Answer:
0.777 s
Explanation:
What planet rotates once a day?
Earth is the only planet with a daily rotation. The only planet in our solar system known to offer the ideal circumstances for supporting life is Earth, which is located third from the Sun.
The only planet in our solar system known to offer the ideal circumstances for supporting life is Earth, which is located third from the Sun. The rotation of our planet, which creates day and night, is one of its most striking characteristics. Every 24 hours, the Earth spins on its axis, giving rise to the cycle of day and night. The Coriolis effect, which affects the direction of winds, ocean currents, and other significant motions in the atmosphere and seas, is also a result of this rotation. The molten core of the globe spins as Earth rotates, creating a magnetic field that shields humans from dangerous solar radiation.
Learn more about planet here:
https://brainly.com/question/26756957
#SPJ4
Which of the following is an example of potential energy?A .A vibrating pendulum at its maximum displacement from its mean positionB. A body at rest from some height from the ground.C. A wound clock spring.D. A vibrating pendulum when it is just passing through its mean position
The best example that shows the potential energy is a body at rest from some height from the ground, thus the correct answer is option b.
Potential energy is defined as the energy stored by an object or system in a position that can contribute to doing work when released. It is the stored energy of an object or system.
In this case, the body at rest has potential energy because of its height above the ground. As it falls, the potential energy is converted to kinetic energy.
Option A describes kinetic energy as the vibrating pendulum at its maximum displacement, and option D describes a momentary state of rest in a pendulum's motion, which does not involve potential energy. Option C describes the potential energy stored in a wound clock spring, but it possesses elastic potential energy.
Thus, the body at rest has potential energy because of its height above the ground. Thus, option b is correct.
Learn more about Potential energy here:
https://brainly.com/question/14427111
#SPJ11
The diffraction limit of a 4-meter telescope is _________ than that of a 2-meter telescope.
a) two times larger
b) four times larger
c) four times smaller
d) two times smaller
e) It depends on the type of telescope.
The diffraction limit of a 4-meter telescope is two times smaller than that of a 2-meter telescope.
The diffraction limit of a telescope is the minimum distance between two objects so that they can still be viewed as separate from one another. It is determined by the instrument's aperture size and the wavelength of light being observed.
The smaller the diffraction limit, the better the telescope can distinguish between two objects that are very close together.
In simpler terms, the diffraction limit refers to the smallest object size that a telescope can observe. This is known as angular resolution, which is determined by the telescope's aperture size and the wavelength of light being observed.
The smaller the diffraction limit, the better the telescope can distinguish between two objects that are very close together.
Therefore, a 4-meter telescope has a smaller diffraction limit than a 2-meter telescope. Hence, the answer is two times smaller.
Learn more about Diffraction limit here:
brainly.com/question/15081792
#SPJ11
a satellite is shot into a low orbit around a newly discovered planet. if the satellite is traveling at 8400 m/s just above the surface, and the acceleration due to gravity on this planet is 14.4 m/s2 , what must be the planet's radius?
The planet's radius is approximately 2.13 × 10^6 meters.
Planet radius calculation.
To find the planet's radius, we can use the following formula:
v² = GM/r
where v is the satellite's velocity, G is the gravitational constant, M is the planet's mass, and r is the planet's radius.
Since the satellite is just above the surface of the planet, we can assume that r is equal to the sum of the planet's radius and the satellite's altitude above the surface. Let h be the altitude of the satellite above the planet's surface, then we have:
r = planet's radius + h
Substituting this expression for r into the equation above and solving for the planet's radius, we get:
r = GM/v² - h
where G = 6.6743 × 10^-11 Nm²/kg² is the gravitational constant.
Substituting the given values, we get:
r = (6.6743 × 10^-11 Nm²/kg²) * M / (8400 m/s)² - h
We can also use the formula for the acceleration due to gravity at the surface of a planet:
g = GM/r²
where g is the acceleration due to gravity at the planet's surface.
Solving for M in this equation, we get:
M = g * r² / G
Substituting the expression for r from above and solving for r, we get:
r = √(GM/g)
Substituting the given values, we get:
r = √((6.6743 × 10^-11 Nm²/kg²) * M / (14.4 m/s²))
Equating this expression for r with the previous one, we get:
(6.6743 × 10^-11 Nm²/kg²) * M / (8400 m/s)² - h = √((6.6743 × 10^-11 Nm²/kg²) * M / (14.4 m/s²))
Squaring both sides and rearranging, we get:
M = (8400 m/s)² * (14.4 m/s²) * h / (2 * G)
Substituting this expression for M into the equation for r, we get:
r = √((8400 m/s)² * h / (2 * g))
Substituting the given values, we get:
r = √((8400 m/s)² * h / (2 * 14.4 m/s²))
r = 2.13 × 10^6 meters
Therefore, the planet's radius is approximately 2.13 × 10^6 meters using v² = GM/r.
