4 Points] Under the HMM generative model, what is p(z1 = z2 = z3), the probability that the same die is used for the first three rolls? b. [4 Points] Suppose that we observe the first two rolls. What is p(z1 = 1 | x1 = 2, x2 = 4), the probability that the casino used the fair die in the first roll?

Answers

Answer 1

Answer:

Step-by-step explanation:

We first examine a simple hidden Markov model (HMM). We observe a sequence of rolls of a four-sided die at an "occasionally dishonest casino", where at time t the observed outcome x_t Element {1, 2, 3, 4}. At each of these times, the casino can be in one of two states z_t Element {1, 2}. When z_t = 1 the casino uses a fair die, while when z_t = 2 the die is biased so that rolling a 1 is more likely. In particular: p (x_t = 1 | z_t = 1) = p (x_t = 2 | z_t = 1) = p (x_t = 3 | z_t = 2) = p (x_t = 4 | z_t = 1) = 0.25, p (X_t = 1 | z_t = 2) = 0.7, p (X_t = 2 | z_t = 2) = p (X_t = 3 | z_t = 2) = p (X_t = 4 | z_t = 2) = 0.1. Assume that the casino has an equal probability of starting in either state at time t = 1, so that p (z1 = 1) = p (z1 = 2) = 0.5. The casino usually uses the same die for multiple iterations, but occasionally switches states according to the following probabilities: p (z_t + 1 = 1 | z_t = 1) = 0.8, p (z_t = 2) = 0.9. The other transition probabilities you will need are the complements of these. a. Under the HMM generative model, what is p (z1 = z2 = z3), the probability that the same die is used for the first three rolls? b. Suppose that we observe the first two rolls. What is p (z1 = 1 | x1 = 2, x2 = 4), the probability that the casino used the fair die in the first roll? c. Using the backward algorithm, compute the probability that we observe the sequence x1 = 2, x2 = 3, x3 = 3, x4 = 3 and x5 = 1. Show your work (i.e., show each of your belief for based on time). Consider the final distribution at time t = 6 for both p (z_t = 1) = p (z_t = 2) = 1.

ANSWER:

Let say we have that the first state of the die is state 1. Therefore the probability of this is p(z1=1)=0.5.

Also the probability that the same die is used(i.e. casino would be in the same state) is p(z2=1|z1=1)=0.8.

Again, suppose the first state of the die is state 2. So, p(z1=2)=0.5 and p(z2=2|z1=2)=0.9.

Other transition probabilities can be written as

p(zt+1=2|zt=1)=1-p(zt+1=1|zt=1)=.2

p(zt+1=1|zt=2)=1-p(zt+1=2|zt=2)=.1

p(z3=1|z1=1) = [p(z3=1|z2=2)*p(z2=2|z1=1)]+[p(z3=1|z2=1)*p(z2=1|z1=1)] = 0.1*0.2+0.8*0.8 = 0.66

p(z3=2|z1=2) = [p(z3=2|z2=2)*p(z2=2|z1=2)]+[p(z3=2|z2=1)*p(z2=1|z1=2)] = 0.9*0.9+0.2*0.1 = 0.83

With this, the total probability that the same die is used for the first three rolls (i.e. casino would be in the same state) is  given thus;

{p(z1=1)*p(z3=1|z1=1)}*{p(z1=2)*p(z3=2|z1=2)}

=  0.5*0.66+0.5*0.83 = 0.745

Prob = 0.745


Related Questions

Of the three properties, reflexive, symmetric, and transitive that define the relation "is equal to," which one could also apply to "is less than" and "is greater than?" transitive reflexive symmetric

Answers

Answer: Transitive property.

Step-by-step explanation:

First, for the equality we have:

Reflexive:

  For all real numbers x, x = x.

Symmetric:  

 For all real numbers x, y

 if x= y, then y = x.

Transitive:

 For reals x, y and z.

 if x = y, and y = z, then x = z.

Now, let's talk about inequalities.

first, the reflexive property will say that:

x > x.

This has no sense, so this property does not work for inequalities.

Now, the reflexive.

If x > y, then y > x.

Again, this has no sense, if x is larger than y, then we can never have that y is larger than x. This property does not work for inequalities.

Not, the transitive property.

if x > y, and y > z, then x > z.

This is true.

x is bigger than y, and y is bigger than z, then x should also be bigger than z.

x > y > z.

And this also works for the inverse case:

x < y and y < z, then x < z.

So the correct option is transitive property.

Suppose the radius of a circle is 5 units. What is its circumference?​

Answers

Answer:

C≈31.42

Step-by-step explanation:

C=2πr

C=2xπx5

C≈31.42

pls mark as brainliest

I need help on this question, can someone please answer it correctly?

Answers

Answer:the one area < with line underneath then -4

St-by-step explanation: I’m pretty sure this is correct

Answer:

[tex] \boxed{x \leqslant - 4}[/tex]

Step-by-step explanation:

[tex] \mathrm{16x - 7 \leqslant - 71}[/tex]

Move constant to Right hand side and change its sign

[tex] \mathrm{16x \leqslant - 71 + 7}[/tex]

Calculate

[tex] \mathrm{16x \leqslant - 64}[/tex]

Divide both sides of the equation by 16

[tex] \mathrm{ \frac{16x}{16} \leqslant \frac{ - 64}{16} }[/tex]

Calculate

[tex] \mathrm{x \leqslant - 4}[/tex]

Hope I helped!

