Answer:
4 : 1
Step-by-step explanation:
To convert 2/20 : 1/40 to unit rate, we simplify the left side. So.
2/20 : 1/40 = 1/10 : 1/40
We now multiply both sides by 40.
So, 1/10 : 1/40 = 40 × 1/10 : 40 × 1/40 = 4 : 1
So, our unit rate is 4 : 1
Russell, Sarah, and Terry share money in the ratio 2:5:8. In total they have £120. Work out how much each gets.
Answer:
£16, £40, £64
Step-by-step explanation:
sum the parts of the ratio, 2 + 5 + 8 = 15 parts
Divide the amount by 15 to find the value of one part of the ratio.
£120 ÷ 15 = £8 ← value of i part of ratio , then
2 parts = 2 × £8 = £16 ← amount Russell gets
5 parts = 5 × £8 = £40 ← amount Sarah gets
8 parts = 8 × £8 = £64 ← amount Terry gets
Answer:
$16, $40, $64
Step-by-step explanation:
The ratio is 2:5:8. Altogether, this adds up to 15. So they divided $120 into 15 portions. 120/15=8.
Russel got 2 portions of 8 dollars, Russel got $16
Sarah got 5 portions of 8 dollars, Sara got $40
Terry got 8 portions of 8 dollars, Terry got $64
A(1,7) B(6,4) and C(5,5) are three points in a plane
1. Find the equations of the perpendicular bisectors of AB and AC
Determine the point of intersection of the perpendicular bisectors in (I)
Answer:
Step-by-step explanation:
Middle point of AB
x(m) = (6+1)/2 = 7/2
y(m) = (7+4)/2 = 11/2
slope of the line that contains AB
(4-7)/(6-1) = -3/5
eqaution of the perpendicular bisector
y-11/2 = 5/3(x-7/2)
y = 5/3x -35/6 + 11/2
y = 5/3x + (-35 + 33)/6
y = 5/3x -1/3
Middle point of AC
x(m) = (1+5)/2 = 3
y(m) = (7+5)/2 = 6
Slope of the line that contains AC
(5-7)/(5-1) = -1/2
equation of the perpendicular bisector
y-6 = 2(x-3)
y = 2x -6 + 6
y = 2x
Point of intersection
y= 5/3x -1/3
y = 2x
2x = 5/3x - 1/3
6x = 5x - 1
x = -1
y = -2
P(-1,-2)
Answer:
(1,7)
Step-by-step explanation:
Given:
A(1,7)
B(6,4)
C(5,5)
Solution:
Mid point of AB = M((1+6)/2,(7+4)/2) = M(3.5,5.5)
Slope of AB = (4-7)/(6-1) = -3/5
Perpendicular bisector of AB:
L1: y - 11/2 = -(3/5)(x-7/2) ............(1)
Mid point of AC, m= N((1+5)/2,(7+5)/2) = N(3,6)
Slope of AC, n = (5-7)/(5-1) = -2/4 = -1/2
perpendicular bisector of AC:
L2: y-6 = -(1/2)(x-3) ..........."(2)
To find the point of intersection,
(1)-(2)
-5.5 - (-6) = -(3/5)x +12/5 + x/2 - 3/2
1/2 = -x/10 + 6/10
x/10 = 1/10
x = 1
substitute x in (1)
y = 3/2+11/2 =7
Therefore Point of intersection is (1,7)
Simplify the expression....
Answer:
−3x^2+2x /x−2
Step-by-step explanation:
4x−9x^3/ 3x^2−4x−4
= −9x^3+4x /3x^2−4x−4
= x(−3x+2)(3x+2) /(3x+2)(x−2)
= −3x^2+2x /x−2
Amber works as a waitress at a restaurant. She earns an hourly wage and also earns tips. One night, she worked 6 hours and earned a total of $69.20, which included tips of $15.50. Explain how the equation 6w + 15.5 = 69.2 represents this situation. Then, calculate Amber’s hourly wage.
Answer:
Hey there!
The given equation helps us understand the relationship between Amber's tips earned and the money she earned through her hourly wage. This information will add up to equal a grand total of $69.20.
We know that Amber earns $15.50 in tips during her 6 hour shift. Therefore, this is not considered part of her wage. This would be one of the constants of our equation.
We also know that Amber earns a fixed hourly wage, but we don't know what this wage is. We need to find w.
[tex]6w+15.5=\$69.20[/tex]
Subtract 15.5 from both sides of the equation (and get rid of the currency symbol).