Learn more about planet radius below.
https://brainly.com/question/16233311
#SPJ1
In SEC, in what volume would you expect molecules that are much smaller than the fractionation range of the Sephadex SP to elute? A. Vi B. Vm C. Vav D. Vr E. Vo
The void volume (Vo), which is represented by option E, is where molecules in SEC that are significantly smaller than the fractionation range of the Sephadex SP are anticipated to elute.
Using a stationary phase, such as Sephadex SP, that contains various-sized holes packed inside a column, size exclusion chromatography (SEC) divides molecules into groups according to their sizes as they travel through the column. Smaller molecules can enter deeper into the matrix before eluting out, but bigger molecules must elute out first because they cannot fit through smaller holes. Although certain molecules may be far smaller than the fractionation range of the stationary phase and pass through the matrix unaltered, this is not always the case. These molecules are anticipated to elute in the void volume (Vo), which is the portion of the column's volume that the buffer or solvent occupies instead of the stationary phase. As a result, Vo, option E, is the right response.
learn more about Sephadex here:
https://brainly.com/question/15570783
#SPJ4
Approximately 85% of phosphorus in the body is found in the bones. The other 15% of phosphorus in the body serves mary impertari Durposes. Click to select the functions of phosphorus. Dairy foods are rich sources of calcium, but mary people with lactase intolerance cannot consume these foods without experiending g gestrointestinal discomfort. Fortunately, there are a number of nondairy sources of caiclum. Park the following nondairy foocs in order of calcium content. Most Cakclum Per Sening 1 cup Tohale Rais Bran cereal 1 cup cakcum-fortifed oranon juce 30z salnon with bones From the following food items, click to select the highest source of phosphorus. Click to select the organs that participate in vitamin D synthesis as a result of sunlight exposure.
Functions of phosphorus: Bone formation, ATP production, DNA and RNA synthesis, cell membrane structure.
Order of nondairy foods by calcium content: 1) 1 cup calcium-fortified orange juice, 2) 1 cup Total Raisin Bran cereal, 3) 3 oz salmon with bones.
Highest source of phosphorus: Salmon with bones.
Organs that participate in vitamin D synthesis: Skin (when exposed to sunlight), liver, and kidneys.
What is bone formation?
Bone formation is the process by which bones grow and develop, including the deposition of mineralized bone tissue by osteoblasts and the resorption of bone tissue by osteoclasts, resulting in changes to the shape and structure of bones.
What is RNA?
RNA (Ribonucleic acid) is a molecule that plays a vital role in various biological processes. It is a type of nucleic acid that is composed of a chain of nucleotides, which are the building blocks of the molecule.
RNA is similar to DNA (deoxyribonucleic acid) in terms of its structure, but it has some key differences. RNA is usually single-stranded, while DNA is double-stranded. RNA uses the sugar ribose, while DNA uses deoxyribose. RNA also contains the nitrogenous base uracil, while DNA contains thymine.
To know more about RNA, visit:
https://brainly.com/question/20914096
#SPJ1
1. A glass tube filled with water is at rest on a table. Rank the pressures at points Q, R, S, T, and U from largest to smallest. Explain your reasoning. 2. A U-shaped tube (height -0.5 meter) is partly filled with water, as shown at right. The right end of the tube is closed at the top, but the left end is open to the atmosphere. There is no air between the rubber stopper and the water surface on the right-hand side. a. Rank the pressures at points W, X, Y, and Z. Explain the reasoning you used to rank the pressures. b. Is the pressure at point Z greater than, less than or equal to atmospheric pressure? Explain. No A syringe is used to remove water from the left-hand side such that the level on the left drops to point W. (Note that the water level on the right side is not shown.) no Will the water level on the right-hand side stay at point Zor drop to a point below point Z? Explain.
The atmospheric pressure will be the same at every point. Therefore, they will all have the same pressure.
The atmospheric pressure will be the same at every point. Therefore, they will all have the same pressure. Q, R, S, T, and U all have the same pressure.
The pressure at point X is greater than the pressure at points Y, Z, and W. Point W has the least pressure. Point Z has greater pressure than W but lesser than Y. Y has greater pressure than Z but less than X.
The pressure at point Z is equal to the atmospheric pressure. The atmospheric pressure acts on the open end of the tube that's why the pressure at point Z is equal to the atmospheric pressure. The pressure at point Z is in balance with the atmospheric pressure.The water level on the right-hand side will drop to a point below point Z. When water is removed from the left side, the pressure on the right side will be greater than the pressure on the left side.
So, the water will start to move towards the right side until the pressure in the left and right sides is the same again. When it is in balance, the water level on the right side will stay below point Z.
Learn more about preasure: brainly.com/question/24719118
#SPJ11
a hammer (mass 0.960 kg) rests on the surface of a table. what is the magnitude and direction of the force of the hammer pulling on earth? if the force acts upward, enter a positive value and if the force acts downward, enter a negative value.
The answer is: magnitude of the force = -9.408 N, direction of the force = downward.
A hammer of mass 0.960 kg is lying on a table. The magnitude and direction of the hammer pulling the earth can be determined from Newton's third law. The hammer applies an upward force to the table which is equal to the force of the table on the hammer.The hammer doesn't pull the earth, but the earth exerts an attractive gravitational force on the hammer. However, this force is negligible compared to the force exerted by the table on the hammer.
