1.Find the value of x in the equation below
3^(2x+1)÷3^(3x-4)×3^(6-7x)=27x

2.Solve the equation 2^(x+y)=8 and 3^(x-y)=1 simultaneously​

Answers

Answer 1

Answer:

Step-by-step explanation:

Hello, please consider the following.

Question 1.

[tex]\dfrac{3^{2x+1}}{3^{3x-4}\cdot 3^{6-7x}}=27^x\\\\<=> 3^{2x+1}\cdot 3^{-3x+4}\cdot 3^{-6+7x}=3^{2x+1-3x+4-6+7x}=(3^3)^x=3^{3x}\\\\<=> 2x+1-3x+4-6+7x=3x\\\\<=> 6x-1=3x\\\\<=> 3x=1\\\\<=> \boxed{x=\dfrac{1}{3}}[/tex]

Question2.

[tex]2^{x+y}=8=2^3 <=>x+y=3\\\\3^{x-y}=1=3^0<=>x-y=0[/tex]

So, it gives (by adding the two equations) 2x = 3

[tex]\boxed{x=\dfrac{3}{2} \ \ and \ \ y = x = \dfrac{3}{2} }[/tex]

Hope this helps.

Do not hesitate if you need further explanation.

Thank you


Related Questions

Consider the differential equation:


2y'' + ty' − 2y = 14, y(0) = y'(0) = 0.


In some instances, the Laplace transform can be used to solve linear differential equations with variable monomial coefficients.


If F(s) = ℒ{f(t)} and n = 1, 2, 3, . . . ,then

ℒ{tnf(t)} = (-1)^n d^n/ds^n F(s)


to reduce the given differential equation to a linear first-order DE in the transformed function Y(s) = ℒ{y(t)}.


Requried:

a. Sovle the first order DE for Y(s).

b. Find find y(t)= ℒ^-1 {Y(s)}

Answers

(a) Take the Laplace transform of both sides:

[tex]2y''(t)+ty'(t)-2y(t)=14[/tex]

[tex]\implies 2(s^2Y(s)-sy(0)-y'(0))-(Y(s)+sY'(s))-2Y(s)=\dfrac{14}s[/tex]

where the transform of [tex]ty'(t)[/tex] comes from

[tex]L[ty'(t)]=-(L[y'(t)])'=-(sY(s)-y(0))'=-Y(s)-sY'(s)[/tex]

This yields the linear ODE,

[tex]-sY'(s)+(2s^2-3)Y(s)=\dfrac{14}s[/tex]

Divides both sides by [tex]-s[/tex]:

[tex]Y'(s)+\dfrac{3-2s^2}sY(s)=-\dfrac{14}{s^2}[/tex]

Find the integrating factor:

[tex]\displaystyle\int\frac{3-2s^2}s\,\mathrm ds=3\ln|s|-s^2+C[/tex]

Multiply both sides of the ODE by [tex]e^{3\ln|s|-s^2}=s^3e^{-s^2}[/tex]:

[tex]s^3e^{-s^2}Y'(s)+(3s^2-2s^4)e^{-s^2}Y(s)=-14se^{-s^2}[/tex]

The left side condenses into the derivative of a product:

[tex]\left(s^3e^{-s^2}Y(s)\right)'=-14se^{-s^2}[/tex]

Integrate both sides and solve for [tex]Y(s)[/tex]:

[tex]s^3e^{-s^2}Y(s)=7e^{-s^2}+C[/tex]

[tex]Y(s)=\dfrac{7+Ce^{s^2}}{s^3}[/tex]

(b) Taking the inverse transform of both sides gives

[tex]y(t)=\dfrac{7t^2}2+C\,L^{-1}\left[\dfrac{e^{s^2}}{s^3}\right][/tex]

I don't know whether the remaining inverse transform can be resolved, but using the principle of superposition, we know that [tex]\frac{7t^2}2[/tex] is one solution to the original ODE.

