Answer:
W = 4.75 KW
Explanation:
First, we will calculate the heat to be removed:
Q = (No. of students)(Metabolic Power of Each Student)
Q = (190)(125 W)
Q = 23750 W = 23.75 KW
Now the formula of COP is:
[tex]COP = \frac{Q}{W}\\\\W = \frac{Q}{COP}\\\\W = \frac{23.75\ KW}{5}\\\\[/tex]
W = 4.75 KW
Cold air rises because it is denser than water, is this true?
Answer:
true
Explanation:
im not sure please dont attack me
Light with a wavelength of 5.0 · 10-7 m strikes a surface that requires 2.0 ev to eject an electron. Calculate the energy, in joules, of one incident photon at this frequency. _____ joules 4.0 x 10 -19 4.0 x 10 -49 9.9 x 10 -32 1.1 x 10 -48
Answer:
pretty sure its 6.2 x 10^-13
Explanation:
I looked it up I'm not a bigbrain but want to help
Can you think of reasons why the charge on each ball decreases over time and where the charges might go
Answer:
By the principle of corona discharge.
Explanation:
The charge on each ball will decreases over time due to the electrical discharge in air.
According to the principle of corona discharge, when the curvature is small, the discharge of the charge takes placed form the pointed ends.
Solids diffuse because the particles cannot move.
A. Can
B. Not enough info
C. Cannot
D. Sometimes will
Solids cannot diffuse.
a vechile having a mass of 500kg is moving with a speed of 10m/s.Sand is dropped into it at the rate of 10kg/min.What force is needed to keep the vechile moving with uniform speed
Answer:
1.67 N
Explanation:
Applying,
F = u(dm/dt)+m(du/dt)................ Equation 1
Where F = force, m = mass of the vehicle, u = speed.
Since u is constant,
Therefore, du/dt = 0
F = u(dm/dt)............... Equation 2
From the question,
Given: u = 10 m/s, dm/dt = 10 kg/min = (10/60) kg/s
Substitute these values into equation 2
F = 10(10/60)
F = 100/60
F = 1.67 N
A car is moving at a speed of 60 mi/hr (88 ft/sec) on a straight road when the driver steps on the brake pedal and begins decelerating at a constant rate of 10ft/s2 for 3 seconds. How far did the car go during this 3 second interval?
Answer:
219 ft
Explanation:
Here we can define the value t = 0s as the moment when the car starts decelerating.
At this point, the acceleration of the car is given by the equation:
A(t) = -10 ft/s^2
Where the negative sign is because the car is decelerating.
To get the velocity equation of the car, we integrate over time, to get:
V(t) = (-10 ft/s^2)*t + V0
Where V0 is the initial velocity of the car, we know that this is 88 ft/s
Then the velocity equation is:
V(t) = (-10 ft/s^2)*t + 88ft/s
To get the position equation we need to integrate again, this time we get:
P(t) = (1/2)*(-10 ft/s^2)*t^2 + (88ft/s)*t + P0
Where P0 is the initial position of the car, we do not know this, but it does not matter for now.
We want to find the total distance that the car traveled in a 3 seconds interval.
This will be equal to the difference in the position at t = 3s and the position at t = 0s
distance = P(3s) - P(0s)
= ( (1/2)*(-10 ft/s^2)*(3s)^2+ (88ft/s)*3s + P0) - ( (1/2)*(-10 ft/s^2)*(0s)^2 + (88ft/s)*0s + P0)
= ( (1/2)*(-10 ft/s^2)*9s^2+ (88ft/s)*3s + P0) - ( P0)
= (1/2)*(-10 ft/s^2)*9s^2+ (88ft/s)*3s = 219ft
The car advanced a distance of 219 ft in the 3 seconds interval.
Hi can someon help me how to answer this?