[tex]6w=69.20-15.5\\6w=53.7[/tex]
Divide both sides of the equation by 6.
[tex]\displaystyle \frac{6w}{6}=\frac{53.7}{6}\\\\w=8.95[/tex]
Therefore, Amber's hourly wage is $8.95.
What is the equation form of the line that is parallel to the line y=-1/3x+4 and passes through the point (6,5)
Answer: 4
Step-by-step explanation: bc
So I'm just making sure...
Complementary angles add up to 90°
Supplementary angles add up to 180°
I've seen many different answers so I am just double checking. Thanks.
Answer:
This is correct.
Step-by-step explanation:
Answer:
Yes...You are right... hope it helps
If a firm uses x units of input in process A, it produces 32x3/2 units of output. In the alternative process B, the same input produces 4x3 units of output. For what levels of input does process A produce more than process B?
Answer:
The outcomes produced by A would be greater than B. A further explanation is provided below.
Step-by-step explanation:
Given:
In process A,
Produced units = [tex]32x^{1.5}[/tex]
In process B,
Produced units = [tex]4x^3[/tex]
If the outcomes are equivalent then,
⇒ [tex]32x^{1.5}=4x^3[/tex]
⇒ [tex]x^{1.5} = 8[/tex]
By taking log both sides, we get
⇒ [tex]log \ 8= 1.5 \ log \ x[/tex]
⇒ [tex]x=3.99[/tex]
A chair rental company charges $100 for delivery plus $3 per
chair. You want to order 200 chairs for a concert. How much
will it cost?
O a. $300
O b. $600
O c. $700
O d. None of the above
above
Answer: 700
Step-by-step explanation: 3 x 200 + 100
Answer:
c.$700
Step-by-step explanation:
3x+100 3 per chair=3x plus the additional 100 dollar fee
3(200)+100
600+100
700
!!!!!!!!!!!!!! Please read question correctly before answering
Answer:
19
Step-by-step explanation:
Conditional probability formula: A|B (A given B)= (A∩B)/B
So cold drink | large (cold drink given large)= (Cold∩Large)/Large
cold∩large= 5
large= 22+5= 27
5/27=.185185185
which i guess rounds to 19%
i just need these 2 questions and I’m done please help.!;(
I’ll mark you brainliest.!
Answer:
gal = 663902.4
11 pavers
Step-by-step explanation:
V = l × w × h
V = 164 × 82 × 6.6
V = [tex]88757ft^3[/tex]
**********************************
The Swimming pool is a
rectangular prism. Write
the formula for its volume
and calculate it.
l...length of this prism
w...width of this prism
h...height of this prism
V ...volume
*********************************
To know how many
gallons are in the pool,
multiply the volume by
the number of gallons
in [tex]1ft^3[/tex] gal...number of
gallons
********************************
gal = 88757 × 7.48
gal = 663902.4
********************************
First to not confuse
anybody on this, we need
to convert the meters into
centimeters.
Rule: 1 m = 100 cm
3 m = 300 cm
2.5 m = 250 cm
********************************
so for every meter, we
multiply 100 to get the
amount of centimeters
********************************
so then add the
centimeters of 3 m and
2.5 m
Answer: 550 cm
so then now compare
the measurings...
3 m = 300 cm
50cm × y = 300cm
50cm × 6 = 300cm
y = 6
2.5 m = 250 cm
50cm × y = 250cm
50cm × 5 = 250cm
y = 5
6 + 5 = 11 pavers
so Oliver will need 11 pavers
Please helppppppppp meeeeeee
Answer:
m∠B = 94º
Step-by-step explanation:
Supplementary angles total 180
(8x + 6) + ( 7x + 24) = 180
Combine like terms
15x + 30 = 180
15x = 150
x = 10
m∠B = 7x + 24
m∠B = 7(10) + 24
m∠B = 94º
Use a calculator to find the r-value of these data. Round the value to three
decimal places
Answer:
-.985
Step-by-step explanation:
Please help. Thank you
Given:
[tex]PQRS\sim TUVW[/tex]
In the given figure, PS=x, RS=35, UV=20, VW=25 and TW=15
To find:
The scale factor from PQRS to TUVW.
Solution:
We have,
[tex]PQRS\sim TUVW[/tex]
We know that the corresponding sides of similar figures are proportional. The scale factor is the ratio of one side of image and corresponding side of preimage.
