Answer:
36/5
Step-by-step explanation:
9/4×16/5
144/20
36/5
hope this is helpful
Answer:
[tex]7\frac{1}{5}[/tex]
Step-by-step explanation:
1. start by turning the fractions improper fractions:
[tex]2\frac{1}{4} =\frac{9}{4}[/tex]
[tex]3\frac{1}{5} =\frac{16}{5}[/tex]
2. then multiply them together:
[tex]\frac{9}{4}[/tex] x [tex]\frac{16}{5}[/tex] = [tex]\frac{144}{20}[/tex]
3. then simplify the fraction:
[tex]\frac{144}{20}[/tex][tex]=\frac{36}{5}[/tex]
4. turn it into a proper fraction:
[tex]\frac{36}{5} =7\frac{1}{5}[/tex]
Find the greatest common factor of the
following monomials:
12a^2, 32a^3
Answer:
4a^2
Step-by-step explanation:
GCF of 12 and 32 is 4.
GCF of a^3 and a^2 is a^2.
Therefore, the answer is 4a^2.
6. Find the value of x to the nearest tenth.
Answer:
Step-by-step explanation:
[tex]Cos \ 39 = \frac{adjacent \ side}{hypotenuse}\\\\0.7771 = \frac{7}{x}[/tex]
x * 0.7771 = 7
[tex]x =\frac{7}{0.7771}=9.007[/tex]
x = 9
Find the area
Please help me
Answer: 24 square cm.
8*6=48
48/2=24
Answer:
24 cm^2
Step-by-step explanation:
(w*h)/2
Can someone help me with this
Answer:
use system of equations
Step-by-step explanation:
Set one up for the Smith family and one for the Jones family
Which of these is an exponential parent function?
Complete question is;
Which of these is an exponential parent function?
A. f(x) = x
B. f(x) = 2^(x)
C. f(x) = x²
D. f(x) = |x|
Answer:
B. f(x) = 2^(x)
Step-by-step explanation:
> In option A, f(x) = x
This function depicts a straight line with intercept as 0 and slope as 1.
> In option C, f(x) = x²
This function depicts a parabola open up since the leading coefficient is greater than 0.
> In option D: f(x) = |x|
This function depicts a straight line y = x for x > 0 and y = -x for x < 0
In option B f(x) = 2^(x)
This function depicts an exponential function because the x is in the exponent form with a base of 2.
Write 2 x 8 x 64 in index notation with the smallest base.
Answer:
Step-by-step explanation:
Prime factorize 8 and 64
8 = 2* 2 * 2 = 2³
64 = 2*2*2 *2*2*2 = 2⁶
2*8*64 = 2* 2³ *2⁶ = 2¹⁺³⁺⁶ = 2¹⁰
In exponent multiplication, if base are same, then add the exponents.
Persons taking a 30-hour review course to prepare for a standardized exam average a score of 620 on that exam. Persons taking a 70-hour review course average a score of 749. Find a linear equation which fits this data, and use this equation to predict an average score for persons taking a 57-hour review course. Round your answer to the tenths place.
Given:
30-hour review course average a score of 620 on that exam.
70-hour review course average a score of 749.
To find:
The linear equation which fits this data, and use this equation to predict an average score for persons taking a 57-hour review course.
Solution:
Let x be the number of hours of review course and y be the average score on that exam.
30-hour review course average a score of 620 on that exam. So, the linear function passes through the point (30,620).
70-hour review course average a score of 749. So, the linear function passes through the point (70,749).
The linear function passes through the points (30,620) and (70,749). So, the linear equation is:
[tex]y-y_1=\dfrac{y_2-y_1}{x_2-x_1}(x-x_1)[/tex]
[tex]y-620=\dfrac{749-620}{70-30}(x-30)[/tex]
[tex]y-620=\dfrac{129}{40}(x-30)[/tex]
[tex]y-620=\dfrac{129}{40}(x)-\dfrac{129}{40}(30)[/tex]
[tex]y-620=\dfrac{129}{40}(x)-\dfrac{387}{4}[/tex]
Adding 620 on both sides, we get
[tex]y=\dfrac{129}{40}x-\dfrac{387}{4}+620[/tex]
[tex]y=\dfrac{129}{40}x+\dfrac{2480-387}{4}[/tex]
[tex]y=\dfrac{129}{40}x+\dfrac{2093}{4}[/tex]
We need to find the y-value for [tex]x=57[/tex].