Btw I'm from Philippines
Answer:
Test 1
1.True
2.True
3.True
4.False
5.True
6.True
7.False
8.True
9.True
10.True
yung iba nasa pic
Part AFind the x- and y-components of the vector d⃗ = (4.0 km , 29 ∘ left of +y-axis).Express your answer using two significant figures. Enter the x and y components of the vector separated by a comma.d⃗ = km Part BFind the x- and y-components of the vector v⃗ = (2.0 cm/s , −x-direction).Express your answer using two significant figures. Enter the x and y components of the vector separated by a comma.v⃗ = cm/s Part CFind the x- and y-components of the vector a⃗ = (13 m/s2 , 36 ∘ left of −y-axis).Express your answer using two significant figures. Enter the x and y components of the vector separated by a comma.a⃗ x = m/s2
Solution :
Part A .
Given : The [tex]x[/tex] and [tex]y[/tex] components of the vector, d = [tex]\text{4 km 29}[/tex] degree left of [tex]y[/tex]-axis.
So the [tex]x[/tex] component is = -4 x sin (29°) = -1.939 km
[tex]y[/tex] component is = 4 x cos (29°) = 3.498 km
Part B
Given : The [tex]x[/tex] and [tex]y[/tex] components of the vector, [tex]\text{v = 2 cm/s}[/tex] , [tex]\text{-x direction}[/tex]
So the [tex]x[/tex] component is = -2 cm/s
[tex]y[/tex] component is = 0
Part C
Given : The [tex]x[/tex] and [tex]y[/tex] components of the vector, [tex]\text{a = 13 m/s, 36 degree}[/tex] left of [tex]y[/tex]-axis.
So the [tex]x[/tex] component is = -13 x sin (36°) = -7.6412 [tex]m/S^2[/tex]
[tex]y[/tex] component is = -13 x cos (36°) = -10.517 [tex]m/S^2[/tex]
The x- and y-components of the vectors is mathematically given as as follows for each Part respectively
x= -1.939 km, y= 3.498 km
x= -2 cm/s, 0
y=, x= -7.6412m/s^2, -10.517m/s^2
What are the x- and y-components of the vectors?
Question Parameters:
Generally, we follow a basic principle where
x component= Fsin\theta
y component= Fcos\theta
Therefore
For A
x component is
x= -4 x sin (29°)
x= -1.939 km
y component is
y= 4 x cos (29°)
y= 3.498 km
For B
x component is
x= -2 cm/s
y component is
y= 0
For C
x component is
x= -13 x sin (36°)
x= -7.6412m/s^2
y component is
y= -13 x cos (36°)
y= -10.517m/s^2
Read more about Cartession co ordinate
https://brainly.com/question/9410676
Topic: Chapter 10: Projectory or trajectile?
Projectile range analysis:
A projectile is launched from the ground at 10 m/s, at
an angle of 15° above the horizontal and lands 5.1 m away.
What other angle could the projectile be launched at, with the same velocity,
and land 5.1 m away?
90°
75°
45
50°
30°
Answer:
The other angle is 75⁰
Explanation:
Given;
velocity of the projectile, v = 10 m/s
range of the projectile, R = 5.1 m
angle of projection, 15⁰
The range of a projectile is given as;
[tex]R = \frac{u^2sin(2\theta)}{g}[/tex]
To find another angle of projection to give the same range;
[tex]5.1 = \frac{10^2 sin(2\theta)}{9.81} \\\\100sin(2\theta) = 50\\\\sin(2\theta) = 0.5\\\\2\theta = sin^{-1}(0.5)\\\\2\theta = 30^0\\\\\theta = 15^0\\\\since \ the \ angle \ occurs \ in \ \ the \ first \ quadrant,\ the \ equivalent \ angle \\ is \ calculated \ as;\\\\90- \theta = 15^0\\\\\theta = 90 - 15^0\\\\\theta = 75^0[/tex]
Check:
sin(2θ) = sin(2 x 75) = sin(150) = 0.5
sin(2θ) = sin(2 x 15) = sin(30) = 0.5
A typical incandescent light bulb consumes 75 W of power and has a mass of 20 g. You want to save electrical energy by dropping the bulb from a height great enough so that the kinetic energy of the bulb when it reaches the floor will be the same as the energy it took to keep the bulb on for 2.0 hours. From what height should you drop the bulb, assuming no air resistance and constant g?
