2. The nuclear model of the atom held that
a. electrons were randomly spread through "a sphere of uniform positive
electrification."
b. matter was made of tiny electrically charged particles that were smaller than the
atom
C. matter was made of tiny, indivisible particles.
d. the atom had a dense, positively charged nucleus.​

Answers

Answer 1

Answer:

the atom had a dense, positively charged nucleus.​

Explanation:

Ernest Rutherford, based on the experiment carried out by two of his graduate students, established the authenticity of the nuclear model of the atom.

According to the nuclear model, an atom is made up of a dense positive core called the nucleus. Electrons are found to move round this nucleus in orbits. This is akin to the movement of the planets round the sun in the solar system.


Related Questions


A load of 1 kW takes a current of 5 A from a 230 V supply. Calculate the power factor.

Answers

Answer:

Power factor = 0.87 (Approx)

Explanation:

Given:

Load = 1 Kw = 1000 watt

Current (I) = 5 A

Supply (V) = 230 V

Find:

Power factor.

Computation:

Power factor = watts / (V)(I)

Power factor = 1,000 / (230)(5)

Power factor = 1,000 / (1,150)

Power factor = 0.8695

Power factor = 0.87 (Approx)

g One of the harmonics in an open-closed tube has frequency of 500 Hz. The next harmonic has a frequency of 700 Hz. Assume that the speed of sound in this problem is 340 m/s. a. What is the length of the tube

Answers

Answer:

The length of the tube is 85 cm

Explanation:

Given;

speed of sound, v = 340 m/s

first harmonic of open-closed tube is given by;

N----->A , L= λ/₄

λ₁ = 4L

v = Fλ

F = v / λ

F₁ = v/4L

Second harmonic of open-closed tube is given by;

L = N-----N + N-----A, L = (³/₄)λ

[tex]\lambda = \frac{4L}{3}\\\\ F= \frac{v}{\lambda}\\\\F_2 = \frac{3v}{4L}[/tex]

Third harmonic of open-closed tube is given by;

L = N------N + N-----N + N-----A, L = (⁵/₄)λ

[tex]\lambda = \frac{4L}{5}\\\\ F= \frac{v}{\lambda}\\\\F_3 = \frac{5v}{4L}[/tex]

The difference between second harmonic and first harmonic;

[tex]F_2 -F_1 = \frac{3v}{4L} - \frac{v}{4L}\\\\F_2 -F_1 = \frac{2v}{4L} \\\\F_2 -F_1 =\frac{v}{2L}[/tex]

The difference between third harmonic and second harmonic;

[tex]F_3 -F_2 = \frac{5v}{4L} - \frac{3v}{4L}\\\\F_3 -F_2 = \frac{2v}{4L} \\\\F_3 -F_2 =\frac{v}{2L}[/tex]

Thus, the difference between successive harmonic of open-closed tube is

v / 2L.

[tex]700H_z- 500H_z= \frac{v}{2L} \\\\200 = \frac{v}{2L}\\\\L = \frac{v}{2*200} \\\\L = \frac{340}{2*200}\\\\L = 0.85 \ m\\\\L = 85 \ cm[/tex]

Therefore, the length of the tube is 85 cm

Two 1.0 nF capacitors are connected in series to a 1.5 V battery. Calculate the total energy stored by the capacitors.

Answers

Answer:

1.125×10⁻⁹ J

Explanation:

Applying,

E = 1/2CV²................... Equation 1

Where E = Energy stored in the capacitor, C = capacitance of the capacitor, V = Voltage of the battery.

Given; C = 1.0 nF,  = 1.0×10⁻⁹ F, V = 1.5 V

Substitute into equation 1

E = 1/2(1.0×10⁻⁹×1.5²)

E = 1.125×10⁻⁹ J

Hence the energy stored by the capacitor is 1.125×10⁻⁹ J

Coherent light from a sodium-vapor lamp is passed through a filter that blocks everything except for light of a single wavelength. It then falls on two slits separated by 0.490 mm . In the resulting interference pattern on a screen 2.12 m away, adjacent bright fringes are separated by 2.86 mm . For related problem-solving tips and strategies, you may want to view a Video Tutor Solution of Determining wavelength. Part A What is the wavelength of the light that falls on the slits

Answers

Answer:

λ = 6.61 x 10⁻⁷ m = 661 nm

Explanation:

From the Young's Double Slit experiment, the the spacing between adjacent bright or dark fringes is given by the following formula:

Δx = λL/d

where,

Δx = fringe spacing = 2.86 mm = 2.86 x ⁻³ m

L = Distance between slits and screen = 2.12 m

d = slit separation = 0.49 mm = 0.49 x 10⁻³ m

λ = wavelength of light = ?