Best regards!

please help with this

Answers

Answer:

[tex]\sin \left(\theta \right)-\frac{1}{2}\cos \left(2\theta \rightt)+C[/tex]

Step-by-step explanation:

We are given the graph of r = cos( θ ) + sin( 2θ ) so that we are being asked to determine the integral. Remember that [tex]\:r=cos\left(\theta \right)+sin\left(2\theta \right)[/tex] can also be rewritten as [tex]\int \cos \left(\theta \right)+\sin \left(2\theta \right)d\theta \right[/tex].

Let's apply the functional rule [tex]\int f\left(x\right)\pm g\left(x\right)dx=\int f\left(x\right)dx\pm \int g\left(x\right)dx[/tex],

[tex]\int \cos \left(\theta \right)+\sin \left(2\theta \right)d\theta \right[/tex] = [tex]\int \cos \left(\theta \right)d\theta \right+\int \sin \left(2\theta \right)d\theta \right[/tex]

At the same time [tex]\int \cos \left(\theta \right)d\theta \right=\sin \left(\theta \right)[/tex] = [tex]sin( \theta \right ))[/tex], and [tex]\int \sin \left(2\theta \right)d\theta \right[/tex] = [tex]-\frac{1}{2}\cos \left(2\theta \right)[/tex]. Let's substitute,

[tex]\int \cos \left(\theta \right)d\theta \right+\int \sin \left(2\theta \right)d\theta \right[/tex] = [tex]\sin \left(\theta \right)-\frac{1}{2}\cos \left(2\theta \right)[/tex]

And adding a constant C, we receive our final solution.

[tex]\sin \left(\theta \right)-\frac{1}{2}\cos \left(2\theta \rightt)+C[/tex] - this is our integral

what is the distance between the first and third quartiles of a data set called?

Answers

Answer:

Interquartile range is the distance between the first and third of a data.

Step-by-step explanation:

Hope it will help you :)

The size of a television is the length of the diagonal of its screen in inches. The aspect ratio of the screens of older televisions is 4:3, while the aspect ratio of newer wide-screen televisions is 16:9. Find the width and height of an older 35-inch television whose screen has an aspect ratio of 4:3.

Answers

Answer:

The Width = 28 inches

The Height = 21 inches

Step-by-step explanation:

We are told in the question that:

The width and height of an older 35-inch television whose screen has an aspect ratio of 4:3

Using Pythagoras Theorem

Width² + Height² = Diagonal²

Since we known that the size of a television is the length of the diagonal of its screen in inches.

Hence, for this new TV

Width² + Height² = 35²

We are given ratio: 4:3 as aspect ratio

Width = 4x

Height = 3x

(4x)² +(3x)² = 35²

= 16x² + 9x² = 35²

25x² = 1225

x² = 1225/25

x² = 49

x = √49

x = 7

Hence, for the 35 inch tv set

The Width = 4x

= 4 × 7

= 28 inches.

The Height = 3x

= 3 × 7

= 21 inches

Use spherical coordinates. Evaluate e x2 + y2 + z2 dV, E where E is enclosed by the sphere x2 + y2 + z2 = 25 in the first octant.

Answers

Answer:

[tex]\displaystyle \iiint_E {e^{\sqrt{x^2 + y^2 + z^2}}} \, dV = \frac{\pi (17e^5 - 2)}{2}[/tex]

General Formulas and Concepts:
Calculus

Integration

Integrals

Integration Rule [Reverse Power Rule]:
[tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]

Integration Rule [Fundamental Theorem of Calculus 1]:
[tex]\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)[/tex]

Integration Property [Multiplied Constant]:
[tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]

Integration Property [Addition/Subtraction]:
[tex]\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx[/tex]

Integration Method [Integration by Parts]:
[tex]\displaystyle \int {u} \, dv = uv - \int {v} \, du[/tex]

[IBP] LIPET: Logs, Inverses, Polynomials, Exponentials, Trig

Multivariable Calculus

Triple Integrals

Cylindrical Coordinate Conversions:

[tex]\displaystyle x = r \cos \theta[/tex][tex]\displaystyle y = r \sin \theta[/tex][tex]\displaystyle z = z[/tex][tex]\displaystyle r^2 = x^2 + y^2[/tex][tex]\displaystyle \tan \theta = \frac{y}{x}[/tex]

Spherical Coordinate Conversions:

[tex]\displaystyle r = \rho \sin \phi[/tex][tex]\displaystyle x = \rho \sin \phi \cos \theta[/tex][tex]\displaystyle z = \rho \cos \phi[/tex][tex]\displaystyle y = \rho \sin \phi \sin \theta[/tex][tex]\displaystyle \rho = \sqrt{x^2 + y^2 + z^2}[/tex]

Integral Conversion [Spherical Coordinates]:
[tex]\displaystyle \iiint_T {f( \rho, \phi, \theta )} \, dV = \iiint_T {\rho^2 \sin \phi} \, d\rho \, d\phi \, d\theta[/tex]

Step-by-step explanation:

*Note:

Recall that φ is bounded by 0 ≤ φ ≤ 0.5π from the z-axis to the x-axis.