[tex]y=\dfrac{129}{40}(57)+\dfrac{2093}{4}[/tex]
[tex]y=183.825+523.25[/tex]
[tex]y=707.075[/tex]
[tex]y\approx 707.1[/tex]
Therefore, the required linear equation for the given situation is [tex]y=\dfrac{129}{40}x+\dfrac{2093}{4}[/tex] and the average score for persons taking a 57-hour review course is 707.1.
which point is a solution to y>2x-1?
Answer:
B) (0,2)
Step-by-step explanation:
We substitute the values of x and y into this inequality:
2 ≥ 2(0)-1
2 ≥ 0-1
2 ≥ -1
This is true, so this is the correct point
hope this helps have a good day
Answer:
there it is
Step-by-step explanation:
Use the graph to estimate the solutions to 4 log2 (2x) = x + 4. Select all that apply.
Given:
The equation is:
[tex]4\log_2(2x)=x+4[/tex]
The graph of the [tex]4\log_2(2x)[/tex] and [tex]x+4[/tex] are given on a coordinate plane.
To find:
The solution of the given equation from the given graph.
Solution:
From the given graph it is clear that the graphs of [tex]4\log_2(2x)[/tex] and [tex]x+4[/tex] intersect each other at points (1.24,5.24) and (16,20).
It means the values of both functions [tex]4\log_2(2x)[/tex] and [tex]x+4[/tex] are equal at [tex]x=1.24[/tex] and [tex]x=16[/tex].
So, the solutions of given equation are [tex]x=1.24[/tex] and [tex]x=16[/tex].
Therefore, the correct option is only F.
Given cosΘ=2/3 and sinΘ>0, find sinΘ
(Just for clarification, those zeros with horizontal lines in the center represent theta)
Answer:
sinΘ = √5/3
Step-by-step explanation:
Mathematically, we know that the cos of an angle is the ratio of the adjacent to the hypotenuse
The sine of an angle is the ratio of the opposite to the hypotenuse
So in this case, from the cosine given; adjacent is 2 and hypotenuse is 3
From the Pythagoras’ theorem, we can get the opposite
Mathematically, the square of the hypotenuse equals the sum of the squares of the two other sides
Let us have the opposite as x
3^2 = 2^2 + x^2
9 = 4 + x^2
x^2 = 9-4
x^2 = 5
x = √5
This root can be positive or negative
But since the sine is positive, we shall be considering only the positive root
Thus;
sine theta = √5/3
a bag contains three red marbles five blue marbles and seven green marbles.what is the ratio of blue marbles to the total number of marbles
Answer:
5:15 simplified as 1:3
Step-by-step explanation:
Brainly to whomever somehow solves for g & k. I WILL REPORT SCAMS AND UNHELPFUL/ UNRELATED ANSWERS.
Answer:
g = 48
k = 18
Step-by-step explanation:
h / 10 = 60 / 12
h / 10 = 5
h = 5 x 10
h = 50
40 / h = g / 60
40 / 50 = g / 60
4 / 5 = g / 60
g = ( 60 x 4 ) / 5
= 12 x 4
g = 48
90 / k = 60 / 12
90 / k = 5
k = 90 / 5
k = 18
find the area of the kite. please help thank you
Answer:
1/2×d1×d2
=1/2× (4+4)(6+3)
=36
Evaluate the expression. 24.32
2^4×3^2 = 144
___________
Answer:
144 would be the answer.
Step-by-step explanation:
Question:- [tex]2^{4}[/tex] · [tex]3^{2}[/tex]
[tex]2^{4}[/tex] = 2 x 2 x 2 x 2
= 4 x 2 x 2
= 8 x 2
= 16
[tex]3^{2}[/tex] = 3 x 3
= 9
So, [tex]2^{4}[/tex] · [tex]3^{2}[/tex] = 16 x 19
= 144
If / is a midsegment of /, find x.
A.
2
B.
