About ) 2π
1.236 + 1.906 = 3.142 = ( About ) 2π
Remember that sin and cos have a uniform period of 2π. All of the points are equivalent but the first option, as all of them ( but the first ) differ by 2π compared to the given point (3, - 1.236).
6(x + 2) = 30Solve the following linear equation
Answer:
[tex]\huge \boxed{x=3}[/tex]
Step-by-step explanation:
[tex]6(x+2)=30[/tex]
[tex]\sf Divide \ both \ sides \ by \ 6.[/tex]
[tex]x+2=5[/tex]
[tex]\sf Subtract \ 2 \ from \ both \ sides.[/tex]
[tex]x=3[/tex]
Answer:
3
Step-by-step explanation:
30 = 6(x+2)
30/6 = 5
5 = x+2
5-2 = 3
3=x
This is a pretty simple question and I tried to make it as simple as possible when explaining it.
PLEASE HELP!! (1/5) -50 POINTS-
Answer:
[tex]X=\begin{bmatrix}5&3\\ -3&2\end{bmatrix}[/tex]
Step-by-step explanation:
We are given the following matrix equation, from which we have to isolate X and simplify this value.
[tex]\begin{bmatrix}2&4\\ \:\:\:5&4\end{bmatrix}X\:+\:\begin{bmatrix}-8&-8\\ \:\:\:12&1\end{bmatrix}=\:\begin{bmatrix}-10&6\\ \:\:\:25&24\end{bmatrix}[/tex]
To isolate X, let us first subtract the second matrix, as demonstrated below, from either side. Further simplifying this equation we can multiply either side by the inverse of the matrix being the co - efficient of X, isolating it in the doing.
[tex]\begin{bmatrix}2&4\\ 5&4\end{bmatrix}X=\begin{bmatrix}-10&6\\ 25&24\end{bmatrix}-\begin{bmatrix}-8&-8\\ 12&1\end{bmatrix}[/tex] (Simplify second side of equation)
[tex]\begin{bmatrix}-10&6\\ 25&24\end{bmatrix}-\begin{bmatrix}-8&-8\\ 12&1\end{bmatrix}=\begin{bmatrix}\left(-10\right)-\left(-8\right)&6-\left(-8\right)\\ 25-12&24-1\end{bmatrix}=\begin{bmatrix}-2&14\\ 13&23\end{bmatrix}[/tex] ,
[tex]\begin{bmatrix}2&4\\ 5&4\end{bmatrix}X=\begin{bmatrix}-2&14\\ 13&23\end{bmatrix}[/tex] (Multiply either side by inverse of matrix 1)
[tex]X=\begin{bmatrix}2&4\\ 5&4\end{bmatrix}^{-1}\begin{bmatrix}-2&14\\ 13&23\end{bmatrix}=\begin{bmatrix}5&3\\ -3&2\end{bmatrix}[/tex]
Our solution is hence option c
A circle has a radius of 7 inches. What is the area of the circle?
A. 21.98 in^2
B. 43.96 in^2
C. 153.86 in^2
D. 615.44 in^2
Please include ALL work! <3
Answer:
C. 153.86 in^2[tex]area = \pi {r}^{2} \\ r = 7 \\ a = \frac{22}{7} \times {7}^{2} [/tex]
[tex]a = \frac{22}{7} \times 49 \\ a = 22 \times 7 = 154 {cm}^{2} [/tex]
Step-by-step explanation:
[tex]area = \pi {r}^{2} \\ a \: = 3.14 \times {7}^{2} \\ a \: = 3.14 \times 49 = 153.86 {cm}^{2} [/tex]
Answer:
C. 153.86 in^2
Step-by-step explanation:
The area of a circle can be found using the following formula.
[tex]a=\pi r^2[/tex]
where r is the radius.
We know the radius is 7 inches. Therefore, we can substitute 7 in for r.
[tex]r= 7 in[/tex]
[tex]a=\pi (7 in)^2[/tex]
Evaluate the exponent.
(7 in)^2= 7 in * 7 in= 49 in^2
[tex]a= \pi * 49 in^2[/tex]
Let's use 3.14 for pi.