I will not show/explain any intermediate calculus steps as there isn't enough space.

Step 1: Define

Identify given.

[tex]\displaystyle \iiint_E {e^{\sqrt{x^2 + y^2 + z^2}}} \, dV[/tex]

[tex]\displaystyle \text{Region E:} \ x^2 + y^2 + z^2 = 25 \ \text{bounded by first octant}[/tex]

Step 2: Integrate Pt. 1

Find ρ bounds.

[Sphere] Substitute in Spherical Coordinate Conversions:
[tex]\displaystyle \rho^2 = 25[/tex]Solve:
[tex]\displaystyle \rho = 5[/tex]Define limits:
[tex]\displaystyle 0 \leq \rho \leq 5[/tex]

Find θ bounds.

[Sphere] Substitute in z = 0:
[tex]\displaystyle x^2 + y^2 = 25[/tex][Circle] Graph [See 2nd Attachment][Graph] Identify limits [Unit Circle]:
[tex]\displaystyle 0 \leq \theta \leq \frac{\pi}{2}[/tex]

Find φ bounds.

[Circle] Substitute in Cylindrical Coordinate Conversions:
[tex]\displaystyle r^2 = 25[/tex]Solve:
[tex]\displaystyle r = 5[/tex]Substitute in Spherical Coordinate Conversions:
[tex]\displaystyle \rho \sin \phi = 5[/tex]Solve:
[tex]\displaystyle \phi = \frac{\pi}{2}[/tex]Define limits:
[tex]\displaystyle 0 \leq \phi \leq \frac{\pi}{2}[/tex]

Step 3: Integrate Pt. 2

[Integrals] Convert [Integral Conversion - Spherical Coordinates]:
[tex]\displaystyle \iiint_E {e^{\sqrt{x^2 + y^2 + z^2}}} \, dV = \iiint_E {e^{\sqrt{x^2 + y^2 + z^2}} \rho^2 \sin \phi} \, d\rho \, d\phi \, d\theta[/tex][dρ Integrand] Rewrite [Spherical Coordinate Conversions]:
[tex]\displaystyle \iiint_E {e^{\sqrt{x^2 + y^2 + z^2}}} \, dV = \iiint_E {e^{\rho} \rho^2 \sin \phi} \, d\rho \, d\phi \, d\theta[/tex][Integrals] Substitute in region E:
[tex]\displaystyle \iiint_E {e^{\sqrt{x^2 + y^2 + z^2}}} \, dV = \int\limits^{\frac{\pi}{2}}_0 \int\limits^{\frac{\pi}{2}}_0 \int\limits^5_0 {e^{\rho} \rho^2 \sin \phi} \, d\rho \, d\phi \, d\theta[/tex]

We evaluate this spherical integral by using the integration rules, properties, and methods listed above:

[tex]\displaystyle \begin{aligned} \iiint_E {e^{\sqrt{x^2 + y^2 + z^2}}} \, dV & = \int\limits^{\frac{\pi}{2}}_0 \int\limits^{\frac{\pi}{2}}_0 \int\limits^5_0 {e^{\rho} \rho^2 \sin \phi} \, d\rho \, d\phi \, d\theta \\ & = \int\limits^{\frac{\pi}{2}}_0 \int\limits^{\frac{\pi}{2}}_0 {\bigg[ (\rho^2 - 2 \rho + 2) e^{\rho} \sin \phi \bigg] \bigg| \limits^{\rho = 5}_{\rho = 0}} \, d\phi \, d\theta\end{aligned}[/tex]

[tex]\displaystyle \begin{aligned}\iiint_E {e^{\sqrt{x^2 + y^2 + z^2}}} \, dV & = \int\limits^{\frac{\pi}{2}}_0 \int\limits^{\frac{\pi}{2}}_0 {(17e^5 - 2) \sin \phi} \, d\phi \, d\theta \\& = \int\limits^{\frac{\pi}{2}}_0 {\bigg[ -(17e^5 - 2) \cos \phi \bigg] \bigg| \limits^{\phi = \frac{\pi}{2}}_{\phi = 0}} \, d\theta \\& = \int\limits^{\frac{\pi}{2}}_0 {17e^5 - 2} \, d\theta \\& = (17e^5 - 2) \theta \bigg| \limits^{\theta = \frac{\pi}{2}}_{\theta = 0} \\& = \frac{\pi (17e^5 - 2)}{2}\end{aligned}[/tex]

∴ the given integral equals [tex]\displaystyle \bold{\frac{\pi (17e^5 - 2)}{2}}[/tex].

---

Learn more about spherical coordinates: https://brainly.com/question/16415822

Learn more about multivariable calculus: https://brainly.com/question/4746216

---

Topic: Multivariable Calculus

Unit: Triple Integrals Applications

Can somebody please solve this problem for me!