3
C.
6
D.
9
Please select the best answer from the choices provided
A
B
C
D
Answer:
It is d
Step-by-step explanation:
fy
This graph shows a portion of an even function,
Use the graph to complete the table of values.
6
X
f(x)
-1
4
-3
-5
-6
2
DONE
2
Answer:
From top to bottom;
1,1,3,3
Step-by-step explanation:
mathematically, for an even function;
f(x) = f(-x)
what this mean is that;
f(-1) = f(1)
f(-3) = f(3)
f(-5) = f(5)
f(-6) = f(6)
so we have it that;
f(-1) = 1
f(-3) = 1
f(-5) = 3
f(-7) = 3
Which is the graph of the equation y-1=- f (x-3)?
Which expression is equivalent to 8-(6r+2) HELP SMB PLEASE!
Answer:
A.
Step-by-step explanation:
A.-6r+6
Solve. Algebra 1
1-4p-2p=1-5p
Answer:
p = 0
Step-by-step explanation:
1 - 4p - 2p = 1 - 5p
-6p + 1 = -5p + 1
-p + 1 = 1
-p = 0
p = 0
Peter owned a juice shop. He sold a cup of lemon juice for $1.25 and a cup of apple juice for $2.50. If Peter sold a total of 155 cups of juice and collected a total of $256 approximately, how many cups of each type did he sell?
The number of cup of lemon juice is 105 cups and number of cup of apple juice is 50 cups.
What is a system of equation?A system of equations is a set or collection of equations that you deal with all together at once. For a system to have a unique solution, the number of equations must equal the number of unknowns.
For the given situation,
Peter sold a cup of lemon juice = $1.25
Peter sold a cup of apple juice = $2.50
Total number of cups sold = 155 cups
Total amount = $256
Let number of cup of lemon juice be x and
let number of cup of apple juice be y
The equations for the above statements are
[tex]x + y = 155 ------- (1)\\1.25x +2.50y = 256 ------- (2)[/tex]
From equation 1,
⇒ [tex]x=155-y[/tex]
Now substitute x in equation 2,
⇒ [tex]1.25(155-y)+2.50y=256[/tex]
⇒ [tex]193.75-1.25y+2.50y=256[/tex]
⇒ [tex]1.25y=256-193.75[/tex]
⇒ [tex]1.25y=62.25\\[/tex]
⇒ [tex]y=\frac{62.25}{1.25}[/tex]
⇒ [tex]y=49.8[/tex] ≈ [tex]50[/tex]
Now substitute y in equation 1,
⇒ [tex]x=155-50[/tex]
⇒ [tex]x=105[/tex]
Hence we can conclude that the number of cup of lemon juice is 105 cups and number of cup of apple juice is 50 cups.
Learn more about the system of equation here
https://brainly.com/question/12760602
#SPJ3
The third National Health and Nutrition Examination Survey collected body fat percentage (BF%) and gender data from 13,601 subjects ages 20 to 80. The average BF% for the 6,580 men in the sample was 23.9, and this value was 35.0 for the 7,021 women. The standard error for the difference between the average men and women BF%s was 0.114. Do these data provide convincing evidence that men and women have different average BF%s. You may assume that the distribution of the point estimate is nearly norma
Answer:
Yes, the data provides convincing evidence that men and women have different average BF%s
Step-by-step explanation:
The given parameters are;
The number of the subjects ages 20 to 80 = 13,601
The body fat percentage, BF%, for the 6,580 men, [tex]\overline x_1[/tex] = 23.9
The body fat percentage, BF%, for the 7,021 women, [tex]\overline x_2[/tex] = 35.0
The standard error for the difference between the average men and women = 0.144
The null hypothesis, H₀; [tex]\overline x_1[/tex] = [tex]\overline x_2[/tex]
The alternative hypothesis, Hₐ; [tex]\overline x_1[/tex] ≠ [tex]\overline x_2[/tex]
The test statistic = (35.0 - 23.9)/(0.114) = 97.368
Therefore, given that the z-test is larger than the critical-z, we reject the null hypothesis, H₀, therefore, there is convincing statistical evidence to suggest that men and women have different body average BF%
Jessica is buying chicken wings and hamburger meat for a party. One bag of chicken wings costs $6. Hamburger meat costs $3 per pound. She must spend no more than $30. She also knows that she needs to buy at least 5 pounds of hamburger meat. Which system of inequalities can be used to determine the number of bags of chicken wings, x, and the number of pounds of hamburger meat, y, that Jessica should buy?(1 point)
Answer:
6x + 3y ≤ 30
y ≥ 5
Step-by-step explanation:
Let
x = number of bags of chicken wings
y = number of pounds of hamburger meat
Cost of one bag of chicken wings = $6
Cost of one pound of Hamburger meat = $3
She must spend no more than $30.