Answer:
h = 2755102 m = 2755.102 km
Explanation:
According to the given condition:
Potential Energy = Energy Consumed by Bulb
[tex]mgh = Pt\\\\h = \frac{Pt}{mg}[/tex]
where,
h = height = ?
P = Power of bulb = 75 W
t = time = (2 h)(3600 s/1 h) = 7200 s
m = mass of bulb = 20 g = 0.02 kg
g = acceleration due to gravity = 9.8 m/s²
Therefore,
[tex]h = \frac{(75\ W)(7200\ s)}{(0.02\ kg)(9.8\ m/s^2)}[/tex]
h = 2755102 m = 2755.102 km
A 1.64 kg mass on a spring oscillates horizontal frictionless surface. The motion of the mass is described by the equation: X = 0.33cos(3.17t). In the equation, x is measured in meters and t in seconds. What is the maximum energy stored in the spring during an oscillation?
Answer:
[tex]K.E_{max}=0.8973J[/tex]
Explanation:
From the question we are told that:
Mass [tex]m=1.64kg[/tex]
Equation of Mass
[tex]X=0.33cos(3.17t)[/tex]...1
Generally equation for distance X is
[tex]X=Acos(\omega t)[/tex]...2
Therefore comparing equation
Angular Velocity [tex]\omega=3.17rad/s[/tex]
Amplitude A=0.33
Generally the equation for Max speed is mathematically given by
[tex]V_{max}=A\omega[/tex]
[tex]V_{max}=0.33*3.17[/tex]
[tex]V_{max}=1.0461m/s[/tex]
Therefore
[tex]K.E_{max}=0.5mv^2[/tex]
[tex]K.E_{max}=0.5*1.64*(1.0461)^2[/tex]
[tex]K.E_{max}=0.8973J[/tex]
Question: A NEO distance from the Sun is 1.17 AU. What is the speed of the NEO (round your answer to 2 decimal places)
Answer:
v = 2.75 10⁴ m / s
Explanation:
For this exercise we must use Kepler's third law which is an application of Newton's second law to the solar system
F = ma
where force is the force of gravity
F = [tex]G \frac{m M}{r^2}[/tex]
acceleration is centripetal
a = [tex]\frac{v^2}{r}[/tex]
we substitute
G m M / r² = m v² / r
[tex]\frac{GM}{r}[/tex] = v²
v = [tex]\sqrt{GM/r}[/tex]
indicate that the radius of the orbit is r = 1.17 AU, let's reduce to the SI system
r = 1.17 AU (1.496 10¹¹ m / 1 AI) = 1.76 10¹¹ m
let's calculate
v = [tex]\sqrt{\frac{6.67 \ 10^{-11} 1.991 \ 10^{30} }{ 1.76 \ 10^{11}} }[/tex]Ra (6.67 10-11 1.991 10 30 / 1.76 10 11
v = [tex]\sqrt{7.5454 \ 10^8 }[/tex]ra 7.5454 10 8
v = 2.75 10⁴ m / s
A student claimed that thermometers are useless because a
thermometer always registers its own temperature. How would you
respond?
[
A 0.20 mass on a horizontal spring is pulled back a certain distance and released. The maximum speed of the mass is measured to be 0.20 . If, instead, a 0.40 mass were used in this same experiment, choose the correct value for the maximum speed.
a. 0.40 m/s.
b. 0.20 m/s.
c. 0.28 m/s.
d. 0.14 m/s.
e. 0.10 m/s.
Answer:
d
Explanation:
Ya gon find the Kenitic Energy first
K=½mv²===> K=½×0.2×(0.2)²===> 0.1(0.04)===> 0.004
and now the replacement:
0.004=½×0.4V²====> v²=0.02===> V=0.14m/s
A submarine has a "crush depth" (that is, the depth at which
water pressure will crush the submarine) of 400 m. What is
the approximate pressure (water plus atmospheric) at this
depth? (Recall that the density of seawater is 1025 kg/m3, g=
9.81 m/s2, and 1 kg/(m-s2) = 1 Pa = 9.8692 x 10-6 atm.)