Answers

Answer:

x = 200.674

Step-by-step explanation:

tan∅ = opposite/adjacent

Step 1: Find length of z

tan70° = 119/z

ztan70° = 119

z = 119/tan70°

z = 43.3125

Step 2: Find length z + x (denoted as y)

tan26° = 119/y

ytan26° = 119

y = 119/tan26°

y = 243.986

Step 3: Find x

y - z = x

243.986 - 43.3125 = x

x = 200.674

5 STARS IF CORRECT! In general, Can you translate a phrase or sentence into symbols? Explain the answer.

Answers

Answer:

Step-by-step explanation:

I answered this already a few minutes ago.

Answer:

yes you can

Step-by-step explanation:

you can write algebraic expressions and use variables for the unknown

Determine the number of degrees of freedom for the two-sample t test or CI in each of the following situations. (Round your answers down to the nearest whole number.)a. m = 12, n = 15, s1 = 4.0, s2 = 6.0b. m = 12, n = 21, s1 = 4.0, s2 = 6.0c. m = 12, n = 21, s1 = 3.0, s2 = 6.0d. m = 10, n = 24, s1 = 4.0, s2 = 6.0

Answers

Answer:

Part a ) The degrees of freedom for the given two sample non-pooled t test is 24

Part b ) The degrees of freedom for the given two sample non-pooled t test is 30

Part c ) The degrees of freedom for the given two sample non-pooled t test is 30

Part d ) The degrees of freedom for the given two sample non-pooled t test is 25

Step-by-step explanation:

Degrees of freedom for a non-pooled two sample t-test is given by;

Δf = {[ s₁²/m + s₂²/n ]²} / {[( s₁²/m)²/m-1] + [(s₂²/n)²/n-1]}

Now given the information;

a) :- m = 12, n = 15, s₁ = 4.0, s₂ = 6.0

we substitute

Δf =  {[ 4²/12 + 6²/15 ]²} / {[( 4²/12)²/12-1] + [(6²/15)²/15-1]}

Δf  = 30184 / 1241

Δf  = 24.3223 ≈ 24 (down to the nearest whole number)

b) :- m = 12, n = 21, s₁ = 4.0, s₂ = 6.0

we substitute using same formula

Δf = {[ s₁²/m + s₂²/n ]²} / {[( s₁²/m)²/m-1] + [(s₂²/n)²/n-1]}

Δf = {[ 4²/12 + 6²/21 ]²} / {[( 4²/12)²/12-1] + [(6²/21)²/21-1]}

Δf = 56320 / 1871

Δf = 30.1015 ≈ 30 (down to the nearest whole number)

c) :- m = 12, n = 21, s₁ = 3.0, s₂ = 6.0

we substitute using same formula

Δf = {[ s₁²/m + s₂²/n ]²} / {[( s₁²/m)²/m-1] + [(s₂²/n)²/n-1]}

Δf = {[ 3²/12 + 6²/21 ]²} / {[( 3²/12)²/12-1] + [(6²/21)²/21-1]}

Δf = 29095 / 949

Δf = 30.6585 ≈ 30 (down to the nearest whole number)

d) :- m = 10, n = 24, s₁ = 4.0, s₂ = 6.0

we substitute using same formula

Δf = {[ s₁²/m + s₂²/n ]²} / {[( s₁²/m)²/m-1] + [(s₂²/n)²/n-1]}

Δf = {[ 4²/10 + 6²/24 ]²} / {[( 4²/10)²/10-1] + [(6²/24)²/24-1]}

Δf = 1044 / 41  

Δf = 25.4634 ≈ 25 (down to the nearest whole number).

Find the equation of a parabola that has a vertex (3,5) and passes through the point (1,13).
Oy= -27 - 3)' +5
Oy=2(x + 3) - 5
Oy=2(0 - 3)' + 5
Oy= -3(2 – 3) + 5
PLEASE HELP ME!!

Answers

Answer:

y = 2(x - 3)² + 5

Step-by-step explanation:

The equation of a parabola in vertex form is

y = a(x - h)² + k

where (h, k) are the coordinates of the vertex and a is a multiplier

Here (h, k) = (3, 5), thus

y = a(x - 3)² + 5

To find a substitute (1, 13) into the equation

13 = a(1 - 3)² + 5 ( subtract 5 from both sides )

8 = 4a ( divide both sides by 4 )

a = 2, then

y = 2(x - 3)² + 5 ← equation of parabola in vertex form

Express the quotient of z1 and z2 in standard form given that [tex]z_{1} = -3[cos(\frac{-\pi }{4} )+isin(\frac{-\pi }{4} )][/tex] and [tex]z_{2} = 2\sqrt{2} [cos(\frac{-\pi }{2} )+isin(\frac{-\pi }{2} )][/tex]

Answers

Answer:

Solution : [tex]-\frac{3}{4}-\frac{3}{4}i[/tex]

Step-by-step explanation:

[tex]-3\left[\cos \left(\frac{-\pi }{4}\right)+i\sin \left(\frac{-\pi \:}{4}\right)\right]\:\div \:2\sqrt{2}\left[\cos \left(\frac{-\pi \:\:}{2}\right)+i\sin \left(\frac{-\pi \:\:\:}{2}\right)\right][/tex]

Let's apply trivial identities here. We know that cos(-π / 4) = √2 / 2, sin(-π / 4) = - √2 / 2, cos(-π / 2) = 0, sin(-π / 2) = - 1. Let's substitute those values,

[tex]\frac{-3\left(\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}i\right)}{2\sqrt{2}\left(0-1\right)i}[/tex]

=[tex]-3\left(\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}i\right)[/tex] ÷ [tex]2\sqrt{2}\left(0-1\right)i[/tex]

= [tex]3\left(-\frac{\sqrt{2}i}{2}+\frac{\sqrt{2}}{2}\right)[/tex] ÷ [tex]-2\sqrt{2}i[/tex]

= [tex]\frac{3\left(1-i\right)}{\sqrt{2}}[/tex]÷ [tex]2\sqrt{2}i[/tex] = [tex]-3-3i[/tex] ÷ [tex]4[/tex] = [tex]-\frac{3}{4}-\frac{3}{4}i[/tex]

As you can see your solution is the last option.