[tex]a= 3.14 * 49 in^2[/tex]
Multiply 3.14 and 49
3.14 * 49=153.86
[tex]a= 153.86 in^2[/tex]
The area of the circle is 153.86 square inches. Therefore, C is the correct answer.
The length of a rectangle is increasing at a rate of 9 cm/s and its width is increasing at a rate of 7 cm/s. When the length is 12 cm and the width is 5 cm, how fast is the area of the rectangle increasing?
Answer:
129 m/s^2
Step-by-step explanation:
The length of a rectangle is increasing at a rate of 9m/s
dL/dt = 9m/s
The width is increasing at a rate of 7m/s
dw/dt= 7m/s
The formular for solving the area of a rectangle is length × width
Therefore, to calculate how fast the rectangle is increasing we will apply the product rule
dA/dt= L × dw/dt + W × dl/dt
= 12×7 + 5×9
= 84+45
= 129m/s^2
Hence the area of the rectangle is increasing at 129m/s^2
PLS HELP ASAP:Find all the missing elements:
Answer:
b ≈ 9.5, c ≈ 14.7
Step-by-step explanation:
Using the Sine rule in Δ ABC, that is
[tex]\frac{a}{sinA}[/tex] = [tex]\frac{b}{sinB}[/tex] , substitute values
[tex]\frac{7}{sin23}[/tex] = [tex]\frac{b}{sin32}[/tex] ( cross- multiply )
b × sin23° = 7 × sin32° ( divide both sides by sin23° )
b = [tex]\frac{7sin32}{sin23}[/tex] ≈ 9.5 ( to the nearest tenth )
Also
[tex]\frac{a}{sinA}[/tex] = [tex]\frac{c}{sinC}[/tex]
[tex]\frac{7}{sin23}[/tex] = [tex]\frac{c}{sin125}[/tex] ( cross- multiply )
c × sin23° = 7 × sin125° ( divide both sides by sin23° )
c = [tex]\frac{7sin125}{sin23}[/tex] ≈ 14.7 ( to the nearest tenth )
You have 9kg of oats and cup scales that gears of 50g and 200g. How − in three weighings− can you measure 2kg of the oats?
Answer: You will need 8 cup scales
Step-by-step explanation:
kg=1000 grams
2000/250=8
It is possible to measure 2 kilograms or 2000 grams in 8 cups, it is not possible to measure in three weighs.
What is Ratio?Ratio is defined as a relationship between two quantities, it is expressed one divided by the other.
What is percentage?The percentage is defined as the ratio expressed as a fraction of 100.The percentage is denoted by sign of %.For example, if XYZ scored 46% marks in his test, it means that he scored 46 marks out of 100. It is written as 46/100 in the fraction form and 46:100 in terms of ratio.
Given data as :
9kg of oats and cup scales that gears of 50g and 200g.
Total oats need to measure = 9kg
Since, 1 kg contains 1000 grams.
1 kg = 1000 grams
2kg = 2000 grams
9kg = 9000 grams
Cup scales that gears as 50g and 200g
The number of one cup contains in gram = 200 + 50 = 250
The number of cups, considering that each cup weighs 250 grams.
The number of cups = 2000/250
The number of cups = 8
Hence, while it is possible to measure 2 kilograms or 2000 grams in 8 cups, it is not possible to measure in three weighs.
Learn more about Ratio here:
brainly.com/question/1504221
#SPJ5
Convert the decimal 0.984 to a fraction.
984/100
984/1000
984/99
984/999
Answer:
[tex]\boxed{\frac{984}{1000}}[/tex]
Step-by-step explanation:
Hey there!
Well .984 is 984 over 1000 so .984 as a fraction is 984/1000.
We can check this by doing 984 / 1000 which is .984.
Hope this helps :)
A random sample of size results in a sample mean of and a sample standard deviation of . An independent sample of size results in a sample mean of and sample standard deviation of . Does this constitute sufficient evidence to conclude that the population means differ at the level of significance?
Answer:
A typical example would be when a statistician wishes to estimate the ... by the standard deviation ó) is known, then the standard error of the sample mean is given by the formula: ... The central limit theorem is a significant result which depends on sample size. ... So, the sample mean X/n has maximum variance 0.25/ n.
Step-by-step explanation:
Select the graph that correctly represents f(x) = –(x + 1)^2 – 3.