Therefore,

2.86 x 10⁻³ m = λ(2.12 m)/(0.49 x 10⁻³ m)

(2.86 x 10⁻³ m)(0.49 x 10⁻³ m)/(2.12 m) = λ

λ = 6.61 x 10⁻⁷ m = 661 nm

The Bohr model pictures a hydrogen atom in its ground state as a proton and an electron separated by the distance a0 = 0.529 × 10−10 m. The electric potential created by the electron at the position of the proton is

Answers

Answer:

E = -8.23 ​​10⁻¹⁷ N / C

Explanation:

In the Bohr model, the electric potential for the ground state corresponding to the Bohr orbit is

         E = k q₁ q₂ / r²

in this case

q₁ is the charge of the proton and q₂ the charge of the electron

         E = - k e² / a₀²

let's calculate

         E = - 9 10⁹ (1.6 10⁻¹⁹)² / (0.529 10⁻¹⁰)²

         E = -8.23 ​​10⁻¹⁷ N / C

In the lab, you shoot an electron towards the south. As it moves through a magnetic field, you observe the electron curving upward toward the roof of the lab. You deduce that the magnetic field must be pointing:_______.
a. to the west.
b. upward.
c. to the north.
d. to the east.
e. downward.

Answers

Answer:

a. to the west.

Explanation:

An electron in a magnetic field always experience a force that tends to change its direction of motion through the magnetic field. According to Lorentz left hand rule (which is the opposite of Lorentz right hand rule for a positive charge), the left hand is used to represent the motion of an electron in a magnetic field. Hold out the left hand with the fingers held out parallel to the palm, and the thumb held at right angle to the other fingers. If the thumb represents the motion of the electron though the field, and the other fingers represent the direction of the field, then the palm will push in the direction of the force on the particle.

In this case, if we point the thumb (which shows the direction we shot the electron) to the south (towards your body), with the palm (shows the direction of the force) facing up to the roof, then the fingers (the direction of the field) will point west.


A collector that has better efficiency in cold weather is the:
flat-plate collector due to reduced heat loss
evacuated tube collector due to its larger size
flat-plate collector due to the dark-colored coating
O evacuated tube collector due to reduced heat loss
Question 23 (1 point) Saved
One of the following is not found in Thermosyphon systems
o

Answers

Answer:

D. evacuated tube collector due to reduced heat loss

Explanation:

Evacuated tube collectors has vacuum which reduces the loss of heat and increase the efficiency of the collector. It has a major application in solar collector, and converts solar energy to heat energy. It can also be used for heating of a definite volume of water majorly for domestic purpose.

During cold weather, the conservation and efficient use of heat is required. Therefore, evacuated tube collector is preferred so as to reduce heat loss and ensure the maximum use of heat energy.


I MIND TRICK PLZ HELP LOL
Troy and Abed are running in a race. Troy finishes the race in 12 minutes. Abed finishes the race in 7 minutes and 30 seconds. If Troy is running at an average speed of 3 miles per hour and speed varies inversely with time, what is Abed’s average speed for the race?

Answers

Answer:

Explanation:

Let the race be of a fixed distance x

[tex]Average Speed = \frac{Total Distance}{Total Time}[/tex]

Troy's Average speed = 3 miles/hr = x / 0.2 hr

x = 0.6 miles

Abed's Average speed = 0.6 / 0.125 = 4.8 miles/hr

If a convex lens were made out of very thin clear plastic filled with air, and were then placed underwater where n = 1.33 and where the lens would have an effective index of refraction n = 1, the lens would act in the same way
a. as a flat refracting surface between water and air as seen from the water side.
b. as a concave mirror in air.
c. as a concave lens in air.
d. as the glasses worn by a farsighted person.
e. as a convex lens in air.

Answers

Answer:

D. A convex lens in air

Explanation:

This is because the air tight plastic under water will reflect light rays in the same manner as a convex lens

A wire of 5.8m long, 2mm diameter carries 750ma current when 22mv potential difference is applied at its ends. if drift speed of electrons is found then:_________.
(a) The resistance R of the wire(b) The resistivity p, and(c) The number n of free electrons per unit volume.​

Answers

Explanation:

According to Ohms Law :

V = I * R

(A) R (Resistance) = 0.022 / 0.75 = 0.03 Ohms

Also,

[tex]r = \alpha \frac{length}{area} = \alpha \frac{5.8}{3.14 \times 0.001 \times 0.001} [/tex]

(B)

[tex] \alpha(resistivity) = 1.62 \times {10}^{ - 8} [/tex]

Drift speed is missing. It is given as;

1.7 × 10^(-5) m/s

A) R = 0.0293 ohms

B) ρ = 1.589 × 10^(-8)

C) n = 8.8 × 10^(28) electrons

This is about finding, resistance and resistivity.