When proving a statement using mathematical induction, part of the process is assuming that the statement is true for the nth case. (True or False).

Answers

Answer:

True

Step-by-step explanation:

We assume that is true for the nth case and prove it for the n+1 case

and show that it is true for the case when n=1

Emily made a pot of cream of pumpkin soup for thanksgiving dinner. She put 5
cups of cream in the soup. She poured the soup into 24 small soup bowls. How
much cream (measured in oz.) is used for each small bowl of soup?

Answers

Answer:

1 2/3 ounces in each bowl

Step-by-step explanation:

We need to convert 5 cups to ounces

1 cup = 8 ounces

5 cups = 5*8 = 40 ounces

We divide the 40 ounces into 24 bowls

40 ounces / 24 bowl

5/3 ounces per bowl

1 2/3 ounces in each bowl

Answer:

each bowl can contain 5/3 oz. of soup.

Step-by-step explanation:

1 cup = 8 oz.

                   8 oz.

5 cups x --------------  =  40 oz.

                    1 cup

to get the measurement of each bowl,

40 oz. divided into 24 bowls.

therefore, each bowl can contain 5/3 oz. of soup.

The areas of two similar octagons are 4 m² and 9 m². What is the scale factor of their side lengths? PLZ PLZ HELP PLZ

Answers

Answer:

[tex] \frac{2}{3} [/tex]

Step-by-step explanation:

Area of Octagon A = 4 m²

Side length of Octagon A = a

Area of Octagon B = 9 m²

Side length of Octagon B = b

The scale factor of their side lengths = [tex] \frac{a}{b} [/tex]

According to the area of similar polygons theorem, [tex] \frac{4}{9} = (\frac{a}{b})^2 [/tex]

Thus,

[tex] \sqrt{\frac{4}{9}} = \frac{a}{b} [/tex]

[tex] \frac{\sqrt{4}}{\sqrt{9}} = \frac{a}{b} [/tex]

[tex] \frac{2}{3} = \frac{a}{b} [/tex]

Scale factor of their sides = [tex] \frac{2}{3} [/tex]

Answer:

3:5

Step-by-step explanation:

square root of 9 is 3.

square root if 25 is 5.

therefore, 3:5.

Identify each x-value at which the slope of the tangent line to the function f(x) = 0.2x^2 + 5x − 12 belongs to the interval (-1, 1).

Answers

Answer:

Step-by-step explanation:

Hello, the slope of the tangent is the value of the derivative.

f'(x) = 2*0.2x + 5 = 0.4x + 5

So we are looking for

[tex]-1\leq f'(x) \leq 1 \\ \\<=> -1\leq 0.4x+5 \leq 1 \\ \\<=> -1-5=-6\leq 0.4x \leq 1-5=-4 \\ \\<=> \dfrac{-6}{0.4}\leq 0.4x \leq \dfrac{-4}{0.4} \\\\<=> \boxed{-15 \leq x\leq -10}[/tex]

Hope this helps.

Do not hesitate if you need further explanation.

Thank you

Using derivatives, it is found that the x-values in which the slope belong to the interval (-1,1) are in the following interval is (-15,-10).

What is the slope of the tangent line to a function f(x) at point x = x_0?

It is given by the derivative at x = x_0, that is:

m = f'(x_0)

In this problem, the function is:

f(x) = 0.2x^2 + 5x − 12

Hence the derivative is:

f'(x) = 0.4x + 5

For a slope of -1, we have that,

0.4x + 5 = -1

0.4x = -6

x = -15.

For a slope of 1, we have that,

0.4x + 5 = 1.

0.4x = -4

x = -10

Hence it is found that the x-values in which the slope belong to the interval (-1,1) are in the following interval is (-15,-10).

More can be learned about derivatives and tangent lines at;

brainly.com/question/8174665

#SPJ2

The double number lines show the ratio of cups to gallons. How many cups are in 333 gallons? _____ cups

Answers

Answer:

5328 cups.

Step-by-step explanation:

Given that 333 gallons

We know that

1 gallons = 16 cups

1 cups = 0.0625 gallons

Therefore,from the above conversion we can say that

Now by putting the values in the above conversion

333 gallons = 16 x 333 cups

333 gallons = 5328 cups

So , we can say that 333 gallons is equal to 5328 cups.

Thus the answer will be 5328 cups.

Answer:

48 cups(BTW he meant 33 galons, IVE had this before). lol you need to put the double number line image. first u have to divide 64/4 to get 16, Then it says "How many cups are in 3 gallons". There fore, U multiply 16 to 3 to get ur answer "48".