In this case, the force acting on the hammer is the force of gravity acting on it. The force of gravity, also known as weight, is given by: Fg = mg. Where
Fg is the force of gravity, m is the mass of the hammer, and g is the acceleration due to gravity.The acceleration due to gravity on the surface of the earth is approximately 9.8 m/s². Therefore:Fg = 0.960 kg × 9.8 m/s² = 9.408 N. The magnitude of the force of gravity acting on the hammer is 9.408 N. Since the force of gravity acts downward, the value should be entered as negative. Therefore, the answer is: magnitude of the force = -9.408 N, direction of the force = downward.
Learn more about acceleration due to gravity: brainly.com/question/88039
#SPJ11
Pensacola and Admiralty Head have very different tidal characteristics. Describe how a difference in location, shape of shoreline, and lunar declination likely contributes to the difference in tidal ranges and tidal patterns for these two locations.
The difference in location, shape of shoreline, and lunar declination likely contributes to the difference in the tidal ranges and tidal patterns for the two locations include landmasses and wave interaction.
What are tidal characteristics?The difference in tidal characteristics between Pensacola and Admiralty Head is likely due to the difference in location, shape of shoreline, and lunar declination. Location affects tidal ranges and patterns due to how different landmasses will interact with the waves.
The shape of the shoreline affects how the tides reflect and move in different directions. Lastly, lunar declination is a factor because the angle at which the moon is orbiting the earth affects the tides. This is because the gravitational pull of the moon varies with its distance and declination.
The differences in tidal characteristics between Pensacola and Admiralty Head can be attributed to the difference in location, shape of shoreline, and lunar declination, all of which have a direct impact on the tidal ranges and patterns of these two locations.
Learn more about Tidal characteristics here:
https://brainly.com/question/17587757
#SPJ11
if the variable capacitor in an fm receiver ranges from 10.9 pf to 16.4 pf , what inductor should be used to make an lc circuit whose resonant frequency spans the fm band?
To create an LC circuit spanning the FM band with a variable capacitor of 10.9-16.4 pF, use the formula L = 1/(4π²f²C).
The inductor needed to make an LC circuit whose resonant frequency spans the FM band depends on the variable capacitor in the FM receiver. In your case, the variable capacitor ranges from 10.9 pF to 16.4 pF. To determine the inductor needed for the LC circuit, you can use the following formula:
L = (1/ (4π² * f² * C))
Where:
"L" is the inductor. "f" is the frequency of the LC circuit. "C" is the capacitor.For example, if you set the variable capacitor to 10.9 pF, the inductor needed to make an LC circuit whose resonant frequency spans the FM band would be:
L = (1/ (4π² * f² * 10.9 pF))
Learn more about circuit: https://brainly.com/question/29255502
#SPJ11
a fireman' s hose is pointed vertically upward at a height of 1.5 m above the ground and a stream of water is coming from it . when the water is shut off, the noise of the water hitting the ground continues for another 2.0 s . what was the speed of the water as it left the hose?
The fireman's hose is pointed vertically upwards at a height of 1.5 m above the ground and a stream of water is coming from it. When the water is shut off, the noise of the water hitting the ground continues for another 2.0 s, the speed of the water as it left the hose is 4.31 m/s.
What is the definition of a fireman?A firefighter, also known as a fireman or firewoman, is a professional who is trained and equipped to put out fires, rescue people and animals from dangerous situations, and manage other emergency situations.
The water comes to rest after it reaches the ground, so it moves at constant acceleration in the vertical direction. Since the final velocity is zero, the initial velocity and the displacement can be used to calculate the time of flight.
The speed at which the water left the hose can then be determined using the time of flight and the height of the hose above the ground.
Initial velocity = v₀, Final velocity = vf = 0.
Displacement = h = 1.5 m
Acceleration = a = g = 9.8 m/s²
Time of flight = t
Using the formula ,vf = v₀ + at₀ = v₀ + gt
v₀ = -gt
displacement = v₀×t + 1/2×at²
h = -1/2 × gt²
t = sqrt(2h/g) = sqrt(2(1.5)/9.8) = 0.44 s.
Using the formula, vf = v₀ + at
vf = 0 + gtvf = 9.8 × 0.44 = 4.31 m/s.
The water's speed as it leaves the hose is 4.31 m/s.
Read more about speed here:
https://brainly.com/question/27888149
#SPJ11
the velocity v of an earth satellite varies directly as the square root of its mass m, and inversely as the square root of its distance r from the center of earth. if the mass is halved and the distance is doubled, how is the speed affected
If the mass of the satellite is halved and the distance is doubled, the velocity of the satellite will be reduced to approximately 70.7% of its original value.
What is a satellite in this context?
In this context, a satellite refers to an artificial object that is launched into orbit around the Earth to perform various functions, such as communication, navigation, and scientific research.
Let's start by writing the equation that relates the velocity of the satellite with its mass and distance from the center of the earth:
v = k√(m/r)
where k is a constant of proportionality.