[tex]y(t)=\dfrac{7t^2}2\implies y'(t)=7t\implies y''(t)=7[/tex]

Substitute these into the ODE to see everything checks out:

[tex]2\cdot7+t\cdot7t-2\cdot\dfrac{7t^2}2=14[/tex]

Dan weighs 205 pounds but is only 5 feet 8 inches tall. Evan is 6 feet tall. How much would you expect Evan to weigh if they have the same height/weight ratio? WILL MARK BRAINLIST

Answers

Answer:

217.0588235294118

Step-by-step explanation:

Convert all height to inches.

5' 8" = 68 inches

6' = 72

205/68 = 3.014705882352941

Height/Weight Ratio * Evan's Height = 217.0588235294118

Ben is tiling the floor in his bathroom the area he is tiling is 4m times 2m each tiles measures 400mm times 400mm he has 45 tiles is that enough

Answers

Answer:

No, it's not enough

Step-by-step explanation:

Given

Tilling Dimension = 4m by 2m

Tile Dimension = 400mm by 400mm

Required

Determine the 45 tiles is enough

First;

The area of the tiling has to be calculated

[tex]Area = Length * Breadth[/tex]

[tex]Area = 4m * 2m[/tex]

[tex]Area = 8m^2[/tex]

Next, determine the area of the tile

[tex]Area = Length * Breadth[/tex]

[tex]Area = 400mm * 400mm[/tex]

Convert measurements to metres

[tex]Area = 0.4m* 04m[/tex]

[tex]Area = 0.16\ m^2[/tex]

Next, multiply the above area result by the number of files

[tex]Total = 0.16m^2 * 45[/tex]

[tex]Total = 7.2m^2[/tex]

Compare 7.2 to 8

Hence, we conclude that the 45 tiles of 400mm by 400 mm dimension is not enough to floor his bathroom

Please help. I’ll mark you as brainliest if correct!

Answers

Answer:

(DNE,DNE)

Step-by-step explanation:

-24x-12y = -16. Equation one

6x +3y = 4. Equation two

Multiplying equation two with +4 gives

4(6x +3y = 4)

24x +12y = 16...result of equation two

-24x -12y= -16...

A careful observation to the following equation will help us notice that the both equation are same thing.

Multiplying minus to equation one gives

-(-24x-12y=-16)

24x+12y = 16.

Since the both equation are same, there is no solution to it.

Nicole ordered a volleyball for $9.75

Answers

That’s Nice!!

I don’t think you copied the WHOLE ENTIRE question. I would suggest resubmitting the question so we can help you with it!!

Have a great day and stay safe and positive!!

Answer:

the other person is right

you should try putting the WHOLE question

Step-by-step explanation:

the dot plot above identifies the number of pets living with each of 20 families in an apartment building .what fraction of families have more than two pets

Answers

Answer:

B. ⅕

Step-by-step explanation:

Fraction of families having more than 2 pets = families with pets of 3 and above ÷ total number of families in the apartment

From the dot plot above, 3 families have 3 pets, and 1 family has 4 pets.

Number of families with more than 2 pets = 3 + 1 = 4

Fraction of families with more than 3 pets = [tex] \frac{4}{20} = \frac{1}{5} [/tex]

The fraction of families that have more than two pets is B. [tex]\frac{1}{5}[/tex]

Calculations and Parameters

Given that:

Fraction of families having more than 2 pets = families with pets of 3 and above/total number of families in the apartment

From the dot plot above:

3 families have 3 pets,  1 family has 4 pets.

Number of families with more than 2 pets

= 3 + 1

= 4

Fraction of families with more than 3 pets = [tex]\frac{4}{20} = \frac{1}{5}[/tex]

Read more about dot plots here:

https://brainly.com/question/25957672

#SPJ5

A box contains12 balls in which 4 are white,3 blue and 5 are red.3 balls are drawn at random from the box.Find the chance that all three balls are of sifferent color.(answer in three decimal places)

Answers

[tex]|\Omega|=_{12}C_3=\dfrac{12!}{3!9!}=\dfrac{10\cdot11\cdot12}{2\cdot3}=220\\|A|=4\cdot3\cdot5=60\\\\P(A)=\dfrac{60}{220}=\dfrac{3}{11}\approx0,273[/tex]

Answer:

0.273

Step-by-step explanation:

Total number of balls is 4+3+5 = 12

There are 6 ways to draw 3 different colors (WBR, WRB, BWR, BRW, RWB, RBW) each with a chance of 4/12 · 3/11 · 5/10 = 1/22

So the total chance is 6 · 1/22 = 6/22 = 3/11 ≈ 0.273


Factor.
x2 + 11x

x2 + 11x
x(x + 11)
11(x + 11)
0(x2 + 11x)

Answers

Answer:

x(x + 11)

Step-by-step explanation:

x^2 + 11x when factored gives a result of x(x + 11)

Answer:

x(x+11)

Step-by-step explanation:

We are given the expression:

[tex]x^2+11x[/tex]

This can be factored using the Greatest Common Factor (GCF).