The scale factor is:
[tex]k=\dfrac{VW}{RS}[/tex]
[tex]k=\dfrac{25}{35}[/tex]
[tex]k=\dfrac{5}{7}[/tex]
Therefore, the scale factor from PQRS to TUVW is [tex]k=\dfrac{5}{7}[/tex].
A positive real number is 4 less than another. If the sum of the squares of the two numbers is 72, then find the numbers.
Answer:
Our two numbers are:
[tex]2+4\sqrt{2} \text{ and } 4\sqrt{2}-2[/tex]
Or, approximately 7.66 and 3.66.
Step-by-step explanation:
Let the two numbers be a and b.
One positive real number is four less than another. So, we can write that:
[tex]b=a-4[/tex]
The sum of the squares of the two numbers is 72. Therefore:
[tex]a^2+b^2=72[/tex]
Substitute:
[tex]a^2+(a-4)^2=72[/tex]
Solve for a. Expand:
[tex]a^2+(a^2-8a+16)=72[/tex]
Simplify:
[tex]2a^2-8a+16=72[/tex]
Divide both sides by two:
[tex]a^2-4a+8=36[/tex]
Subtract 36 from both sides:
[tex]a^2-4a-28=0[/tex]
The equation isn't factorable. So, we can use the quadratic formula:
[tex]\displaystyle x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]
In this case, a = 1, b = -4, and c = -28. Substitute:
[tex]\displaystyle x=\frac{-(-4)\pm\sqrt{(-4)^2-4(1)(-28)}}{2(1)}[/tex]
Evaluate:
[tex]\displaystyle x=\frac{4\pm\sqrt{128}}{2}=\frac{4\pm8\sqrt{2}}{2}=2\pm4\sqrt{2}[/tex]
So, our two solutions are:
[tex]\displaystyle x_1=2+4\sqrt{2}\approx 7.66\text{ or } x_2=2-4\sqrt{2}\approx-3.66[/tex]
Since the two numbers are positive, we can ignore the second solution.
So, our first number is:
[tex]a=2+4\sqrt{2}[/tex]
And since the second number is four less, our second number is:
[tex]b=(2+4\sqrt{2})-4=4\sqrt{2}-2\approx 3.66[/tex]
Answer:
[tex]2+4\sqrt{2}\text{ and }4\sqrt{2}-2[/tex]
Step-by-step explanation:
Let the large number be [tex]x[/tex]. We can represent the smaller number with [tex]x-4[/tex]. Since their squares add up to 72, we have the following equation:
[tex]x^2+(x-4)^2=72[/tex]
Expand [tex](x-4)^2[/tex] using the property [tex](a-b)^2=a^2-2ab+b^2[/tex]:
[tex]x^2+x^2-2(4)(x)+16=72[/tex]
Combine like terms:
[tex]2x^2-8x+16=72[/tex]
Subtract 72 from both sides:
[tex]2x^2-8x-56=0[/tex]
Use the quadratic formula to find solutions for [tex]x[/tex]:
[tex]x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex] for [tex]ax^2+bx+c[/tex]
In [tex]2x^2-8x-56[/tex], assign:
[tex]a\implies 2[/tex] [tex]b \implies -8[/tex] [tex]c\implies -56[/tex]Solving, we get:
[tex]x=\frac{-(-8)\pm \sqrt{(-8)^2-4(2)(-56)}}{2(2)},\\x=\frac{8\pm 16\sqrt{2}}{4},\\\begin{cases}x=\frac{8+16\sqrt{2}}{4}, x=\boxed{2+4\sqrt{2}} \\x=\frac{8-16\sqrt{2}}{4}, x=\boxed{2-4\sqrt{2}}\end{cases}[/tex]
Since the question stipulates that [tex]x[/tex] is positive, we have [tex]x=\boxed{2+4\sqrt{2}}[/tex]. Therefore, the two numbers are [tex]2+4\sqrt{2}[/tex] and [tex]4\sqrt{2}-2[/tex].
Verify:
[tex](2+4\sqrt{2})^2+(4\sqrt{2}-2)^2=72\:\checkmark[/tex]
Which equation represents a hyperbola with a center at (0, 0), a vertex at (0, 60), and a focus at (0, −65)?
Answer:
d
Step-by-step explanation:
on edge
Answer:
D!!