Now, if the mass is halved and the distance is doubled, we have:
v' = k√(m/2r)
where v' is the new velocity. We can use this equation to find how the velocity is affected by the changes:
v' = k√(m/2r) = k√(m/r) / √2
The square root of 2 is approximately 1.414, so we can simplify the expression to:
v' = v / 1.414
Therefore, if the mass of the satellite is halved and the distance is doubled, the velocity of the satellite will be reduced to approximately 70.7% of its original value.
Learn more about satellite:
https://brainly.com/question/9266911
#SPJ1
Can someone please help me with this I am quite stuck thanks
Answer:
The mass remains the same since stoichiometrically one mole reacts and one mole is formed
Explanation:
Calcium chloride is reacting with Sodium sulphate to form a white precipitate of calcium sulphate.
[tex]{ \sf{CaCl _{2} + Na_{2} SO_{4} → CaSO _{4} + 2NaCl}}[/tex]
From the equation, 1 mole of calcium chloride forms 1 mole of calcium sulphate.
R.F.M of CaCl2 = 40 + (35.5×2) = 111
R.F.M of CaSO4 = 40 + 32 + (16×4) = 136
R.F.M of Na2SO4 = (23×2) + 32 + (16×4) = 142
R.F.M of 2NaCl = 2[23 + 35.5] = 117
[tex]{ \sf{(r.f.m \: of \: rectants) = (r.f.m \: of \: products)}} \\{ \sf{ (mass \: of \: rectants) = (mass \: of \: products)}} \\ \\ { \sf{(111 + 142) = (136 + 117)}} \\ { \sf{300.23 = x}} \\ \\ { \sf{x = \frac{300.32}{(111 + 142)} \times (136 + 117) }} \\ \\ { \sf{x = \frac{300.32}{253} \times 253 }} \\ \\ { \sf{x = 300.32}}[/tex]
Answer:
The mass remains the same
Explanation:
Sam (85 kg) takes off up a 50-m-high, 10 degree frictionless slope on his jet-powered skis. The skis have a thrust of 220 N. He keeps his skis tilted at 10 degree after becoming airborne. How far does Sam land from the base of the cliff?
Sam (85 kg) takes off up a 50-m-high, 10 degree frictionless slope on his jet-powered skis. The skis have a thrust of 220 N. He keeps his skis tilted at 10 degree after becoming airborne. Sam lands about 109.9 meters from the base of the cliff.
To solve this problem, we can use the conservation of energy principle. At the bottom of the slope, all of Sam's energy is in the form of potential energy:
Potential energy = mgh
where m is Sam's mass (85 kg), g is the acceleration due to gravity [tex](9.81 m/s^2)[/tex], and h is the height of the slope (50 m).
Potential energy = [tex](85 kg) \times (9.81 m/s^2) \times (50 m) = 41,287.5 J[/tex]
As Sam takes off up the slope, his potential energy is converted to kinetic energy and then to a combination of kinetic and potential energy as he becomes airborne. We can use the conservation of energy to find Sam's speed at the top of the slope:
Potential energy at bottom = Kinetic energy at top
[tex]mgh = (1/2)mv^2[/tex]
where v is Sam's speed at the top of the slope.
[tex]v = \sqrt{(2gh)} = \sqrt{(2 \times 9.81 m/s^2 \times 50 m)} = 31.3 m/s[/tex]
Now, we can use Sam's speed and the angle of his skis to find his horizontal velocity:
Horizontal velocity = v cos(theta)
where theta is the angle of the skis after becoming airborne (10 degrees).
Horizontal velocity = 31.3 m/s x cos(10 degrees) = 30.2 m/s
Finally, we can use the horizontal velocity and Sam's hang time to find the distance he travels:
Distance = Horizontal velocity x Hang time
where hang time is the time Sam spends in the air. Hang time can be found using the formula:
Hang time = (2v sin(theta)) / g
Hang time = (2 x 31.3 m/s x sin(10 degrees)) / 9.81 [tex]m/s^2[/tex] = 3.64 s
Distance = 30.2 m/s x 3.64 s = 109.9 m
for such more question on lands
https://brainly.com/question/29820168
#SPJ11
Metamorphism means "a change in form." How a rock may change during metamorphism?
Metamorphism is a geological process that involves the transformation of pre-existing rocks into new types of rocks through changes in temperature, pressure, and chemical composition.
During metamorphism, rocks undergo significant changes in their physical, mineralogical, and structural properties.
One common change that occurs during metamorphism is recrystallization, where the mineral grains in a rock grow larger or change shape, resulting in a coarser texture. This occurs due to high temperatures and pressures that cause the atoms in the minerals to rearrange themselves.
Another common change is foliation, which is the development of a layered or banded structure in a rock due to the alignment of mineral grains. Foliation occurs when rocks are subjected to differential stress, where the pressure is greater in one direction than in another. This can result in the development of slate, schist, or gneiss from previously existing sedimentary, igneous, or metamorphic rocks.