The GCF of x^2 and 11x is x.

Factor out an x.

[tex]x(x+11)[/tex]

x^2+11x factored is: x(x+11).

150,75,50 what number comes next

Answers

Answer:

35 or 25

Step-by-step explanation:

will rate you brainliest

Answers

Answer:

third option is the first step

Answer:

C

Step-by-step explanation:

It is c bro

PLEASE HELP!!!!!!! FIRST CORRECT ANSWER WILL BE THE BRAINLIEST....PLEASE HELP
Lunch Choices of Students
The bar graph shows the percent of students that chose each food in the school
cafeteria. Which statement about the graph is true?

Answers

Answer:

(2) If 300 lunches were sold, then 120 chose tacos.

Step-by-step explanation:

We can evaluate each option and see if it makes it true.

For 1: If 200 lunches were served, 10 more students chose pizza over hotdogs.

We can find how many pizzas/hotdogs were given if 200 lunches were served by relating it to 100.

20% chose hotdog, which is [tex]\frac{20}{100}[/tex]. Multiply both the numerator and denominator by two: [tex]\frac{40}{200}[/tex] - so 40 students chose hotdogs.

Same logic for pizza: 30% chose pizza - [tex]\frac{30}{100} = \frac{60}{200}[/tex] so 60.

60 - 40 = 20, not 10, so 1 doesn't work.

2: If 300 lunches were sold, then 120 chose tacos.

Let's set up a proportion again. 40% of 100 is 40.

[tex]\frac{40}{100} = \frac{40\cdot3}{300} = \frac{120}{300}[/tex]

So 120 tacos were chosen - yes this works!

Hope this helped!

I need help on this question :(​

Answers

Answer: 40 degree

Explanation:

FT bisect angle EFD dividing it into 2 equal angles (EFT and DFT)

And EFD = 80

We get :
EFT = 80/2
EFT = 40

And EFT + DFT = EFD = 80 degree

Therefore EFT = 40 degrees

The graph shown below expresses a radical function that can be written in the form f(x)=a(x+k)^1/n + c. What does the graph tell you about the value of n in this function?

Answers

Answer: n is a positive odd number.

Step-by-step explanation:

Ok, we know that the function is something like:

f(x)=a(x+k)^1/n + c

In the graph we can see two thigns:

All the values of the graph are positive values (even for the negative values of x), but in the left side we can see that the function decreases and is different than the right side.

So this is not an even function, then n must be an odd number (n odd allows us to have negative values for y = f(x) that happen when x + k is negative).

Also, we can see that the function increases, if n was a negative number, like: n = -N

we would have:

[tex]f(x) = \frac{a}{(x+k)^{1/N}} + c[/tex]

So in this case x is in the denominator, so as x increases, we would see that the value of y decreases, but that does not happen, so we can conclude that the value of n must be positive.

Then n is a positive odd number.

Answer:

D) Positive Even Integer

Step-by-step explanation:

just did it

A cube has an edge of 2 feet. The edge is increasing at the rate of 5 feet per minute. Express the volume of the cube as a function of m, the number of minutes elapsed.

Answers

Answer:

[tex]V(m) = (2 + 5m)^3[/tex]

Step-by-step explanation:

Given

Solid Shape = Cube

Edge = 2 feet

Increment = 5 feet per minute

Required

Determine volume as a function of minute

From the question, we have that the edge of the cube increases in a minute by 5 feet

This implies that,the edge will increase by 5m feet in m minutes;

Hence,

[tex]New\ Edge = 2 + 5m[/tex]

Volume of a cube is calculated as thus;

[tex]Volume = Edge^3[/tex]

Substitute 2 + 5m for Edge

[tex]Volume = (2 + 5m)^3[/tex]

Represent Volume as a function of m

[tex]V(m) = (2 + 5m)^3[/tex]

Which of these functions could have been the graph shown below?