Step-by-step explanation:
Got it right
15
9
determine the value
coso
Answer:
36.87°
Step-by-step explanation:
Given the right angle triangle :
To obtain the value of Cosθ ; we use the trigonometric relation :
Cosθ = Adjacent / Hypotenus
The adjacent angle isn't given :
Opposite = 9 ; hypotenus = 15
Adjacent = √(hypotenus ² + opposite ²)
Adjacent = √(15² - 9²)
Adjacent = √(225 -81)
Adjacent = √144 = 12
Hence,
Cos θ = 12/15
θ = Cos^-1(12/15)
θ = 36.87°
PLSSS, NEED ANSWER. Find the midpoint of the line segment with end coordinates of (-2,-5 and 3,-2
). Give coordinates as decimals where apropriate
Answer:
1, -3.5
Step-by-step explanation:
Answer:(0.5,-3.5)
Step-by-step explanation:
(-2+3/2)/2, (-5-2)/2
0.5,-3.5
A box is to be made out of a 12 by 20 piece of cardboard. Squares of equal size will be cut out of each corner, and then the ends and sides will be folded up to form a box with an open top. Find the length L , width W , and height H of the resulting box that maximizes the volume.
Answer:
Box Dimensions:
L = 15.15 ul
W = 7.15 ul
h = x = 2.43 ul
V(max) = 263.22 cu
Step-by-step explanation:
We call x the length of the square to be cut in the corners then:
Are of the base of the box is:
(20 - 2*x) is the future length of the box and
(12 - 2*x) will be the width
The heigh is x then the volume of the box is:
V = ( 20 - 2*x )* ( 12 - 2*x ) * h
And the volume as a function of x is:
V(x) = ( 20 - 2*x) * ( 12 - 2*x ) * x or V(x) = (240 -40*x -24*x + 4*x²) * x
V(x) = 240*x - 64*x² + 4*x³
Taking derivatives on both sides of the equation we get:
V´(x) = 240 - 128*x + 12*x²
V´(x) = 0 240 - 128*x + 12*x² = 0 or 60 - 32*x + 3*x²
3*x² - 32*x + 60 = 0
Solving:
x₁,₂ = 32 ± √ (32)² - 4*3*60 ]/ 2*3
x₁,₂ = 32 ± √ 1024 - 720 )/6
x₁,₂ = ( 32 ± √ 304 )/6
x₁,₂ = ( 32 ± 17.44 )/6
x₁ = 8.23 ( we dismiss this solution because is not feasible 2*x > 12
x₂ = 2.43 u.l ( units of length)
Then
L = 20 - 2*x L = 20 - 4.85 L = 15.15 ul
W = 12 - 2*x W = 12 - 4.85 W = 7.15 ul
h = 2.43 ul
V = 2.43*7.15*15.15 cubic units
V = 263.22 cu
To see if when x = 2.43 function V has a maximum we go to the second derivative
V´´(x) = - 128 + (24)*2.43
V´´(x) = - 69.68 as V´´(x) < 0 then we have a maximum for V(x) in the point x = 2.43
(6) Five men and four women play in a softball team.
Their names are put into a hat and two people are randomly selected to co-captain the
2
(1)
Copy and complete the probability tree diagram in your answer booklet.
First Captain
Second Captain
Male
Male
9
Female
Male
Female
9
Female
2
Calculate the probability that there will be at least one female captain.
2
(iii) Grant is one of the men on the team. He believes that he has a good chance of being
one of the co-captains.
Do you agree? Justify your answer.
Answer:
ANSWER IS 12
Step-by-step explanation:
If x is 6, then 7x =
Answer:
42
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
Brackets Parenthesis Exponents Multiplication Division Addition Subtraction Left to RightStep-by-step explanation:
Step 1: Define
Identify
x = 6
7x
Step 2: Evaluate
Substitute in variables: 7(6)Multiply: 42Find the volume of the irregular
figure
1 cm
3 cm
?] cm3
3 cm
1 cm
10 cm
5 cm
Answer:
Step-by-step explanation:
volume of reqd. figure=10×5×1+3×3×1=50+9=59 cm³
The two lines graphed below are not parallel. How many solutions are there to
the system of equations?
5
5
A. Infinitely many
B. One
C. Two
D. Zero
Answer:B
Step-by-step explanation:
simple, there is one point of intersection or where the lines meet
Answer:
B: One solution
Step-by-step explanation:
The graphs show that the two lines intersect at one point. This point represents the ONE solution of this system of equations.
If the lines did not intersect, the system would have no solution.
If the lines coincide, the system would have infinitely many solutions.
Please help i dont remember how to do this
Hurry !!Answer each question about the following
geometric series
10
k-1
What is the first term of the series?
a =
S10 - 3(2)k-1
RETRY
k-1
How many terms are in the series?