We are given;

Length; L = 5.8 m

Diameter; d = 2mm = 0.002 m

Radius; r = d/2 = 0.001 m

Voltage; V = 22 mv = 0.022 V

Current; I = 750 mA = 0.75 A

Area; A = πr² = 0.001²π

Drift speed; v_d = 1.7 × 10^(-5) m/s

A) Formula for resistance is;

R = V/I

R = 0.022/0.75

R = 0.0293 ohms

B) formula for resistivity is given by;

ρ = RA/L

ρ = (0.0293 × 0.001²π)/5.8

ρ = 1.589 × 10^(-8)

C) Formula for current density is given by;

J = n•e•v_d

Where;

J = I/A = 0.75/0.001²π A/m² = 238732.44 A/m²

e is charge on an electron = 1.6 × 10^(-19) C

v_d = 1.7 × 10^(-5) m/s

n is number of free electrons per unit volume

Thus;

238732.44 = n(1.6 × 10^(-19) × 1.7 × 10^(-5))

238732.44 = (2.72 × 10^(-24))n

n = 238732.44/(2.72 × 10^(-24))

n = 8.8 × 10^(28)

Read more at; brainly.com/question/17005119

Warm blooded animals are homeothermic; that is, they maintain an approximately constant body temperature. (Forhumans it's about 37 oC.) When they are in an environment that is below their optimum temperature, they use energy derived from chemical reactions within their bodies to warm them up. One of the ways that animals lose energy to their environment is through radiation. Every object emits electromagnetic radiation that depends on its temperature. For very hot objects like the sun, that radiation is visible light. For cooler objects, like a house or a person, that radiation is in the infrared and is invisible. Nonetheless, it still carries energy. Other ways that energy is lost by a warm animal to a cool environment includes conduction (direct touching of a cooler object) and convection (cooler air moving and carrying thermal energy away). See Heat Transfer for a discussion of all three.

For this problem, we'll just consider how much energy an animal needs to burn (obtain from internal chemical reactions) in order to stay warm just from radiation losses. The rate at which an object loses energy through radiation is given by the Stefan-Boltzmann equation:

Rate of energy loss = AεσT4



where T is the absolute (Kelvin) temperature, A is the area of the object, ε is the emissivity (unitless and =1 for a perfect emitter, less for anything else), and σ is the Stefan-Boltzmann constant:

σ = 5.67 x 10-8 J/(s m2 K4)



Consider a patient trying to sleep naked in a cool room (55 oF = 13 oC). Assume that the person being considered is a perfect emitter and absorber of radiation (ε = 1), has a surface area of about 2.5 m2, and a mass of 80 kg.

a. A person emits thermal radiation at a rate corresponding to a temperature of 37 oC and absorbs radiation at a rate (from the air and walls) corresponding to a temperature of 13 oC. Calculate the individual's net rate of energy loss due to radiation (in Watts = Joules/second).
net rate of energy loss = Watts

b. Assume the patient produces no energy to keep warm. If they have a specific heat about equal to that of water (1 Cal/kg-oC) how much would their temperature fall in one hour? (1 Cal = 1kcal = 103 cal)
ΔT = oC

c. Given that the energy density of fat is about 9 Cal/g, how many grams of fat would the person have to utilize to maintain their body temperature in that environment for one hour?
amount of fat needed = g

Answers

Answer:

a) 360.7 J/s

b) 16.23 °C

c) 34.48 g

Explanation:

The mass of the person = 80 kg

The person is a perfect emitter, ε = 1

surface area of the person = 2.5 m^2

a) If he emits radiation at 37 °C, [tex]T_{out}[/tex] = 37 + 273 = 310 K

and receives radiation at 13 °C, [tex]T_{in}[/tex] = 13 + 273 = 286 K

Rate of energy loss E = Aεσ([tex]T^{4} _{out}[/tex] - [tex]T^{4} _{in}[/tex] )

where σ = 5.67 x 10^-8 J/(s m^2 K^4)

substituting values, we have

E = 2.5 x 1 x 5.67 x 10^-8 x ([tex]310^{4}[/tex] - [tex]286^{4}[/tex]) = 360.7 J/s

b) If they have specific heat about equal to that of water = 1 Cal/kg-°C

but 1 Cal = 1 kcal = 10^3 cal

specific heat of person is therefore = 10^3 cal/kg-°C

heat loss = 360.7 J/s = 360.7 x 3600 = 1298520 J/hr

heat lost in 1 hour = 1 x 1298520 = 1298520 J

This heat lost = mcΔT

where ΔT is the temperature fall

m is the mass

c is the specific heat equivalent to that of water

the specific heat is then = 10^3 cal/kg-°C

equating, we have

1298520 = 80 x 10^3 x ΔT

1298520 = 80000ΔT

ΔT = 1298520/80000 = 16.23 °C

c) 1298520 J = 1298520/4184 = 310.35 Cal

density of fat = 9 Cal/g

gram of fat = 310.35/9 = 34.48 g

A double-convex thin lens is made of glass with an index of refraction of 1.52. The radii of curvature of the faces of the lens are 60 cm and 72 cm. What is the focal length of the lens

Answers

Answer:

63 cm

Explanation:

Mathematically;

The focal length of a double convex lens is given as;

1/f = (n-1)[1/R1 + 1/R2]

where n is the refractive index of the medium given as 1.52

R1 and R2 represents radius of curvature which are given as 60cm and 72cm respectively.