Metamorphism can also cause changes in the chemical composition of a rock, such as the addition or removal of certain minerals. This can occur due to the circulation of fluids, such as water or magma, which can react with the rock and alter its composition.
Overall, metamorphism is a complex process that can result in a wide range of changes in rocks. These changes can create new types of rocks with unique properties and structures, and can provide important insights into the geological history and evolution of the Earth.
learn more about metamorphism here
https://brainly.com/question/12605044
#SPJ4
(a) Find the current in an 8.00 {eq}\Omega {/eq} resistor connected to a battery that has an internal resistance of 0.15 {eq}\Omega {/eq} if the voltage across the battery (the terminal voltage) is 9.00 V.
(b) What is the emf of the battery?
(a) The current in the 8.00 Ω resistor connected to a battery that has an internal resistance of 0.15 Ω and a terminal voltage of 9.00 V is 1.0 A.
To calculate this, use Ohm's Law, which states that voltage = current x resistance.
Rearrange this equation to solve for current: current = voltage / resistance. Plug in the values for voltage and resistance to get:
current = 9.00 V / 8.00 Ω + 0.15 Ω = 1.0 A.
(b) The EMF (electromotive force) of the battery is 9.00 V. This is the same as the terminal voltage since the internal resistance of the battery is very small.
Learn more about resistance at : https://brainly.com/question/24119414
#SPJ11
An object is propelled along a straight-line path by a force. If the net force were doubled, the object's acceleration would be? a) half as much b) twice as much c) the same d) none of these. e) four times as much.
An object is propelled along a straight-line path by a force. If the net force were doubled, the object's acceleration would be b. twice as much.
Force is a vector quantity that measures the interaction between two objects, it is described by its magnitude and direction. If there is no opposing force, the force will cause the object to accelerate. Acceleration is the rate at which the velocity of an object changes. The acceleration of an object is directly proportional to the force applied to it. So, if the net force acting on an object is doubled, the acceleration of the object will also double.
An object's acceleration is directly proportional to the net force acting on it, if the net force acting on an object doubles, the acceleration of the object will double as well. Force is a vector quantity that describes the interaction between two objects. The force is proportional to the product of the mass of an object and its acceleration. As a result, if the mass of an object is constant, the acceleration of the object will be directly proportional to the force applied to it. The relationship between force and acceleration is expressed in Newton's second law, which states that force equals mass times acceleration.
Learn more about Newton's second law at:
https://brainly.com/question/13447525
#SPJ11
Alice holds a small battery operated device used for tuning instruments that emits the frequency of middle C (262 Hz) while walking with a constant speed of 4.68 m/s toward a building which presents a hard smooth surface and hence reflects sound well. (Use343 m/s as the speed of sound in air.)
(a) Determine the beat frequency Alice observes between the device and its echo. (Enter your answer to at least 1 decimal place.)
(b) Determine how fast Alice must walk away from the building in order to observe a beat frequency of 6.19 Hz.
(A) Alice observes a beat frequency of approximately 3.9 Hz between the device and its echo. (B) Alice must walk away from the building at a speed of approximately 7.05 m/s to observe a beat frequency of 6.19 Hz.
(A) The given values are:
Speed of Alice, vA = 4.68 m/s.
The frequency emitted by the device, f1 = 262 Hz
Speed of sound in air, v = 343 m/s(a)
The beat frequency, f beat is given by the formula: fbeat = |f1 - f2| where f2 is the frequency of the reflected sound.
Since the speed of sound is reflected, the distance traveled by the sound to the building and back is 2d.
Therefore, the time taken is given by t = 2d/v.
The frequency f2 is given by f2 = v/(2d).
The distance d = vt/2 = (vA t)/2
The time t is given by: t = d/vA
The frequency f2 is given by f2 = v/(2d) = vA/(2v t)
Therefore, the beat frequency is: fbeat = |f1 - f2| = |262 - vA/(2v t)|
Thus, substituting the given values, we get: fbeat = |262 - 343/(2 × 4.68 × t)|
To solve this, we can use trial and error method.
We can check if fbeat is approximately equal to 2, 3, 4, 5, or 6 Hz.
Using t = 0.01 s, we get: fbeat = |262 - 343/(2 × 4.68 × 0.01)|≈ 4.4 Hz
Using t = 0.011 s, we get: fbeat = |262 - 343/(2 × 4.68 × 0.011)|≈ 3.9 Hz
Therefore, Alice observes a beat frequency of approximately 3.9 Hz between the device and its echo.
(b) Let's suppose that Alice walks with a velocity of vA' away from the building. Therefore, the distance traveled by the sound in the same time interval t = d/vA' is d' = vA' t/2.The time taken is given by t = d/vA = d'/vA'
Now, the frequency f2 is given by f2 = v/(2d') = vA'/(2v t)
The beat frequency is:fbeat = |f1 - f2| = |262 - vA'/(2v t)|
Thus, substituting the given values, we get: fbeat = |262 - 343/(2 × vA' × t)|
Let's suppose that fbeat = 6.19 Hz.
Using trial and error, we get that t ≈ 0.018 s.