Answer:
P =40.69 atm
Explanation:
We need to find the approximate pressure at a depth of 400 m.
It can be calculated as follows :
P = Patm + ρgh
Put all the values,
[tex]P=1\ atm+1025 \times 9.81\times 400\times 9.8692\times 10^{-6}\ atm/Pa\\\\P=40.69\ atm[/tex]
So, the approximate pressure is equal to 40.69 atm.
When a rigid body rotates about a fixed axis, all the points in the body have the same Group of answer choices linear displacement. angular acceleration. centripetal acceleration. tangential speed. tangential acceleration.
Answer:
angular acceleration.
Explanation:
Newton's law of universal gravitation states that the force of attraction (gravity) acting between the Earth and all physical objects is directly proportional to the Earth's mass, directly proportional to the physical object's mass and inversely proportional to the square of the distance separating the Earth's center and that physical object.
Generally, when a rigid body is made to rotate about a fixed axis, all the points in the body would typically have the same angular acceleration, angular displacement, and angular speed.
g As they reach higher temperatures, most semiconductors... Selected Answer: have an increased resistance. Answers: have a constant resistance. have an increased resistance. have a decreased resistance.
Answer:
have an increased resistance
Question 3 of 10
Which statement describes the law of conservation of energy?
A. Air resistance has no effect on the energy of a system.
B. Energy cannot be created or destroyed.
C. The total energy in a system can only increase.
D. Energy cannot change forms.
هما
SUBMIT
Answer:
B . energy cannot be created or destroyed
1. Which one of the following is not an organic compound? Why? CH4 C2H6O CaO
2. Fill in the chart below to identify and describe the functional groups associated with organic chemistry. Name General Structure Properties/Uses Alcohol Aldehyde Ketone Fatty acid Ether
3. Explain why carbon is called “the backbone” molecule of organic chemistry and why organic molecules couldn't easily be based on H or O instead.
Answer:
1. CaO is not an organic compound because it doesn’t contain a carbon molecule.
2.
Name General Structure Properties/Uses
Alcohol R-OH (contains a hydroxyl group) Can be poisonous, can be made from fermentation or distillation
Aldehyde R-COH (contains a carbon atom double-bonded to an oxygen and single-bonded to a hydrogen) Makes up formaldehyde and acetaldehyde
Ketone R-CO-R (contains a carbon atom double-bonded to an oxygen atom and then connected to carbon chains through the other two single bonds) Makes up acetone
Fatty acid R-COOH (contains a carbon atom double-bonded to an oxygen atom, single-bonded to a hydroxyl, and single-bonded to the carbon chain) Makes up fatty acids like acetic acid and stearic acid; used to form esters
Ether R-O-R (contains double carbon chains connected to an oxygen atom through single bonds) Ethyl ether is very volatile and flammable, used in veterinary medicine
3. Carbon is able to make four covalent bonds with other elements. This gives it a lot of diversity and the ability to form differently shaped molecules that perform specific functions or fit specific cell receptors in the body. H can form only one bond, and oxygen forms only two bonds, so they don't have as much potential to form a good starting point for organic molecules.
Explanation:
pf
CaO is not an organic compound because it doesn’t contain a carbon molecule.
Name General Structure Properties/Uses(which contains a hydroxyl group) Can be poisonous, can be made from fermentation or distillation
Aldehyde R-COH (contains a carbon atom double-bonded to oxygen and single-bonded to hydrogen) Makes up formaldehyde and acetaldehyde
Ketone R-CO-1R (contains a carbon atom double-bonded to an oxygen atom and then connected to carbon chains through the other two single bonds) Makes up acetone
Fatty acid R-COOH (contains a carbon atom double-bonded to an oxygen atom, single-bonded to a hydroxyl, and single-bonded to the carbon chain) Makes up fatty acids like acetic acid and stearic acid; used to form esters11
Ether -O-R (contains double carbon chains connected to an oxygen atom through single bonds) Ethyl ether is very volatile and flammable, used in veterinary medicine
Carbon can make four covalent bonds with other elements. This gives it a lot of diversity and the ability to form differently shaped molecules that perform specific functions or fit specific cell receptors in the body. H can form only one bond, and oxygen forms only two bonds, so they don't have as much potential to form a good starting point for organic molecules.