Plugging these values into the equation, we have:

1/f = (1.52-1)[1/60 + 1/72)

1/f = 0.0158

f = 1/0.0158

f = 63.29cm which is approximately 63cm

Question 2.
In the US, lengths are often measured in inches, feet, yards and miles. Let's do
some conversions. The definition of the inch is: 1 inch = 25.4 mm, exactly. A foot is
12 inches and a mile is 5280 ft, exactly. A centimetre is exactly 0.01 m or 10 mm.
Sammy is 5 feet and 5.3 inches tall.
a). What is Sammy's height in Inches? (answer to 3 significant figures)
(3)
b). What is Sammy's height in Feet? (answer to 3 significant figures)
what is Sammy's hight in feet according to this statement ​

Answers

Explanation:

1 inch = 25.4 mm

1 foot = 12 inches

1 mile = 5260 feet

1 cm = 0.01 m or 10 mm

Now Sammy's height is 5 feet and 5.3 inches.

(a) We need to find Sammy's height in inches.

Since, 1 foot = 12 inches

5 feet = 5 × 12 inches = 60 inches

Now, 5 feet and 5.3 inches = 60 inches + 5.3 inches = 65.3 inches

Sammy's height is 65.3 inches.

(b) We need to find Sammy's height in feet.

Since, 1 foot = 12 inches

[tex]1\ \text{inch}=\dfrac{1}{12}\ \text{feet}[/tex]

So,

[tex]5.3\ \text{inch}=\dfrac{5.3}{12}\ \text{feet}=0.4416\ \text{feet}[/tex]

5 feet and 5.3 inches = 5 feet + 0.4416 feet = 5.44 feet

Sammy's height is 5.44 feet.

All household circuits are wired in parallel. A 1140-W toaster, a 270-W blender, and a 80-W lamp are plugged into the same outlet. (The three devices are in parallel when plugged into the same outlet.) Assume that this is the standard household 120-V circuit with a 15-A fuse.
a. What current is drawn by each device?
b. To see if this combination will blow the 15-A fuse, find the total current used when all three appliances are on.

Answers

Answer:

total current = 12.417 A

so it will not fuse as current is less than 15 A

Explanation:

given data

toaster = 1140-W

blender = 270-W

lamp = 80-W

voltage = 120 V

solution

we know that current is express as

current = power ÷ voltage   ......................1

here voltage is same in all three device

so

current by toaster is

I = [tex]\frac{1140}{120}[/tex]

I = 9.5 A

and

current by blender

I = [tex]\frac{270}{120}[/tex]

I = 2.25 A

and

current by lamp is

I = [tex]\frac{80}{120}[/tex]

I = 0.667 A

so here device in parallel so

total current is = 9.5 A + 2.25 A + 0.667 A

total current = 12.417 A

so it will not fuse as current is less than 15 A

Two waves are traveling in the same direction along a stretched string. The waves are 45.0° out of phase. Each wave has an amplitude of 7.00 cm. Find the amplitude of the resultant wave.

Answers

Answer:

The amplitude of the resultant wave is 12.93 cm.

Explanation:

The amplitude of resultant of two waves, y₁ and y₂, is given as;

Y = y₁ + y₂

Let y₁ = A sin(kx - ωt)

Since the wave is out phase by φ, y₂ is given as;

y₂ = A sin(kx - ωt + φ)

Y = y₁ + y₂ = 2A Cos (φ / 2)sin(kx - ωt + φ/2 )

Given;

phase difference, φ = 45°

Amplitude, A = 7.00 cm

Y = 2(7) Cos (45 /2) sin(kx - ωt + 22.5° )

Y = 12.93 cm

Therefore, the amplitude of the resultant wave is 12.93 cm.

A lamp in a child's Halloween costume flashes based on an RC discharge of a capacitor through its resistance. The effective duration of the flash is 0.220 s, during which it produces an average 0.520 W from an average 3.00 V.
A. How much charge moves through the lamp (C)?
B. Find the capacitance (F).
C. What is the resitance of the lamo?

Answers

Answer:

A. 0.0374C

B. 0.012F

C. 18 ohms

Explanation:

See attached file

Lamar has been running sprints to prepare for his next football game.He has found that he can maintain his maximum speed for 45 yards.He’s thinking of running in a 5km race in a few months,but doesn’t know if he can maintain his maximum speed for the entire 5 km.Can you help him determine how far he can?