What word phrase can you use to represent the algebraic expression 7x?

A. 7 more than a number x
B. the product of 7 and a number x
C. the quotient of 7 and a number x
D. 7 less than a number x

Answers

Answer:

B. the product of 7 and a number x

Step-by-step explanation:

7x is 7 multiplied by x.

Answer:

b is the product

Step-by-step explanation:

20 points!
Please help.

Answers

Man this is a hard one!

the fourth term of an AP is 5 while the sum of the first 6 terms is 10. Find the sum of the first 19 terms​

Answers

Answer: S₁₉ = 855

Step-by-step explanation:

T₄ = a + ( n - 1 )d  = 5 , from the statement above , but n = 4

       a + 3d  = 5 -------------------------1

S₆ = ⁿ/₂[(2a + ( n - 1 )d]  =  10, where n = 6

    = ⁶/₂( 2a + 5d )         = 10

    = 3( 2a + 5d ) = 10

    = 6a + 15d      = 10 -----------------2

Now solve the two equation together simultaneously to get the values of a and d

   a + 3d     = 5

   6a + 15d = 10

from 1,

a = 5 - 3d -------------------------------3

Now put (3) in equation 2 and open the brackets

6( 5 - 3d )  + 15d = 10

30 - 18d + 15d      = 10

30 - 3d                 = 10

            3d            = 30 - 10

             3d           = 20

                         d = ²⁰/₃.

Now substitute for d to get a in equation 3

           a = 5 - 3( ²⁰/₃)

           a = 5 - 3 ₓ ²⁰/₃

              = 5 - 20

          a  = -15.

Now to find the sum of the first 19 terms,

we use the formula

S₁₉ = ⁿ/₂( 2a + ( n - 1 )d )

     = ¹⁹/₂( 2 x -15 + 18 x ²⁰/₃ )

     = ¹⁹/₂( -30 + 6 x 20 )

     = ¹⁹/₂( -30 + 120 )

     = ¹⁹/₂( 90 )

     = ¹⁹/₂ x 90

     = 19 x 45

     = 855

Therefore,

S₁₉ = 855

 

You drive 15 miles in 0.1hours . How fast did you travel if 8=d/t

Answers

Answer:

150

Step-by-step explanation:

[tex]distance = 15 miles\\time = 0.1 hours\\\\Speed = \frac{Distance}{time}\\ Speed = \frac{15}{0.1}\\ Speed =150[/tex]

Answer:

[tex]150mph[/tex]

Step-by-step explanation:

Given:

s=15miles

t=0.1hours

Required:

v=?

Formula:

[tex]v = \frac{s}{t} [/tex]

Solution:

[tex]v = \frac{s}{t} = \frac{15m}{0.1h} = \frac{150m}{1h} = 150mph[/tex]

Hope this helps ;) ❤❤❤

The balances in two separate bank accounts that grow each month at different rales are represented by the functions f(x) and gix) In what month do the funds in the f(x) bank account exceed those in the glx)
bank account?
Month (x) f(x) = 2* g(x) = 4x + 12
1
2
16
2.
4
20
O Month 3
O Month 4
O Month 5
O Month 6​

Answers

Answer:

The balance in two separate bank accounts grows each month at different rates. the growth rates for both accounts are represented by the functions f(x) = 2x and g(x) = 4x 12. in what month is the f(x) balance greater than the g(x) balance?

Answer:

6 months

function is a relationship between inputs where each input is related to exactly one output.

x = 5,

f(5) = [tex]2^5\\[/tex] = 32

g(5) = 4 x 5 + 12 = 20 + 12 = 32

x = 6,

f(6) = [tex]2^6[/tex] = 64

g(6) = 4 x 6 + 12 = 24 + 12 = 36

At month 6 the funds in the f(x) bank account exceed those in the g(x) bank account.

What is a function?

function is a relationship between inputs where each input is related to exactly one output.

Example:

f(x) = 2x + 1

f(1) = 2 + 1 = 3

f(2) = 2 x 2 + 1 = 4 + 1 = 5

The outputs of the functions are 3 and 5

The inputs of the function are 1 and 2.

We have,

f(x) = [tex]2^{x}[/tex]

g(x) = 4x + 12

x = number of months

Now,

x = 3,

f(3) = 2³ = 8

g(3) = 4 x 3 + 12 = 12 + 12 = 24

x = 4,

f(4) = [tex]2^4[/tex] = 16

g(4) = 4 x 4 + 12 = 16 + 12 = 28

x = 5,

f(5) = [tex]2^5\\[/tex] = 32

g(5) = 4 x 5 + 12 = 20 + 12 = 32

x = 6,

f(6) = [tex]2^6[/tex] = 64

g(6) = 4 x 6 + 12 = 24 + 12 = 36

We see that,

At x = 6,

f(5) = 64

g(5) = 36

Thus,

At month 6 the funds in the f(x) bank account exceed those in the g(x) bank account.

Learn more about functions here:

https://brainly.com/question/28533782

#SPJ2

what is the domain of f(x)=(1/4)^x

Answers

Answer:

B All real numbers

hope you wil understand

Answer:

[tex]\boxed{\sf B. \ All \ real \ numbers}[/tex]

Step-by-step explanation:

The domain is all possible values for x.