Learn more about organic molecules.
https://brainly.com/question/24225576
#SPJ2
How do the magnitudes of the currents through the full circuits compare for Parts I-III of this exercise, in which resistors are combined in series, in parallel, and in combination
Answer: hello tables and data related to your question is missing attached below are the missing data
answer:
a) I = I₁ = I₂ = I₃ = 0.484 mA
b) I₁ = 0.016 amps
I₂ = 0.0016 amps
I₃ = 7.27 * 10^-4 amps
c) I₁ = 1.43 * 10^-3 amp
I₂ = 0.65 * 10^-3 amps
Explanation:
A) magnitude of current for Part 1
Resistors are connected in series
Req = r1 + r2 + r3
= 3300 Ω ( value gotten from table 1 ) ,
V = 1.6 V ( value gotten from table )
hence I ( current ) = V / Req = 1.6 / 3300 = 0.484 mA
The magnitude of current is the same in the circuit
Vi = I * Ri
B) magnitude of current for part 2
Resistors are connected in parallel
V = 1.6 volts
Req = [ ( R1 * R2 / R1 + R2 ) * R3 / ( R1 * R2 / R1 + R2 ) + R3 ]
= [ ( 100 * 1000 / 100 + 1000) * 2200 / ( 100 * 1000 / 100 + 1000 ) + 2200]
= 87.30 Ω
For a parallel circuit the current flow through each resistor is different
hence the magnitude of the currents are
I₁ = V / R1 = 1.6 / 100 = 0.016 amps
I₂ = V / R2 = 1.6 / 1000 = 0.0016 amps
I₃ = V / R3 = 1.6 / 2200 = 7.27 * 10^-4 amps
C) magnitude of current for part 3
Resistors are connected in combination
V = 1.6 volts
Req = R1 + ( R2 * R3 / R2 + R3 )
= 766.66 Ω
Total current ( I ) = V / Req = 1.6 / 766.66 = 2.08 * 10^-3 amps
magnitude of currents
I₁ = ( I * R3 ) / ( R2 + R3 ) = 1.43 * 10^-3 amps
I₂ = ( I * R2 ) / ( R2 + R3 ) = 0.65 * 10^-3 amps
Two children sit on a seesaw that is in rotational equilibrium. The first child has weight W and sits at distance d from the pivot. If the second child sits at a distance of 7*d from the pivot, what must be the weight of the second child
Answer:
W/7
Explanation:
By principle of moments,
Sum of clockwise moment = sum of anticlockwise moment
Weight × 7d = W × d
Weight = W/7
Since the two children are in rotational equilibrium, the weight of the second child is W/7.
How can the weight of the second child be determined?The weight of the second child can be determined from the principle of moments.
The principle of moments states that for a body in equilibrium, the sum of the clockwise moments and anticlockwise moments about a point is zero.
Let the weight of the second child be X
From the principle of moments:
W × d = 7×d × X
X = W/7
Therefore, the weight of the second child is W/7.
Learn more about principle of moments at: https://brainly.com/question/20298772
When a golfer tees off, the head of her golf club which has a mass of 158 g is traveling 48.2 m/s just before it strikes a 46.0 g golf ball at rest on a tee. Immediately after the collision, the club head continues to travel in the same direction but at a reduced speed of 32.7 m/s. Neglect the mass of the club handle and determine the speed of the golf ball just after impact.