Answers

Answer:

Kindly check explanation

Explanation:

Length of race = 5km

Maximum speed = 45 yards

Converting from yards to kilometer :

1km = 1093.613 yards

x = 45 yards

(1093.613 * x) = 45

x = 45 / 1093.613

x = 0.0411480 km

Where x = maximum length for which he can maintain his maximum speed expressed in kilometers.

Therefore, with the available information, it can be concluded that Lamar cannot maintain his maximum speed for the entire 5km race and will only be able maintain his maximum speed for 0.0411 kilometers.

Lamar cannot maintain his maximum speed for the entire 5km race and will only be able maintain his maximum speed for 0.0411 kilometers.

The calculation is as follows;

Length of race = 5km

Maximum speed = 45 yards

Converting from yards to kilometer :

1km = 1093.613 yards

x = 45 yards

[tex](1093.613 \times x) = 45[/tex]

[tex]x = 45 \div 1093.613[/tex]

x = 0.0411480 km

here x represent maximum length for which he can maintain his maximum speed expressed in kilometers.

Learn more: https://brainly.com/question/3617478?referrer=searchResults

What will be the nature of the image formed from both a convex lens and a concave
lens of 20 centimeter focus distance, when the object is placed at a distance of
10 centimeters?​

Answers

Answer:

Explanation:

Using the lens formula

1//f = 1/u+1/v

f is the focal length of the lens

u is the object distance

v is the image distance

For convex lens

The focal length of a convex lens is positive and the image distance can either be negative or positive.

Given f = 20cm and u = 10cm

1/v = 1/f - 1/u

1/v = 1/20-1/10

1/v = (1-2)/20

1/V = -1/20

v = -20/1

v = -20 cm

Since the image distance is negative, this shows that the nature of the image formed by the convex lens is a virtual image

For concave lens

The focal length of a concave lens is negative and the image distance is negative.

Given f = -20cm and u = 10cm

1/v = 1/f - 1/u

1/v = -1/20-1/10

1/v = (-1-2)/20

1/V = -3/20

v = -20/3

v = -6.67 cm

Since the image distance is negative, this shows that the nature of the image formed by the concave lens is a virtual image

(a) Determine the capacitance of a Teflon-filled parallel-plate capacitor having a plate area of 1.80 cm2 and a plate separation of 0.010 0 mm.


pF

(b) Determine the maximum potential difference that can be applied to a Teflon-filled parallel-plate capacitor having a plate area of 1.80 cm2 and a plate separation of 0.010 0 mm.
kV

Answers

Explanation:

(a) Given that,

Area of a parallel plate capacitor, [tex]A=1.8\ cm^2=1.8\times 10^{-4}\ m^2[/tex]

The separation between the plates of a capacitor, [tex]d=0.01\ mm = 10^{-5}\ m[/tex]

The dielectric constant of, k = 2.1

When a dielectric constant is inserted between parallel plate capacitor, the capacitance is given by :

[tex]C=\dfrac{k\epsilon_o A}{d}[/tex]

Putting all the values we get :

[tex]C=\dfrac{2.1\times 8.85\times 10^{-12}\times 1.8\times 10^{-4}}{0.01\times 10^{-3}}\\\\C=3.345\times 10^{-10}\ F\\\\C=334.5\ pF[/tex]

(b) We know that the Teflon has dielectric strength of 60 MV/m, [tex]E=60\times 10^6\ V/m[/tex]

The voltage difference between the plates at this critical voltage is given by :

[tex]V=Ed\\\\V=60\times 10^6\times 0.01\times 10^{-3} \\\\V=600\ V[/tex]

or

V = 0.6 kV

We have that the Capacitance and potential difference is mathematically given as

[tex]Vmax=\frac{Q}{334.68pF}[/tex]C=334.68pF



Capacitance &potential difference

Question Parameters:

having a plate area of 1.80 cm2 and a plate separation of 0.010 0 mm

having a plate area of 1.80 cm2 and a plate separation of 0.010 0 mm.

a)

Generally the equation for the Capacitance  is mathematically given as

[tex]C=\frac{ke_0A}{d}\\\\Therefore\\\\C=\frac{2.1*1.80e-4*8.85e12}{0.01e-3}\\\\[/tex]

C=334.68pF

b)

Generally the equation for the Capacitance  is mathematically given as

[tex]Vmax=\frac{Q}{C}[/tex]

Where

Q is the charge on the plates, and hence not given

Therefore, maximum potential difference is

[tex]Vmax=\frac{Q}{334.68pF}[/tex]

For more information on potential difference visit

https://brainly.com/question/14883923

The charger for your electronic devices is a transformer. Suppose a 60 Hz outlet voltage of 120 V needs to be reduced to a device voltage of 3.0 V. The side of the transformer attached to the electronic device has 45 turns of wire.
How many turns are on the side that plugs into the outlet?