Answer:
Hey there!
The third graph, with a maximum at (-1, -3) is the correct choice.
Let me know if this helps :)
Answer:
see below
Step-by-step explanation:
f(x) = –(x + 1)^2 – 3
We know that this is a parabola in the form
y = a( x-h)^2 +k
where ( h,k) is the vertex
y = -1( x- -1)^2 + -3
a is negative so the parabola opens downward
( -1,-3) is the vertex
Which polynomial is prime? x2 + 9 x2 – 25 3x2 – 27 2x2 – 8
This is a sum of squares, which cannot be factored over the real numbers. You'll need to involve complex numbers to be able to factor, though its likely your teacher hasn't covered that topic yet (though I could be mistaken and your teacher has mentioned it).
Choice B can be factored through the difference of squares rule. Therefore, choice B is not prime.
Choice C and D can be factored by pulling out the GCF and then use the difference of squares rule afterward. So we can rule out C and D as well.
Answer:
A
Step-by-step explanation:
because it has a + sign
A package of 8-count AA batteries costs $6.40. A package of 20-count AA batteries costs $15.80. Which statement about the unit prices is true?
Answer:
The unit price of the 20 pack is $0.79 and the unit price for the 8 pack is $0.80.
Step-by-step explanation:
Simply Take the price of the pack of batteries divided by the number within the pack.
$6.40 / 8 == $0.80
$15.80 / 20 == $0.79
Cheers.
The question is incomplete. You can find the missing content below.
A package of 8-count AA batteries costs $6.40. A package of 20-count Of batteries costs $15.80. Which statement about the unit prices is true?
A) The 8-count pack of AA batteries has a lower unit price of $0.79 per battery.
B) The 20-count pack of AA batteries has a lower unit price of $0.80 per battery.
C) The 8-count pack of AA batteries has a lower unit prices of $0.80 per battery.
D) The 20-count pack of AA batteries has a lower unit price of $0.79 per battery.
The correct option is Option D: The 20-count pack of AA batteries has the lower price of $0.79 per battery.
What is inequality?Inequality is the relation between two numbers or variables or expressions showing relationships like greater than, greater than equals to, lesser than equals to, lesser than, etc.
For example 2<9
A package of 8-count AA batteries has cost = $6.40.
cost per unit count AA batteries will be= total cost of AA batteries/ number of AA batteries
= $6.40/8= $0.8
A package of 20-count AA batteries has cost = $15.80.
cost per unit count AA batteries will be= total cost of AA batteries/ number of AA batteries
= $15.80/20= $0.79
As 0.79<0.8
cost of 20-count AA batteries < cost of 8-count AA batteries
Therefore the correct option is Option D: The 20-count pack of AA batteries has the lower price of $0.79 per battery.
Learn more about inequality
here: https://brainly.com/question/11613554
#SPJ2
What is 45x62 Please help.
Answer:
45
62x
______
90
2700+
_________
2790
Step-by-step explanation:
The manager of the video department at a department store plans to purchase a large number of DVDs of a recent movie. One supplier is selling boxes of 20 DVD movies for $240, and a second supplier is selling boxes of 14 DVD movies for $170. Only complete boxes of DVD movies can be purchased. Complete part a) and b) below. a)
a) If the manager can purchase boxes of DVD movies from either or both suppliers, determine the maximum number of DVD movies that can be purchased for $415. Indicate how many boxes of 20 and how many boxes of 14 will be purchased.
— box(es) of 20 and — box(es) of 14
b) How much will the DVD movies cost?
They will cost $—
Answer:
1 box of 20 and 1 box of 14
They will cost $410
Step-by-step explanation:
1. Find how many boxes of 20 DVD movies can be bought
415 - 240 = 175
1 box of 20 DVD movies can be sold
2. Find how many boxes of 14 DVD movies can be bought from $175
175 - 170 = 5
1 box of 14 DVD movies can be bought
3. Find the cost
240 + 170 = 410
What expression describes 2a in the expression 2a2+2a-11
Answer:
Step-by-step explanation:
2a is the middle term of a quadratic expression. 2 is the coefficient of a to the first power.
Not much more you can say about this.
Please, if the original question includes answer choices, share those choices. Thank you.