The inequality
6x + 3y ≤ 30
She also knows that she needs to buy at least 5 pounds of hamburger meat.
y ≥ 5
the question is in the picture below
Answer:
$843.67
Step-by-step explanation:
We can use a proportion to solve this problem:
12 : 100 = x : 896
x =(896 * 12)/100 = $107,52
896 - 107.52 = $788,48 (price of the computer after the discount)
7 : 100 = x : 788,48
x = (788,48 * 7)/100 = $55,1936
788.48 + 55,1936 = 843,6736 = $843.67 (final price)
A study was conducted by a team of college students for the college research center. From the study, it was reported that most shoppers have a specific spending limit in place while shopping online. The reports indicate that men spend an average of $230 online before they decide to visit a store. If the spending limit is normally distributed and the standard deviation is $19.
(a) Find the probability that a male spent at least $210 online before deciding to visit a store. Ans: ____________
(b) Find the probability that a male spent between $240 and $300 online before deciding to visit a store. Ans: ____________
(c) Find the probability that a male spent exactly $250 online before deciding to visit a store. Ans: (d) Ninety-one percent of the amounts spent online by a male before deciding to visit a store are less than what value? Ans: ____________
Answer:
0.8536
0.29933
Step-by-step explanation:
Given :
Mean amount spent, μ = $230
Standard deviation, σ = $19
1.)
Probability of spending atleast $210
P(x ≥ 210)
The Zscore = (x - μ) / σ = (210 - 230) / 19 = - 1.052
P(Z ≥ -1.052) = 1 - P(Z ≤ - 1.052) = 1 - 0.1464 = 0.8536
2.)
Probability that between $240 and $300 is spent:
P(x < $240) = Zscore = (240 - 230) / 19 = 0.526
P(Z < 0.526) = 0.70056
P(x < 300) = Zscore = (300 - 230) / 19 = 3.684
P(Z < 3.684) = 0.99989
P(Z < 3.684) - P(Z < 0.526)
0.99989-0.70056 = 0.29933
After simplification, the value of 1-2/1(1+2)-3/(1+2)(1+2+3)-4/(1+2+3)(1+2+3+4)-...-100/(1+2+...+99)(1+2+...+100)
is a proper fraction in its lowest form. Find the difference of its numerator and denominator.
Answer: no
Step-by-step explanationn. .......................................................w:eorkeok,feoferkeorkoe
Type the correct answer in each box.
Bridget went fishing with her dad. Bridget caught the first fish of the day, and it weighed f ounces. That day, she caught four more fish. One was
2
times the weight of the first fish, another was
2
more than
3
times the weight of the first fish, the next was
1
2
the weight of the first fish, and the last was
3
5
the weight of the first fish.
Bridget’s dad caught four fish. The first fish he caught weighed
2
more than
3
times the weight of the first fish caught that day.
One fish weighed
4
5
the weight of the first fish caught that day, one weighed
4
more than
2
times the weight of the first fish caught that day, and the last weighed
1
2
the weight of the first fish caught that day.
Answer:
PLZZ MARK ME BRAINLIEST..!
Step-by-step explanation:
Bridgets fish: f , 2f, 3f+2 , 1/2f, 3/5f
Add for total weight: 7 1/10 f +2
Dads fish: 3f+2, 4/5f, 2f+4, 1/2f
Add for total weight: 6 3/10f +6
set the 2 total weights equal:
6 3/10f +6 = 7 1/10f +2
Subtract 6 3/10f from each side:
6 = 8/10f + 2
Subtract 2 from each side:
4 = 8/10f
Divide both sides by 8/10:
f = 5
Bridget's first fish weighed 5 ounces.