Answers

Answer:

N₁ = 1800 turns

So, the side of the transformer that plugs into the outlet has 1800 turns.

Explanation:

The transformer turns ratio is given by the following equation:

V₁/V₂ = N₁/N₂

where,

V₁ = Voltage of outlet = 120 V

V₂ = Device Voltage = 3 V

N₁ = No. of turns on outlet side = ?

N₂ = No. of turns on side of device = 45

Therefore,

120 V/3 V = N₁/45

N₁ = (40)(45)

N₁ = 1800 turns

So, the side of the transformer that plugs into the outlet has 1800 turns.

light of wavelength 550 nm is incident on a diffraction grating that is 1 cm wide and has 1000 slits. What is the dispersion of the m = 2 line?

Answers

Answer:

The dispersion is [tex]D = 2.01220 *10^{5} \ rad/m[/tex]

Explanation:

From the question we are told that

    The wavelength of the light is  [tex]\lambda = 550 \ = 550 *10^{-9} \ n[/tex]

    The width of the grating is[tex]k = 1\ cm = 0.01 \ m[/tex]

    The  number of slit is  N =  1000 slits

    The order of the maxima is  m =  2

 

Generally the spacing between the slit is mathematically represented as

         [tex]d = \frac{k}{N}[/tex]

substituting values

        [tex]d = \frac{ 0.01}{1000}[/tex]

       [tex]d = 1.0 *10^{-5} \ m[/tex]

Generally the condition for constructive interference is

       [tex]d\ sin(\theta ) = m * \lambda[/tex]

substituting values

      [tex]1.0 *10^{-5} sin (\theta) = 2 * 550 *10^{-9}[/tex]

       [tex]\theta = sin^{-1} [\frac{ 2 * 550 *10^{-9}}{ 1.0 *10^{-5}} ][/tex]

      [tex]\theta = 6.315^o[/tex]

Generally the dispersion is mathematically represented as

           [tex]D = \frac{ m }{d cos(\theta )}[/tex]

substituting values

          [tex]D = \frac{ 2 }{ 1.0 *10^{-5} cos(6.315 )}[/tex]

           [tex]D = 2.01220 *10^{5} \ rad/m[/tex]

     

You are holding on to one end of a long string that is fastened to a rigid steel light pole. After producing a wave pulse that was 5 mm high and 4 em wide, you want to produce a pulse that is 4 cm wide but 7 mm high. You must move your hand up and down once,
a. a smaller distance up, but take a shorter time.
b. the same distance up as before, but take a shorter time.
c. a greater distance up, but take a longer time.
d. the same distance up as before, but take a longer time.
e. a greater distance up, but take the same time.

Answers

Answer:

It will take. the same distance up as before, but take a longer time

A 384 Hz tuning fork produces standing waves with a wavelength of 0.90 m inside a resonance tube. The speed of sound at experimental conditions is

Answers

Answer:

v = 345.6m/s

Explanation:

v = 384 x 0.9 = 345.6

v = 345.6m/s

hi guys!!! i have no more points, can someone nice guess all of these for me? :)
1.What happens to the ocean water before the precipitation part of the water cycle
2.During which stage of the water cycle does water from the ocean form clouds?
3.what is a runoff??
4.Which statement about oceans is incorrect? A.Evaporation occurs when water is warmed by the sun. B.Most evaporation and precipitation occur over the ocean. C.97 percent of Earth's water is fresh water from the ocean. D.Water leaves the ocean by the process of evaporation
5.How does most ocean water return to the ocean in the water cycle

tysm to u who answers :)

Answers

1. The ocean water collects back in the ocean.

2. Condensation is the process by which water vapor in the air is changed into liquid water. Condensation is crucial to the water cycle because it is responsible for the formation of clouds.

3. an excessive amount of water flowing from downslope along earths surface

4. A.Evaporation occurs when water is warmed by the sun.

5. The water returns into the ocean by the water cycle . It evaporates , then it condensates , then it participates ( Rains ) and then goes back into the ocean.

Hope this answer correct ✌️

A ball is thrown upward from a height of 432 feet above the​ ground, with an initial velocity of 96 feet per second. From physics it is known that the velocity at time t is v (t )equals 96 minus 32 t feet per second. ​a) Find​ s(t), the function giving the height of the ball at time t. ​b) How long will the ball take to reach the​ ground? ​c) How high will the ball​ go?

Answers

Answer;

A)S(t)=96t-16t² +432

B)it will take 9 seconds for the ball to reach the ground.

C)864feet

Explanation:

We were given an initial height of 432 feet.