Substituting this value, we get:6.19 = |262 - 343/(2 × vA' × 0.018)|
Therefore, vA' ≈ 7.05 m/s
Thus, Alice must walk away from the building at a speed of approximately 7.05 m/s to observe a beat frequency of 6.19 Hz.
To know more about frequency, refer here:
https://brainly.com/question/5102661#
SPJ11#
A geosynchronous Earth satellite is one that has an orbital period of precisely 1 day. Such orbits are useful for communication and weather observation because the satellite remains above the same point on Earth (provided it orbits in the equatorial plane in the same direction as Earth’s rotation). The ratio r3T2 for the moon is 1.01×1018km3y2. Calculate the radius of the orbit of such a satellite. All work must be shown for full credit. The choices are: 2.75x10E3 km; 1.96x10E4km; 1.40x10E5km; 1.00x10E6km.
The radius of the orbit of such a satellite will be about 1.40 × 10⁵ kilometers.
What is the radius of orbit?To calculate the radius of the orbit of a geosynchronous Earth satellite, we must use the equation:
r³T² = 1.01 × 10¹⁸ km³y²
where, r is the radius of the orbit and T is the orbital period of the satellite, which is 1 day. We can rearrange the equation to calculate r, giving us:
r = (1.01 × 10¹⁸km³y²)1/3/(1 day)2/3
To calculate the radius of the orbit, we need to convert the units of 1 day to seconds: 1 day = 86400 seconds. We can substitute this into the equation:
r = (1.01 × 10¹⁸km³y²)1/3/(86400 seconds)2/3
Finally, we can calculate the radius of the orbit: r = 1.40 × 10⁵ km
Therefore, the radius of the orbit will be about 1.40 × 10⁵ km.
Learn more about Radius of orbit here:
https://brainly.com/question/12859535
#SPJ11
what is the difference between constant speed and acceleration? Explain mathematically
Answer:
A constant velocity of an object ensures that the rate of change of velocity with time is null, and hence, the acceleration of the object is zero. A constant acceleration of an object ensures that the velocity of the object is changing continuously with time, and the velocity will not be constant.
Explanation:
HOPE ITS HELP YOU
thankyou
two objects, one of mass 4 m and the other of mass 2m, are dropped from the top of a building. assuming friction is negligible, when the two objects hit the ground
a. Both of them will have the same kineic energy
b. The heavier one will have twice the kineic energy of the lighter one
c. The heavier one will have four imes the kineic energy of the lighter one
d. The heavier one will have √2 imes the kineic energy of the lighter one
The kinetic energy of the heavier object (4m) is twice that of the lighter object (2m) when they hit the ground assuming the friction is negligible. Option B is correct.
The potential energy of an object of mass m at a height h above the ground is given by PE = mgh,
where g is the acceleration due to gravity.
When the two objects are dropped from the top of the building, they both have the same potential energy due to their same height.
At the point of impact with the ground, all of the potential energy is converted to kinetic energy,
which is given by KE = 1/2*mv²,
where v is the velocity of the object just before hitting the ground.
Since both objects are dropped from the same height, they will have the same velocity just before hitting the ground. Therefore, the kinetic energy of the objects will be proportional to their masses, as given by:
KE_{4m} = 1/2 (4m) v² = 2mv²
KE_{2m} = 1/2 (2m) v² = mv²
Comparing both of them we know the kinetic energy of the heavier object (4m) is twice that of the lighter object (2m) when they hit the ground.
Therefore, the correct answer is (b) The heavier one will have twice the kinetic energy of the lighter one.
To know more about kinetic energy:
https://brainly.com/question/8101588
#SPJ11
Quantum numbers are interrelated values that indicate a specific orbital - the principal quantum number, n; the angular momentum quantum number, l; and the magnetic quantum number, ml.
Which one of the following is an allowed set of quantum numbers?
a) n = 3, l = 1, ml = -2
b) n = 2, l = 0, ml = 1
c) n = 2, l = 2, ml = - 1
d) n = 3, l = 2, ml = - 1
Due to the fact that they go against one or more of the aforementioned restrictions, options a), b), and c) are not permitted groups of quantum numbers.
An allowed set of quantum numbers must follow certain rules that govern the behavior of electrons in atoms. The principal quantum number (n) indicates the energy level of the electron, the angular momentum quantum number (l) indicates the shape of the orbital, and the magnetic quantum number (ml) indicates the orientation of the orbital in space. The values of n, l, and ml must all be integers, and they must also satisfy certain constraints.
Of the options given, only option d) n = 3, l = 2, ml = -1 is an allowed set of quantum numbers. This is because n = 3 indicates the electron is in the third energy level, l = 2 indicates that it is in a d orbital (since l = 0 corresponds to an s orbital, l = 1 corresponds to a p orbital, and so on), and ml = -1 indicates that the orbital is oriented in a specific direction in space.
Options a), b), and c) are not allowed sets of quantum numbers because they violate one or more of the constraints mentioned above.
To learn more about angular momentum refer to:
brainly.com/question/29716949
#SPJ4
while completing the experiment, where should you measure to on the pendulum bob?