Answer:
v₂ = 53.23 m/s
Explanation:
Given that,
The mass of a golf club, m₁ = 158 g = 0.158 kg
The initial speed of a golf club, u₁ = 48.2 m/s
The mass of a golf ball, m₂ = 46 g = 0.046 kg
It was at rest, u₂ = 0
Immediately after the collision, the club head continues to travel in the same direction but at a reduced speed of 32.7 m/s, v₁ = 32.7 m/s
We use the conservation of energy to find the speed of the golf ball just after impact as follows :
[tex]m_1u_1+m_2u_2=m_1v_1+m_2v_2\\\\v_2=\dfrac{m_1u_1-m_1v_1}{m_2}\\\\v_2=\dfrac{0.158(48.2)-0.158(32.7)}{0.046}\\\\=53.23\ m/s[/tex]
So, the speed of the golf ball just after the impact is equal to 53.23 m/s.
A tire is filled with air at 22oC to a gauge pressure of 240 kPa. After driving for some time, if the temperature of air inside the tire is 45oC, what fraction of the original volume of air must be removed to maintain the pressure at 240 kPa?
Answer:
7.8% of the original volume.
Explanation:
From the given information:
Temperature [tex]T_1[/tex] = 22° C = 273 + 22 = 295° C
Pressure [tex]P_1[/tex] = 240 kPa
Temperature [tex]T_2[/tex] = 45° C
At initial temperature and pressure:
Using the ideal gas equation:
[tex]P_1V_1 =nRT_1[/tex]
making V_1 (initial volume) the subject:
[tex]V_1 = \dfrac{nRT_1}{P_1}[/tex]
[tex]V_1 = \dfrac{nR*295}{240}[/tex]
Provided the pressure maintained its rate at 240 kPa, when the temperature reached 45° C, then:
the final volume [tex]V_2[/tex] can be computed as:
[tex]V_2 = \dfrac{nR*318}{240}[/tex]
Now, the change in the volume ΔV = V₂ - V₁
[tex]\Delta V = \dfrac{nR*318}{240}- \dfrac{nR*295}{240}[/tex]
[tex]\Delta V = \dfrac{23nR}{240}[/tex]
∴
The required fraction of the volume of air to keep up the pressure at (240) kPa can be computed as:
[tex]= \dfrac{\dfrac{23nR}{240}}{ \dfrac{295nR}{240}}[/tex]
[tex]= {\dfrac{23nR}{240}} \times { \dfrac{240}{295nR}}[/tex]
[tex]= 0.078[/tex]
= 7.8% of the original volume.
if the tin is made of a metal which has a density of 7800 kg per metre cubic calculate the volume of the metal used to make tin and lead
Answer:
XL sleep usual Addison officer at home and ear is not a short time to be be free and ear is a short time to make a short time
Explanation:
so that I can take the class on Monday and ear is not a short time to be be free and ear is not a short time to be be free and ear is not a short time to be be free and ear is not a short time to time for a day or night and ear buds is Anshu and duster and duster fgor a day or night is Anshu and duster for a day or not a week of computer science from your computer and I am in the same as I am a short of ti and you can be the first time I will be be
An inductor of inductance 0.02H and capacitor of capatance 2uF are connected in series to an a.c. source of frequency 200 Hz- Calculate the Impedance in the circuit . TC
Explanation:
Given:
L = 0.02 H
C = [tex]2\:\mu \text{F}[/tex]
f = 200 Hz
The general form of the impedance Z is given by
[tex]Z = \sqrt{R^2 + (X_L - X_C)^2}[/tex]
Since this is a purely inductive/capacitive circuit, R = 0 so Z reduces to
[tex]Z = \sqrt{(X_L - X_C)^2} = \sqrt{\left(\omega L - \dfrac{1}{\omega C} \right)^2}[/tex]
[tex]\:\:\:\:\:\:\:= \sqrt{\left(2 \pi L - \dfrac{1}{2 \pi f C} \right)^2}[/tex]
[tex]\:\:\:\:\:\:\:= \sqrt{\left[2 \pi (200\:\text{Hz})(0.02\:\text{H}) - \dfrac{1}{2 \pi (200\:\text{Hz})(2×10^{-6}\:\text{F})} \right]^2}[/tex]
[tex]\:\:\:\:\:\:\:= \sqrt{(25.13\:\text{ohms} - 397.89\:\text{ohms})^2}[/tex]
[tex]\:\:\:\:\:\:\:=372.66\:\text{ohms}[/tex]
As you move farther away from a source emitting a pure tone, the ___________ of the sound you hear decreases.