And v(t)= 96-32t

A) we are to Find​ s(t), the function giving the height of the ball at time t

The position, or heigth, is the integrative of the velocity. So

S(t)= ∫(96-32)dt

S(t)=96t-16t² +K

S(t)=96t-16t² +432

In which the constant of integration K is the initial height, so K= 432

b) we need to know how long will the ball take to reach the​ ground

This is t when S(t)= 0

S(t)=96t-16t² +432

-16t² +96t +432=0

This is quadratic equation, if you solve using factorization method we have

t= -3 or t= 9

Therefore, , t is the instant of time and it must be a positive value.

So it will take 9 seconds for the ball to reach the ground.

C)V=s/t

Velocity= distance/ time

=96=s/9sec

S=96×9

=864feet

By applying the integrations,

(a) [tex]S = 96t-16t^2+432[/tex]

(b) Time will be "t = 9".

(c) Height will be "576"

Given:

Height,

423 feet

Initial velocity,

96 feet/sec

According to the question,

(a)

Integrate v:

[tex]S = 96t-16t^2+C[/tex]

Initial Condition,

→ [tex]S = 96t-16t^2+432[/tex]

(b)

Hits the ground when,

S = 0

→ [tex]0=96t-16t^2+432[/tex]

→ [tex]t =9[/tex]

(c)

Maximum height when,

v = 0

→ [tex]0 = 96-32 t[/tex]

→ [tex]t = 3[/tex]

Now,

→ [tex]S = 96\times 3-16\times 3^2+432[/tex]

      [tex]= 576[/tex]

Thus the answer above is correct.

Learn more:

https://brainly.com/question/16105731

Specific heat is a measurement of the amount of heat energy input required for one gram of a substance to increase its temperature by one degree Celsius. Solid lithium has a specific heat of 3.5 J/g·°C. This means that one gram of lithium requires 3.5 J of heat to increase 1°C. Plot the temperature of 1g of lithium after 3.5, 7, and 10.5 J of thermal energy are added.

Answers

Answer:

ΔT = 1ºC , 2ºCand 3ºC

Explanation:

In this exercise they indicate the specific heat of lithium

let's calculate the temperature increase as a function of the heat introduced

          Q = m [tex]c_{e}[/tex] ΔT

          ΔT = Q / m c_{e}

calculate

 for Q = 3.5 J

         ΔT = 3.5 / (1 3.5)

         ΔT = 1ºC

For Q = 7.0 J

         ΔT = 7 / (1 3.5)

         ΔT = 2ºC

for Q = 10.5 J

         ΔD = 10.5 / (1 3.5)

         ΔT = 3ºC

we see that this is a straight line, see attached

How much energy is required to accelerate a spaceship with a rest mass of 121 metric tons to a speed of 0.509 c?

Answers

Answer

1.07E22 Joules

Explanation;

We know that mass expands by a factor

=>>1/√[1-(v/c)²]

But v= 0.509c

So

1/√(1 - 0.509²)

=>>> 1/√(1 - 0.2591)

= >> 1/√(0.7409) = 1.16

But given that 121 tons is rest mass so 121- 1.16= 119.84 tons is kinetic energy

And we know that rest mass-energy equivalence is 9 x 10^19 joules per ton.

So Multiplying by 119.84

Kinetic energy will be 1.07x 10^22 joules

A 70 kg man floats in freshwater with 3.2% of his volume above water when his lungs are empty, and 4.85% of his volume above water when his lungs are full.

Required:
a. Calculate the volume of air he inhales - called his lung capacity - in liters.
b. Does this lung volume seem reasonable?

Answers

Answer:

Explanation:

A) Vair = 1.3 L

B) Volume is not reasonable

Explanation:

A)

Assume

m to be total mass of the man

mp be the mass of the man that pulled out of the water

m1 be the mass above the water with the empty lung

m2 be the mass above the water with full lung

wp be the weight that the buoyant force opposes as a result of the air.

Va be the volume of air inside man's lungs

Fb be the buoyant force due to the air in the lung

given;

m = 78.5 kg

m1 = 3.2% × 78.5 = 2.5 kg

m2 = 4.85% × 78.5 = 3.8kg

But, mp = m2- m1

mp = 3.8 - 2.5

mp = 1.3kg

So using

Archimedes principle, the relation for formula for buoyant force as;

Fb = (m_displaced water)g = (ρ_water × V_air × g)

Where ρ_water is density of water = 1000 kg/m³

Thus;

Fb = wp = 1.3× 9.81

Fb = 12.7N

But

Fb = (ρ_water × V_air × g)

So

Vair = Fb/(ρ_water × × g)

Vair = 12.7/(1000 × 9.81)

V_air = 1.3 × 10^(-3) m³

convert to litres

1 m³ = 1000 L

Thus;

V_air = 1.3× 10^(-3) × 1000

V_air = 1.3 L

But since the average lung capacity of an adult human being is about 6-7litres of air.