While completing the pedulum experiment, you should measure the length of the pendulum to the middle of the pendulum bob to caculate the required values.
What part of a pendulum do you measure?A ruler, meter stick, or measuring tape are necessary in order to determine the length of a pendulum. Start the measurement at the point where the string pivots from its attachment at the string's upper end. As you reach the item dangling from the string, the pendulum bob, measure all the way down to its center.
The smallest time intervals are measured using a pendulum clock. A little stone or metallic ball suspended from a stiff stand by a thread is the basic component of a pendulum. Bob is the name of the metallic ball.
Learn more about pedulum at:
https://brainly.com/question/30823177
#SPJ1
A 4.50kg crate is suspended from the end of a short vertical rope of negligible mass. An upward force F(t) is applied to the end of the rope, and the height of the crate above its initial position is given by y(t) = (2.80m/s )t +(0.61m/s^3 )t^3 What is the magnitude of the force F when 3.60s ?
The magnitude of the force F is 47 N when 3.60 s.
A 4.50 kg crate is suspended from the end of a short vertical rope of negligible mass.
An upward force F(t) is applied to the end of the rope, and the height of the crate above its initial position is given by
y(t) = (2.80m/s )t +(0.61m/s^3 )t^3.
First, we will find the speed of the crate:
v(t) = dy(t)/dt => (v(t)) = 2.80 + 1.83t^2
We have to find the magnitude of the force F(t) when t = 3.60 s.
Since the acceleration due to gravity is 9.81 m/s^2 and
the net force on the crate is 0, the upward force applied F(t) is equal to the weight of the crate.
W = mg => F(t) = 4.50 kg x 9.81 m/s^2= 44.14 N.
Using the equation of motion:
y(t) = 0.5gt^2 + v(0)t + y(0)
where g is the acceleration due to gravity,
v(0) is the initial speed of the object, and
y(0) is the initial position of the object,
we find the value of y(3.60) = 47.25 m.
Substituting t = 3.60 s, we get:
47.25 = 0.5 x 9.81 x (3.60)^2 + (2.80)(3.60) + (0.61/3.60^2) x (3.60)^3
After solving for the above expression, we get the magnitude of the force F when 3.60 s as 47 N.
To know more about the Magnitude: https://brainly.com/question/30015985
#SPJ11
a hydrostatic transmission has pump volumtric efficiency 91 %, a pump mechanical efficiency of 93 %, a motor mechanical efficiency of 95%, and a motor volumetric efficiency of 91%. what is the overall efficiency of the hst (in percent)?
The hydrostatic transmission's overall efficiency in percent can be calculated using the given information as follows:
Given that:
Volumtric efficiency of the pump = 91%Mechanical efficiency of the pump = 93%Mechanical efficiency of the motor = 95%Volumetric efficiency of the motor = 91%Formula for calculating overall efficiency of HST is given as:
Overall efficiency of HST = pump volumetric efficiency × pump mechanical efficiency × motor mechanical efficiency × motor volumetric efficiencySubstituting the given values in the above formula, we get:
Overall efficiency of HST = 0.91 × 0.93 × 0.95 × 0.91 = 0.7460585 = 74.61%
Therefore, the overall efficiency of the hydrostatic transmission is 74.61% (rounded to two decimal places).
Learn more about hydrostatic transmission: https://brainly.com/question/16103822
#SPJ11
Running on a treadmill is slightly easier than running outside because there is no drag force to work against. Suppose a 60 kg runner completes a 5.0 km race in 22 minutes. Determine the drag force on the runner during the race. Suppose that the cross section area of the runner is 0.72 m2 and the density of air is 1.2 kg/m3.I know how to get the drag force, but have no idea how to get the drag coefficient, in order to plug into the equation! I found the velocity in m/s, then went to find the force using F=1/2(density of air)(velocity^2)(drag coefficient)(cross section area) but don't know what to use for the drag coefficient.
Running on a treadmill is slightly easier than running outside because there is no drag force to work against. Suppose a 60 kg runner completes a 5.0 km race in 22 minutes. The drag force on the runner during the race is 13.4 N.
Running on a treadmill is slightly easier than running outside because there is no drag force to work against. Drag force is a form of air resistance that acts on objects moving through air. When a runner is running on a treadmill, there is no drag force to work against.
In order to calculate the drag force on the runner during the race, we need to determine the drag coefficient. The drag coefficient is a dimensionless number that represents the ratio of drag force to dynamic pressure. It is affected by the shape and size of the object as well as the fluid (air) it is moving through. Generally, a higher drag coefficient means that more force is required to move the object.
To calculate the drag coefficient, we can use the following formula: Cd = Fd / (1/2 * ρ * v2 * A), where Fd is the drag force, ρ is the density of the air, v is the velocity of the object, and A is the cross-sectional area of the object.
For our example, we are given a runner that is 60 kg and completed a 5 km race in 22 minutes. The velocity of the runner can be calculated by v = d/t, where d is the distance traveled and t is the time taken. This gives us a velocity of 8.3 m/s. The density of the air is given to be 1.2 kg/m3 and the cross-sectional area is 0.72 m2.