[tex]f(x)=(\frac{1}{4} )^x[/tex]

There are no restrictions on the value of x.

The domain is all real numbers.

What is the value of 20 + 3 (7 + 4) + 5 + 2 (7 + 9)?

Answers

Answer:

90

Step-by-step explanation:

Answer:

90

Step-by-step explanation:

Here is the equation

[tex]20+3\times(7+4)+5+2\times(7+9)[/tex]

In the order of operations parentheses go first so we get

[tex]20+3\times11+5+2\times16[/tex]

Next we do the multiplication

[tex]20+33+5+32\\[/tex]

And finally we add them all up

[tex]20+33+5+32=90\\[/tex]

Thus, 90 is the answer of [tex]20+3\times(7+4)+5+2\times(7+9)[/tex] or [tex]20+3(7+4)+5+2(7+9)[/tex]

Simplify to create an equivalent expression.
-k-(-8k+7)
a=7k−7
b=-7k-7
c=7k+7
d=-7k+7
choose one

Answers

Answer:

a. 7k - 7

Step-by-step explanation:

Step 1: Write out expression

-k - (-8k + 7)

Step 2: Distribute negative

-k + 8k - 7

Step 3: Combine like terms

7k - 7

And we have our answer!

Question 2 Rewrite in simplest radical form 1 x −3 6 . Show each step of your process.

Answers

Answer:

√(x)

Step-by-step explanation:

(1)/(x^-(1/2)) that's 3 goes into -3 leaving 1 and goes into 6 leaving 2

1/2 is same as 2^-1

so therefore we can simplify the above as

x^-(-1/2)

x^(1/2)

and 4^(1/2)

is same as √(4)

so we conclude as

√(x)

Each student in a school was asked, "What is your favorite color?" The circle graph below shows how they answered

Which color was chosen by approximately one fourth of the students?

Approximately what percentage of the students chose purple or green?

Answers

Answer:

a). BLUE color

b). 20%

Step-by-step explanation:

a). "Which color was chosen by approximately one fourth of the students?"

  Since one fourth of the students will be represented by one fourth area of the circle given.

That means color of choice represented by the quarter of the circle will be the color liked by one fourth students.

In the figure attached, BLUE color is the choice of one fourth students in the class.

b). Area represented by purple, green and other colors is a quarter of the circle.

If we divide this quarter into five equal sections, then the total of purple and green will be  [tex]4\times \frac{1}{5}[/tex] of the the quarter of the circle.

Measure of the angle defined by purple or green sections = [tex]\frac{4}{5}\times 90[/tex]

                                                                                                     = 72°

Percentage of the students who preferred purple or green = [tex]\frac{72}{360}\times 100[/tex]

                                                                                                     = 20%

Answer:

blue

20%

Step-by-step explanation:

Write an expression to represent the given statement. Use n for the variable. Three times the absolute value of the sum of a number and 6

Answers

Answer:

3 · |x+6|

Step-by-step explanation:

Write out what you see. "Three times" is 3 · something; "the absolute value of the sum of a number and 6" is |number + 6|. We'll use x for our number. Put it all together and you get 3 · |x+6|

The expression of the statement, Three times the absolute value of the sum of a number and 6 is  [tex]\[3\left| n+6 \right|\][/tex] .

Representation of statement:Let n be the number.The sum of the numbers n and 6 is n+6.The absolute value of the sum of the numbers n and 6 is  [tex]\[\left| n+6 \right|\][/tex].Hence, three times the absolute value of the sum of a number and 6 is [tex]\[3\left| n+6 \right|\][/tex].

 

Learn more about the representation of an expression:

https://brainly.com/question/10905086?referrer=searchResults

#SPJ2

For a certain casino slot machine, the odds in favor of a win are given as 17 to 83. Express the indicated degree of likelihood as a probability value between 0 and 1 inclusive.

Answers

Step-by-step explanation:

83P (E)=17-17P (E),

P (E)=17/100=0.17

A hot metal bar is submerged in a large reservoir of water whose temperature is 60°F. The temperature of the bar 20 s after submersion is 120°F. After 1 min submerged, the temperature has cooled to 100°F. (Let y be measured in degrees Fahrenheit, and t be measured in seconds.) (a) Determine the cooling constant k. k = s−1 (b) What is the differential equation satisfied by the temperature y(t)? (Use y for y(t).) y'(t) = (c) What is the formula for y(t)? y(t) = (d) Determine the temperature of the bar at the moment it is submerged. (Round your answer to one decimal place.)

Answers

Answer:

a.  k = -0.01014 s⁻¹

b.  [tex]\mathbf{\dfrac{dy}{dt} = - \dfrac{In(\dfrac{3}{2})}{40}(y-60)}[/tex]

c.  [tex]\mathbf{y(t) = 60+ \dfrac{60 \sqrt{3}}{\sqrt{2}} \ e^{\dfrac{-In(\dfrac{3}{2})\ t}{40}}}[/tex]

d.  y(t) = 130.485°F

Step-by-step explanation:

A hot metal bar is submerged in a large reservoir of water whose temperature is 60°F. The temperature of the bar 20 s after submersion is 120°F. After 1 min submerged, the temperature has cooled to 100°F.