Answers

Answer:

B

Step-by-step explanation:

we take the only point we know

(0,20)

in A when x =0

[tex]f(x)=e^{20x} =e^{20*0}=1[/tex]

in B when x=0

[tex]f(x)=20e^x=20e^0=20*1=20[/tex]

fits

in C

[tex]f(x)=20^x=20^0=1[/tex]

in D

[tex]f(x)=20^{20x}=20^{20*0}=20^0=1[/tex]

so the only choice is B

Line l has a slope of −6/13. The line through which of the following pair of points is perpendicular to l? A. (13,−4),(−7,2) B. (6,−4),(−7,2) C. (2,6),(−4,−7) D. (6,9),(−4,−4)

Answers

Answer: Choice C.  (2,6) and (-4,-7)

=========================================================

Explanation:

The original line has a given slope of -6/13. The opposite reciprocal is 13/6. We flip the fraction and the sign from negative to positive.

With any two perpendicular slopes, they always multiply to -1

(-6/13)*(13/6) = (-6*13)/(13*6) = -78/78 = -1

--------------------

Since the perpendicular slope is 13/6, we need to see which of the four answer choices produces a slope of 13/6. Use the slope formula.

This is something you do through trial and error. You could start with A and work your way to D, or just pick at random. I'll go through each one by one starting at choice A.

---------------------

Let's try choice A

m = (y2 - y1)/(x2 - x1)

m = (2 - (-4))/(-7 - 13)

m = (2 + 4)/(-7 - 13)

m = 6/(-20)

m = -3/10, we can see that choice A is not the answer, since we want m = 13/6 instead.

-----------------------

Let's try choice B

m = (y2 - y1)/(x2 - x1)

m = (2 - (-4))/(-7 - 6)

m = (2 + 4)/(-7 - 6)

m = 6/(-13)

m = -6/13, that doesn't work either

------------------------

Let's try choice C

m = (y2 - y1)/(x2 - x1)

m = (-7 - 6)/(-4 - 2)

m = -13/(-6)

m = 13/6, we found the answer

------------------------

For the sake of completeness, here is what choice D would look like

m = (y2 - y1)/(x2 - x1)

m = (-4 - 9)/(-4 - 6)

m = -13/(-10)

m = 13/10, which isn't the slope we want

Find the length of segment YZ in the diagram below.

Answers

Answer:

2√2

Step-by-step explanation:

hope you understand.

A professor at a local community college noted that the grades of his students were normally distributed with a mean of 74 and standard deviation of 10. The professor has informed us that 6.3 percent of his students received A's while only 2.5 percent of his students failed the course and received F's.
a. What is the minimum score needed to make an A?
b. What is the maximum score among those who received an F?
c. If there were 5 students who did not pass the course, how many students took the course?

Answers

Answer:

a)  z (score) 1,53

b)  z ( score) - 1,96

c) 200 students

Step-by-step explanation:

Normal Distribution N ( 74;10)

a) From z-table, and for 6,3 %  ( 0,063 ) we find the z (score) 1,53

Note : 6,3 % or 0,063 is the area under the curve, the minimum score neded to get A

b) To fail   2,5 %  ( 0,025 ) from z-table  get - 1,96

c) If the group of  student who did not pass the course (5) correspond to 2,5 % then by simple rule of three

5                 2,5

x ?               100

x = 500/2,5

x = 200

Twice one number added to another number is 18. if the 2nd number is equaled to 12 less than 4 times the 1st number, find the two numbers

2x + y= ? ; y= ?x - ?​

Answers

Answer:

8

Step-by-step explanation:

Math Word Problem: Twice one number added to another number is 18. Four times the first number minus the other number is 12. Find the number.?

Let the two numbers be x and y

As per statement twice one number added to another number is 18.

2x + y = 18

y = 18 - 2x…Eq..1

Four times the first number minus the other number is 12.