1
2
9
✓
10
COMPLETE
Answer:
last term is 1536
Value of the geometric series is 3,069
Step-by-step explanation:
took one for the team
There are 10 terms in the geometric series.
And, The first term of the series is, 3
We know that;
An sequence has the ratio of every two successive terms is a constant, is called a Geometric sequence.
Given that;
The geometric series is,
⇒ S₁₀ = ∑ 3 (2)ⁿ⁻¹
Where, n is from 1 to 10.
Thus, We get;
There are 10 terms in the geometric series.
And, For first term;
Put n = 1;
⇒ S₁₀ = ∑ 3 (2)ⁿ⁻¹
⇒ S₁₀ = ∑ 3 (2)¹⁻¹
⇒ S₁₀ = ∑ 3 (2)⁰
⇒ S₁₀ = ∑ 3 × 1
⇒ S₁₀ = 3
Thus, The first term of the series is, 3
Learn more about the geometric sequence visit:
https://brainly.com/question/25461416
#SPJ7
What is the domain of the function y=%/x-1?
O-
o -1 < x < oo
0
O 1
Answer:
[tex]-\infty < x < \infty[/tex]
Step-by-step explanation:
Given
[tex]y = \sqrt[3]{x - 1}[/tex]
Required
The domain
The given function is cubic root; there are no restrictions on cubic root functions
Hence, the domain is:
[tex]-\infty < x < \infty[/tex]
The HCF and LCM of two numbers is 9 and 459 respectively if one the number is 27 the other number is (1)
Answer:
153
Step-by-step explanation:
[tex]other \: number = \frac{9 \times 459}{27} \\ \\ = \frac{459}{3} \\ \\ = 153[/tex]
Answer:
Other number is 153
Step-by-step explanation:
Usually, the product of the HCF and LCM will be the product of the 2 numbers in question.
The HCF and LCM are given as 9 and 459.
While one of the numbers used to find the HCF & LCM was 27.
Let the other number be y.
Thus;
27y = 459 × 9
y = 459 × 9/27
y = 153
Help please I keep missing the middle one
Answer:
4 + (1/3)w + w = 24
subtract 4 from both sides
(1/3)w + w = 20
multiply both sides by 3 to clear the fraction
w + 3w = 60
4w = 60
Divide both sides by 4
w = 15
8. The confectionary company "Sugary Sweet" wants to test how sweet and flavorful their participants like their candy. They manipulated three levels of sugar and also two levels of flavor in the candy for their participants to score their preference. State the hypotheses for their study.
Solution :
It is given that a company named "Sugary Sweet" wishes to test about the sweet and the flavorful that their participants like the candy.
There are Two levels of the flavor and three levels of sugar.
Thus it is a Two Way ANOVA test.
A two-way ANOVA test is used to test the effect of any two independent variables on the dependent variable.
[tex]$H_{01} : \text{Mean effect of the sugar are equal}$[/tex]
[tex]$H_{02} : \text{Mean effect of the flavor are equal}$[/tex]
[tex]$H_{01} : \text{There is no interaction between the sugar and the flavor}$[/tex]
A) x = -2
B) y =2
C) y= -2
Answer:
Step-by-step explanation:
This is a positive parabola so it opens upwards. The equation for the directrix of this parabola is y = k - p. k is the second number in the vertex of the parabola which is (0, 0), but we need to solve for p.
The form that the parabola is currently in is
[tex]y=a(x-h)^2+k[/tex] so that means that [tex]a=\frac{1}{8}[/tex]. We can use that to solve for p in the formula
[tex]p=\frac{1}{4a}[/tex] so
[tex]p=\frac{1}{4(\frac{1}{8}) }[/tex] which simplifies to
[tex]p=\frac{1}{\frac{1}{2} }[/tex] which gives us that
p = 2. Now to find the directrix:
y = k - p becomes
y = 0 - 2 so
y = -2, choice A.
literally help meee because I don't understand
Answer and Step-by-step explanation:
You are being asked to find the area of a trapezoid. The area of a trapezoid is:
[tex]\frac{a+b}{2}[/tex] × h
Where:
a = Top base
b = Bottom base
h = Height
Plug in the values given to you via from the page.
[tex]\frac{7+11}{2} (3)\\\\\\\frac{18}{2}(3)\\\\(9)(3) = 27[/tex]
The answer (the area) is 27 [tex]cm^2[/tex].
#teamtrees #PAW (Plant And Water)