Dads first fish weighed: 2 more than 3 times :3(5) + 2 = 15 +2 = 17 ounces.
I just need to know how I would be able to find x
Answer:
[tex]x=15[/tex]°
Step-by-step explanation:
The sum of degree measures in a full angle (a circle) is (360) degrees. This means that the sum of all of the angles in this diagram is (360) degrees, as the angles form a full arc. Therefore, one can form an equation by adding up all of the angles and setting the equation equal to (360) degrees. Then one can substitute each angle value with the equation that is used to represent it, simplify, and use inverse operations to solve for the value of (x).
[tex](m<AMB)+(m<BMC)+(m<CMD)+(m<AMD)=(360)[/tex]
Substitute,
[tex](46)+(4x-2)+(9x+6)+(8x-5)=360[/tex]
Simplify,
[tex](46)+(4x-2)+(9x+6)+(8x-5)=360[/tex]
[tex]21x+45=360[/tex]
Inverse operations,
[tex]21x+45=360[/tex]
[tex]21x=315[/tex]
[tex]x=15[/tex]
(cos2a *cos 4a+ sin 2a*sin 4a)/sin4a
Answer:
Step-by-step explanation:
(cos 4a*cos 2a+sin 4a*sin 2a)/sin 4a
=[cos (4a-2a)]/sin 4a
=(cos 2a)/sin 4a
=(cos 2a) /(2 sin 2a cos 2a)
=1/(2 sin 2a)
=1/2 csc 2a
find the area of the rectangle whose dimensions are 9cm and 8cm.
Answer:
72 cm²
Step-by-step explanation:
Area = 9(8) = 72
..............
In ∆ABC ,D and E are points on the sides AB and AC respectively such that DE is parallel to BC , 1) If AD= 2.5 cm ,BD = 3cm ,AE = 3.75 cm find length of AC. 2) If AD = 4 cm , AE =8cm ,DB =x – 4 cm ,EC =3x -19 cm , find x 3) I f AD =2cm ,BD = 4cm , show that BC = 3 DE
Answer:
1). AC=8.25cm
2). DB=7cm & EC=14cm
3). See Explanation
Step-by-step explanation:
According To the Question,
Given That, In ∆ABC, D and E are points on the sides AB and AC respectively such that DE is parallel to BC.
1). If AD= 2.5 cm ,BD = 3cm ,AE = 3.75 cm find length of AC.
Well we can apply Basic proportionality Theorem.
Since DE ║ BC ⇒ Sides are proportional and the angles are equal.
⇒ AD / BD = AE / EC
⇒ 2.5 / 3 = 3.75 / EC
On Solving we get,
⇒ EC * 2.5 = 3.75 * 3
⇒ EC * 2.5 = 11.25
⇒ EC = 11.25 / 2.5
⇒ EC = 4.5 cm
Thus,
AC = AE + EC
⇒ AC = 3.75 + 4.50
⇒ AC = 8.25 cm
Hence the measure of AC is 8.5 cm.
2). If AD = 4 cm , AE =8cm ,DB =x – 4 cm ,EC =3x -19 cm
Well we can apply Basic proportionality Theorem.
Since DE ║ BC ⇒ Sides are proportional and the angles are equal.
⇒ AD / BD = AE / EC
⇒ 4 / (x-4) = 8 / (3x-19)
on solving we get,
⇒ 3x-19 = 2(x-4)
⇒ 3x-19 = 2x-8
⇒x=11
Thus, DB =x–4 ⇒ 11-4 ⇒ DB=7cm
And, EC =3x-19 ⇒ 3×11-19 ⇒ EC=14cm
3). If AD=2cm , BD= 4cm , show that BC = 3 DE
Thus, AB = AD + DB = 2+4 = 6cm
Well we can apply Basic proportionality Theorem.
Since DE ║ BC ⇒ Sides are proportional and the angles are equal.
⇒ AD/AB = DE / BC
⇒ 2 / 6 = DE / BC
on solving we get
⇒ BC = 3 DE Hence, Proved