4x - y = 12…Eq..2

Now substituting the value of y from Eq..1 to Eq..2

4x - y = 12

4x - (18 - 2x) = 12

4x - 18 + 2x = 12

4x + 2x = 12 + 18

6x = 30

x = 30 / 6

x = 5

Thus one number is 5. Now calculating the other number by putting the value of x in Eq. 1

y = 18 - 2x

y = 18 - 2×5

y = 18 - 10

y = 8

Other number is 8

Answer the two numbers are 5 and 8

Let us check the correctness of answer by putting the value of x and y in Eq. 1

y = 18 - 2x

8 = 18 - 2 × 5

8 = 18 - 10

8 = 8

Means answer is correct

2x + y = 18
y = 4x - 12

2x + y = 18
2x + (4x - 12) = 18
6x - 12 = 18
6x = 30
x = 5

y = 4x - 12
y = 4(5) - 12
y = 20 - 12
y = 8

Therefore the first number is 5 and the second number is 8.


Paula drives 130 miles in 2.5 hours. How far would she drive in 4.5 at the same speed?
*Please answer
I will award the Brainliest answer

Answers

Answer:

Paula will travel 234 miles in 4.5 hours

Step-by-step explanation:

Step 1: We first find the speed Paula is going in hours, we divide 130 mile by 2.5 hours to get 52 miles per hour

Step 2: We multiple 52 miles per hour with 4.5 hours to get 234 miles

Therefore Paula will travel 234 miles in 4.5 hours

PLEASE I NEED HELP 30 POINTS AND BRAINLYEST Order from least greatest 3.5, -2.1, square root of 9, -7/2, and square root of 5

Answers

Answer:

-7/1, -2.1, square root of 5, square root of 9, and last 3.5

Step-by-step explanation:

Square root of 9 is 3.

Square root of 5 is 2.24

-7/2 as a decimal is -3.5

So, from least to greatest order is:

-7/2 > -2.1 > Square root of 5 > Square root of 9 > 3.5

A wheel with radius 1 m is rolled in a straight line through one complete revolution on a flat horizontal surface. How many metres did the centre of the wheel travel horizontally from its starting location?

Answers

Answer:

6.28 m

Step-by-step explanation:

If a wheel travels with one full revolution, it would have travelled the circumference's distance from it's starting point.

The circumference of a circle is [tex]2\pi r[/tex]

Let's assume [tex]\pi[/tex] is 3.14 and solve for the equation.

[tex]2\cdot3.14\cdot1\\6.28[/tex]

Hope this helped!

Plaz guys help me on this question additional mathematics ​

Answers

Answer:

Step-by-step explanation:

vector OA=a

vector OB=b

vector OX= λ vector OA=λa

vector OY=μ vector OB=μb

a.

1.vector BX=(vector OX-vector OB)=λa-b

ii. vector AY=(vector OY-vector OA)=μb-a

b.

5 vector BP=2 vector BX

5(vector OP-vector OB)=2 (vector OX-vector OB)

5(vector OP-b)=2(λa-b)

5 vector OP-5b=2λa-2b

5 vector OP=2λa-2b+5b

vector OP=1/5(2λa+3b)

ii

complete it.

120 meals to 52 meals what is the percentage change?

Answers

Answer: The percentage change is 56.67%.

Step-by-step explanation:

From 120 meals to 52 meals, change in meals = ( 120- 52) meals

= 68 meals

The percentage change = [tex]\dfrac{\text{change in meals}}{\text{Original quantity of meals}}\times100[/tex]

[tex]=\dfrac{68}{120}\times100\\\\=56.67\%[/tex]

Hence, the percentage change is 56.67%.

How do I solve? Show with steps.

Answers

Step-by-step explanation:

or,[(√-x-1)+(√x+9)]^2=4^2

or,(√-x-1)^2+2√(-x-1)(x+9)+(√x+9)^2=16

or,-x-1+2√-x^2-10x-9 +x+9=16

or,2√-x^2-10x-9=8

or,√-x^2-10x-9=4

squaring on both sides

or,-x^2-10x-9=16

or,-x^2-10x=25

or,-x(x+10)=25

Either,

x=-25 or, x=15.