Thus, the calculated lung volume is not reasonable

Explanation:

hat a 15 kg body is pulled along a horizontal fictional table by a force of 4N what is the acceleration of the body ​

Answers

Answer:

Acceleration of the body is:

[tex]a=0.27\,\,m/s^2[/tex]

Explanation:

Use Newton's second Law to solve for the acceleration:

[tex]F=m\,\,a\\a=\frac{F}{m} \\a=\frac{4\,N}{15\,\,kg} \\a=0.27\,\,m/s^2[/tex]

In a double‑slit interference experiment, the wavelength is lambda=487 nm , the slit separation is d=0.200 mm , and the screen is D=48.0 cm away from the slits. What is the linear distance Δx between the eighth order maximum and the fourth order maximum on the screen?

Answers

Answer:

Δx = 4.68 x 10⁻³ m = 4.68 mm

Explanation:

The distance between the consecutive maxima, in Young's Double Slit Experiment is given bu the following formula:

Δx = λD/d

So, the distance between the eighth order maximum and the fourth order maximum on the screen will be given as:

Δx = 4λD/d

where,

Δx = distance between eighth order maximum and fourth order maximum=?

λ = wavelength = 487 nm = 4.87 x 10⁻⁷ m

d = slit separation = 0.2 mm = 2 x 10⁻⁴ m

D = Distance between slits and screen = 48 cm = 0.48 m

Therefore,

Δx = (4)(4.87 x 10⁻⁷ m)(0.48 m)/(2 x 10⁻⁴ m)

Δx = 4.68 x 10⁻³ m = 4.68 mm

Other Questions
What is the melting pot theory? Which equation represents the line that is perpendicular to y=3/4x+1 and passes through (-5,11)Will give brainliest!! Please answer this question now Human BonesName three components of bones and describetheir function. On May 10, 2017, Vaughn Co. enters into a contract to deliver a product to Greig Inc. on June 15, 2017. Greig agrees to pay the full contract price of $1,990 on July 15, 2017. The cost of the goods is $1,310. Vaughn delivers the product to Greig on June 15, 2017, and receives payment on July 15, 2017. Prepare the journal entries for Vaughn related to this contract. Either party may terminate the contract without compensation until one of the parties performs. What is an empirical formula? hich of the following is NOT one of the ways companies are using mobile apps? Group of answer choices track behavior across tablets and mobile devices utilize cookies to track mobile activity utilize GPS data to provide location-based offers track loyalty program participation add social value and entertainment to consumers' lives You own a farm and have several fields in which your livestock grazes. You need to order barbed-wire fencing for a small pasture that has a length of 5 yards and a width of 3 yards. The barbed wire must be long enough to be placed on all four sides of the outside pasture. How many yards of barbed-wire should you order? Which of the following systems has (1,1) as a solution? 1. 3x2y=1 5x+3y=8 2. 3x+2y=1 5x+3y=8 3. 3x+2y=1 5x3y=8 4. 2x+3y=1 5x3y=8 What is the width of the rectangle shown below? 4x + 3 A = 8x2 10x 12 What is the result when the number 90 is decreased by 10% Find the missing length. A. 60 B. 80 C. 64 D. 15 A large reflecting telescope has an objective mirror with a 14.0 m radius of curvature. What angular magnification in multiples does it produce when a 3.25 m focal length eyepiece is used? Combine the radicals. 224+554 A) 536 B) 56 C) 196 D) 936 Determine the convergence or divergence of the sequence with the given nth term. If the sequence converges, find its limit. (If the quantity diverges, enter DIVERGES.) an = 1/sqrt(n) Which is represented by the image? Two cards are drawn from a standard deck of cards.Part A: If they are drawn with replacement, what is the probability that both cards are 2s? Show your work. (1 point)Part B: If they are drawn without replacement, what is the probability that the first card is a club and the second card is a spade? Show your work (1 point)Part C: Which of the two scenarios in Part A or Part B represents dependent events? Explain your answer using complete sentences. Show your work. (2 points) What three things did you like about the book? Explain why? What was your favourite part and why? From the book mahashweta by sudha murty Help me Im stuck please The following data were taken from the financial statements of Gates Inc. for the current fiscal year. Property, plant, and equipment (net) $971,600 Liabilities: Current liabilities $140,000 Note payable, 6%, due in 15 years 694,000 Total liabilities $834,000 Stockholders' equity: Preferred $4 stock, $100 par (no change during year) $834,000 Common stock, $10 par (no change during year) 834,000 Retained earnings: Balance, beginning of year$890,000 Net income386,000 $1,276,000 Preferred dividends$33,360 Common dividends130,640 164,000 Balance, end of year 1,112,000 Total stockholders' equity $2,780,000 Sales $21,141,000 Interest expense $41,640 Assuming that total assets were $3,433,000 at the beginning of the current fiscal year, determine the following. When required, round to one decimal place.