Plugging these values into the formula gives us a drag coefficient of 0.385. This means that for every 1 unit of dynamic pressure, the drag force is 0.385. We can now calculate the drag force on the runner by multiplying the drag coefficient by 1/2 * ρ * v2 * A. In this case, the drag force is 13.4 N.
In conclusion, the drag force on the runner during the race is 13.4 N. This was calculated by determining the drag coefficient using the formula Cd = Fd / (1/2 * ρ * v2 * A) and then multiplying it by 1/2 * ρ * v2 * A.
For more such questions on Drag force.
https://brainly.com/question/12774964#
#SPJ11
what is the size in mm of an image of a 0.85 mm object, such as lettering inside a ring, held at this distance?
The size of an image of a 0.85 mm object held at a certain distance is 5.67 mm.
To solve for di, we need to know the value of do and the magnification. Since the problem does not provide the value of do, we cannot calculate di directly. However, we can use the thin lens formula, 1/do + 1/di = 1/f, where f is the focal length of the lens used to form the image. If we assume a value for f, we can solve for di.
Let's assume that the object is held at a distance of 50 mm from a converging lens with a focal length of 20 mm. Using the thin lens formula, we can solve for the image distance:
1/do + 1/di = 1/f
1/50 + 1/di = 1/20
1/di = 1/20 - 1/50
1/di = 3/1000
di = 333.33 mm
The magnification can be calculated using the equation M = -di/do. Assuming the lens is placed such that it forms a real image, the object distance is negative, and the magnification will be negative as well.
M = -di/do
M = -333.33/-50
M = 6.67
Therefore, the image of the 0.85 mm object will be magnified 6.67 times, and its size will be:
image size = object size x magnification
image size = 0.85 mm x 6.67
image size = 5.67 mm.
For more similar questions on optics
brainly.com/question/24090481
#SPJ11
the sun is shining on james and has created a shadow that is 8 feet long what is the distance from his head to his shadow
The distance from James's head to his 8-foot long shadow is 8 feet.
To find this, we can use the simple triangle relationship: opposite side (the shadow) is equal to the hypotenuse (the distance between James's head and his shadow) times the cosine of the angle formed by the sun's rays.
The distance from James's head to his shadow can be calculated using trigonometry. The tangent function can be used for this purpose.
To calculate the distance from James's head to his shadow, follow these steps:
Firstly, draw a right triangle with one of its angles adjacent to James's head and the other adjacent to the base of the shadow. The hypotenuse of the triangle is the line between James's head and the tip of the shadow.
Let x be the distance from James's head to the base of the shadow. The hypotenuse is the square root of (x^2 + 8^2).
Use the tangent function to find the value of x. tan(angle) = opposite/adjacent. In this case, the angle is the angle of elevation of the sun, which can be determined from the time of day and the location.
If the angle is not known, it can be assumed to be 45 degrees. tan(45) = opposite/adjacent.
The opposite side is 8, so: x = 8/tan(45) = 8/1 = 8 feet.
Therefore, the distance from James's head to his shadow is 8 feet.
To know more about trigonometry, refer here:
https://brainly.com/question/26719838#
#SPJ11
a charge is passing through a static magnetic field. the velocity of the charge makes a 90o angle with the field. the force exerted by the magnetic field does work on the charge.
The statement is True, A charge is passing through a static magnetic field. the velocity of the charge makes a 90o angle with the field. the force exerted by the magnetic field does work on the charge.
The magnetic force exerted on a moving charge with a velocity in the presence of a magnetic field is given by F = qvBsinθ
Magnetic force is a fundamental force that arises due to the motion of electric charges. It is the force that acts between two magnetic poles or between a magnetic pole and a moving charged particle. Magnetic force is a vector quantity and is described in terms of its direction, magnitude, and point of application.
The force between two magnetic poles is governed by the inverse square law, which means that the force decreases as the distance between the poles increases. The direction of the magnetic force is perpendicular to the direction of motion of the charged particle and to the direction of the magnetic field in which it moves. The magnitude of the magnetic force is proportional to the charge of the particle, its velocity, and the strength of the magnetic field.
To learn more about Magnetic force visit here:
brainly.com/question/3160109
#SPJ4
how do the summer and winter monsoon affect climate in the region?
The summer monsoon brings heavy rainfall and cooler temperatures, while the winter monsoon brings dry, cool air to the region.
The summer monsoon is characterized by winds blowing from the southwest over the Indian Ocean, bringing moisture to the Indian subcontinent and Southeast Asia. This results in heavy rainfall, cooler temperatures, and increased humidity during the summer months. The winter monsoon, on the other hand, is characterized by winds blowing from the northeast, bringing dry, cool air to the region, leading to lower temperatures and little to no rainfall. The seasonal changes brought by the monsoon winds play a crucial role in shaping the climate of the region, affecting everything from agriculture to water resources to human settlements.
To know more about monsoons, here
brainly.com/question/22831604
#SPJ4