A string passing over a smooth pulley carries a stone at one end. While its other end is attached to a vibrating tuning fork and the string vibrates forming 8 loops. When the stone is immersed in water 10 loops are formed. The specific gravity of the stone is close to
 
A)  1.8
B)  4.2
C)  2.8
D)  3.2​

Answers

Answer:

correct option is C)  2.8

Step-by-step explanation:

given data

string vibrates form =  8 loops

in water loop formed =  10 loops

solution

we consider  mass of stone = m

string length = l

frequency of tuning = f

volume = v

density of stone = [tex]\rho[/tex]

case (1)  

when 8 loop form with 2 adjacent node is [tex]\frac{\lambda }{2}[/tex]

so here

[tex]l = \frac{8 \lambda _1}{2}[/tex]      ..............1

[tex]l = 4 \lambda_1\\\\\lambda_1 = \frac{l}{4}[/tex]

and we know velocity is express as

velocity = frequency × wavelength   .....................2

[tex]\sqrt{\frac{Tension}{mass\ per\ unit \length }}[/tex]   =   f × [tex]\lambda_1[/tex]

here tension = mg

so

[tex]\sqrt{\frac{mg}{\mu}}[/tex]   =   f × [tex]\lambda_1[/tex]     ..........................3

and

case (2)  

when 8 loop form with 2 adjacent node is [tex]\frac{\lambda }{2}[/tex]

[tex]l = \frac{10 \lambda _1}{2}[/tex]      ..............4

[tex]l = 5 \lambda_1\\\\\lambda_1 = \frac{l}{5}[/tex]

when block is immersed

equilibrium  eq will be

Tenion + force of buoyancy = mg

T + v × [tex]\rho[/tex] × g = mg

and

T = v × [tex]\rho[/tex] - v × [tex]\rho[/tex] × g    

from equation 2

f × [tex]\lambda_2[/tex] = f  × [tex]\frac{1}{5}[/tex]  

[tex]\sqrt{\frac{v\rho _{stone} g - v\rho _{water} g}{\mu}} = f \times \frac{1}{5}[/tex]     .......................5

now we divide eq 5 by the eq 3

[tex]\sqrt{\frac{vg (\rho _{stone} - \rho _{water})}{\mu vg \times \rho _{stone}}} = \frac{fl}{5} \times \frac{4}{fl}[/tex]

solve irt we get

[tex]1 - \frac{\rho _{stone}}{\rho _{water}} = \frac{16}{25}[/tex]

so

relative density [tex]\frac{\rho _{stone}}{\rho _{water}} = \frac{25}{9}[/tex]

relative density = 2.78 ≈ 2.8

so correct option is C)  2.8

On an exam, the average score is 76 with a standard deviation of 6 points What is the probability that an individual chosen at random will have a score below 67 on this exam

Answers

Answer:

P [ X < 67 ] =  0,66,81      or    66,81 %

Step-by-step explanation:

We assume Normal Distribution  N ( μ ; σ )    N ( 76 ; 6 )

z score for 67 is :

z(s) =  (  X - μ  ) /σ

z(s) =  (  67 - 76 ) / 6

z(s) =  - 9 / 6

z(s) = - 1,5

with 1,5 we fnd n z-table area undr the curve  α = 0,6681

Then  P [ X < 67 ] =  0,66,81      or    66,81 %

A portion of the quadratic formula proof is shown. Fill in the missing reason.

Answers

Answer:

Find a common denominator on the right side of the equation

Step-by-step explanation:

The equation before the problem is

X² + b/a(x) + (b/2a)²= -c/a + b²/4a²

The next step in solving the above equation is to fibd tge common denominator on the right side of the equation.

X² + b/a(x) + (b/2a)²= -c/a + b²/4a²

X² + b/a(x) + (b/2a)²= -4ac/4a² + b²/4a²

X² + b/a(x) + (b/2a)²=( b²-4ac)/4a²

The right side of the equation now has a common denominator

The next step is to factorize the left side of the equation.