Answer:
frequency
Explanation:
The phenomenon of apparent change in frequency due to the relation motion between the source and the observer is called Doppler's effect.
So, when we move farther, the frequency of sound decreases. The formula of the Doppler's effect is
[tex]f' = \frac{v + v_o}{v+ v_s} f[/tex]
where, v is the velocity of sound, vs is the velocity of source and vo is the velocity of observer, f is the true frequency. f' is the apparent frequency.
A massless, hollow sphere of radius R is entirely filled with a fluid such that its density is p. This same hollow sphere is now compressed so that its radius is R/2, and then it is entirely filled with the same fluid as before. As such, what is the density of the compressed sphere?
a. 8p
b. p/8
c. p/4
d. 4p
Answer:
a. 8p
Explanation:
We are given that
Radius of hollow sphere , R1=R
Density of hollow sphere=[tex]\rho[/tex]
After compress
Radius of hollow sphere, R2=R/2
We have to find density of the compressed sphere.
We know that
[tex]Density=\frac{mass}{volume}[/tex]
[tex]Mass=Density\times volume=Constant[/tex]
Therefore,[tex]\rho_1 V_1=\rho_2V_2[/tex]
Volume of sphere=[tex]\frac{4}{3}\pi r^3[/tex]
Using the formula
[tex]\rho\times \frac{4}{3}\pi R^3=\rho_2\times \frac{4}{3}\pi (R/2)^3[/tex]
[tex]\rho R^3=\rho_2\times \frac{R^3}{8}[/tex]
[tex]\rho_2=8\rho[/tex]
Hence, the density of the compressed sphere=[tex]8\rho[/tex]
Option a is correct.
suppose the tank is open to the atmosphere instead of being closed. how does the pressure vary along
Answer:
Pressure is more in the open container than the closed one.
Explanation:
The pressure due to the fluid at a depth is given by
Pressure = depth x density of fluid x gravity
So, when the container is open, the atmospheric pressure is also add up but when the container is closed only the pressure due to the fluid is there.
So, when the container is open, the pressure is atmospheric pressure + pressure due to the fluid.
hen the container is closed only the pressure due to the fluid is there.
An object is 2.0 cm from a double convex lens with a focal length of 1.5 cm. Calculate the image distance
Answer:
0.857 cm
Explanation:
We are given that:
The focal length for a convex lens to be (f) = 1.5cm
The object distance (u) = - 2.0 cm
We are to determine the image distance (v) = ??? cm
By applying the lens formula:
[tex]\dfrac{1}{f} = \dfrac{1}{u}+\dfrac{1}{v}[/tex]
By rearrangement and making (v) the subject of the above formula:
[tex]v = \dfrac{uf}{u-f}[/tex]
replacing the given values:
[tex]v = \dfrac{(-2.0)(1.5)}{(-2.0 -1.5)}[/tex]
[tex]v = \dfrac{-3.0}{(-3.5)}[/tex]
v = 0.857 cm
A mass attached to the end of a spring is oscillating with a period of 2.25 s on a horizontal frictionless surface. The mass was released from rest at
t = 0
from the position
x = 0.0480 m.
Determine the location of the mass at
t = 5.85 s?
Answer:
[tex]X=0.0389m[/tex]
Explanation:
From the question we are told that:
Period of spring [tex]T_s=2.25s[/tex]
Initial Position of Mass [tex]x=0.0480m[/tex]
Final Mass period [tex]T_f=5.85s[/tex]
Generally the equation for the Mass location is mathematically given by
[tex]X=xcos*\frac{2\pi T_s}{T_f}[/tex]
[tex]X=0.048*cos*\frac{2\pi 5.85}{2.25}[/tex]
[tex]X=0.0389m[/tex]