(X+b/2a)²= ( b²-4ac)/4a²

Squaring both sides

X+b/2a= √(b²-4ac)/√4a²

Final equation

X=( -b+√(b²-4ac))/2a

Or

X=( -b-√(b²-4ac))/2a

what is the least common denominator of 1/8, 2/9, and 3/12

A. 864

B. 108

C. 72

D. 48

Answers

Answer:

c. 72

Step-by-step explanation:

you just have to see what is the lowest number the three denominators: 8, 9, 12, all go into

8 times 9=72 and 12 times 6=72, which makes answer choice C. &2 the least common denominator for the fractions 1/8, 2/9, and 3/12.

Answer:

c.72 he's right love you guys byeee you all welcome

Step-by-step explanation:

4(x/2-2) > 2y-11 which of the following inequalities is equivalent to the inequality above?
1) 4x+2y-3 > 0
2) 4x-2y+3 > 0
3) 2x+2y-3 > 0
4) 2x-26+3 > 0

Answers

4) 2x-2y+3 > 0

although it is spelt "26" on the choices

Other Questions
Light of wavelength 500 nm falls on two slits spaced 0.2 mm apart. If the spacing between the first and third dark fringes is to be 4.0 mm, what is the distance from the slits to a screen? (2 + i)(3 - i)(1 + 2i)(1 - i)(3 + i) write an article for publicationin a national newspaper discussing at least two reasons why students should cultivatethe habit of Reading please help with this math question The largest religion in India today A la propiedad fundamental de las proporcionas, comprueba si las siguientes son o no hay elementos a) 5/7 a 15/21 b) 20/7 a 5/3 c) 16/8 a 4/2 On Monday, the seller offers to sell his vacant lot to the buyer for $42,000. On Tuesday, the buyer counteroffers to buy for $40,500. On Friday, the buyer learns that several other prospects may be making offers on the property, so he withdraws the counteroffer and agrees to the original asking price of $42,000. Under these conditions, there is Cada par de numeros esta a razon de 2:3 Which of the following do performance evaluation tests NOT measure? 15.Vicinal coupling is:A)coupling between 1H nuclei attached to adjacent C atoms.B)coupling between 1H nuclei in an alkene.C)coupling between 1H nuclei attached to the same C atom.D)coupling between 1H nuclei in an alkane. Fallon Company uses flexible budgets to control its selling expenses. Monthly sales are expected to range from $166,400 to $201,500. Variable costs and their percentage relationship to sales are sales commissions 7%, advertising 6%, travel 4%, and delivery 1%. Fixed selling expenses will consist of sales salaries $34,900, depreciation on delivery equipment $6,600, and insurance on delivery equipment $1,700. Prepare a monthly selling expense flexible budget for each $11,700 increment of sales within the relevant range for the year ending December 31, 2020. Find the measure of each angle indicated. Round to the nearest tenth.A) 49C) 38.1B) 44.90D) 42.89Can you please help explain how to find the answer A ship leaves the port of Miami with a bearing of S80E and a speed of 15 knots. After 1 hour, the ship turns 90 toward the south. After 2 hours, maintain the same speed. What is the bearing to the ship from port? he sales of the Garland Corporation are projected to grow exponentially for the years between 2010 and 2015 from $110 million to $160 million. (a) Find a model giving the sales of Garland Corporation in year t between 2010 (t Jamal lost his job as a shipbuilder. His plant closed down "temporarily" but never reopened and will not. Jamal's skills are very specialized and no longer in demand. His unemployment is best classified as . an idea/belief is to a ____ as a research prediction is to a ____ According to Piaget, children have acquired the cognitive skill of conservation when they're able to A 95% confidence interval indicates that:A. 95% of the intervals constructed using this process based on samples from this population willinclude the population meanB. 95% of the time the interval will include the sample meanC. 95% of the possible population means will be included by the intervalD. 95% of the possible sample means will be included by the interval Read the passage and answer the question: Leonard Zachary Bartholomew is the greatest cat who ever lived. When he lounges on the windowsill and watches birds and joggers, the entire neighborhood is filled with his benevolent presence. Which term best describes the passage? A. Situational irony B. Hyperbole C. Understatement D. Imagery In a survey of 119 students, it was found that 16 drink neither coke nor Pepsi 69 drinks coke and39 drink pepsiHow many students drink Coke only?How many students drink Pepsi only?Show the above information in a Venn diagram.