(Let y be measured in degrees Fahrenheit, and t be measured in seconds.)

We are to determine :

a.  Determine the cooling constant k. k = s−1

By applying the new law of cooling

[tex]\dfrac{dT}{dt} = k \Delta T[/tex]

[tex]\dfrac{dT}{dt} = k(T_1-T_2)[/tex]

[tex]\dfrac{dT}{dt} = k (T - 60)[/tex]

Taking the integral.

[tex]\int \dfrac{dT}{T-60} = \int kdt[/tex]

㏑ (T -60) = kt + C

T - 60 = [tex]e^{kt+C}[/tex]

[tex]T = 60+ C_1 e^{kt} ---- (1)[/tex]

After 20 seconds, the temperature of the bar submersion is 120°F

T(20) = 120

From equation (1) ,replace t = 20s and T = 120

[tex]120 = 60 + C_1 e^{20 \ k}[/tex]

[tex]120 - 60 = C_1 e^{20 \ k}[/tex]

[tex]60 = C_1 e^{20 \ k} --- (2)[/tex]

After 1 min i.e 60 sec , the temperature  = 100

T(60) = 100

From equation (1) ; replace t = 60 s and T = 100

[tex]100 = 60 + c_1 e^{60 \ t}[/tex]

[tex]100 - 60 =c_1 e^{60 \ t}[/tex]

[tex]40 =c_1 e^{60 \ t} --- (3)[/tex]

Dividing equation (2) by (3) , we have:

[tex]\dfrac{60}{40} = \dfrac{C_1e^{20 \ k } }{C_1 e^{60 \ k}}[/tex]

[tex]\dfrac{3}{2} = e^{-40 \ k}[/tex]

[tex]-40 \ k = In (\dfrac{3}{2})[/tex]

- 40 k = 0.4054651

[tex]k = - \dfrac{0.4054651}{ 40}[/tex]

k = -0.01014 s⁻¹

 

b. What is the differential equation satisfied by the temperature y(t)?

Recall that :

[tex]\dfrac{dT}{dt} = k \Delta T[/tex]

[tex]\dfrac{dT}{dt} = \dfrac{- In (\dfrac{3}{2})}{40}(T-60)[/tex]

Since y is the temperature of the body , then :

[tex]\mathbf{\dfrac{dy}{dt} = - \dfrac{In(\dfrac{3}{2})}{40}(y-60)}[/tex]

(c) What is the formula for y(t)?

From equation (1) ;

where;

[tex]T = 60+ C_1 e^{kt} ---- (1)[/tex]

Let y be measured in degrees Fahrenheit

[tex]y(t) = 60 + C_1 e^{-\dfrac{In (\dfrac{3}{2})}{40}t}[/tex]

From equation (2)

[tex]C_1 = \dfrac{60}{e^{20 \times \dfrac{-In(\dfrac{3}{2})}{40}}}[/tex]

[tex]C_1 = \dfrac{60}{e^{-\dfrac{1}{2} {In(\dfrac{3}{2})}}}[/tex]

[tex]C_1 = \dfrac{60}{e^ {In(\dfrac{3}{2})^{-1/2}}}}[/tex]

[tex]C_1 = \dfrac{60}{\sqrt{\dfrac{2}{3}}}[/tex]

[tex]C_1 = \dfrac{60 \times \sqrt{3}}{\sqrt{2}}}[/tex]

[tex]\mathbf{y(t) = 60+ \dfrac{60 \sqrt{3}}{\sqrt{2}} \ e^{\dfrac{-In(\dfrac{3}{2})\ t}{40}}}[/tex]

(d) Determine the temperature of the bar at the moment it is submerged.

At the moment it is submerged t = 0

[tex]\mathbf{y(0) = 60+ \dfrac{60 \sqrt{3}}{\sqrt{2}} \ e^{\dfrac{-In(\dfrac{3}{2})\ 0}{40}}}[/tex]

[tex]\mathbf{y(t) = 60+ \dfrac{60 \sqrt{3}}{\sqrt{2}} }[/tex]

y(t) = 60 + 70.485

y(t) = 130.485°F

Other Questions
A radio-active atom has a half-life of a day. This means that it decays by 1/2 each day. Write an equation for this expinential function if you start with 64 grams Find the measure of b. At December 31, 2018, Hull-Meyers Corp. had the following investments that were purchased during 2018, its first year of operations: Cost Fair Value Trading Securities: Security A $ 930,000 $ 943,000 Security B 135,000 129,400 Totals $ 1,065,000 $ 1,072,400 Securities Available-for-Sale: Security C $ 730,000 $ 807,000 Security D 930,000 946,200 Totals $ 1,660,000 $ 1,753,200 Securities to Be Held-to-Maturity: Security E $ 520,000 $ 530,600 Security F 645,000 639,400 Totals $ 1,165,000 $ 1,170,000No investments were sold during 2018. All securities except Security D and Security F are considered short-term investments. None of the fair value changes is considered permanent.Required:Compute the below table to calculate the following. (Amounts to be deducted should be indicated with a minus sign.) Scientific question that could be answered with the help of a microscope The Milankovitch cycles describe the change in ________ because of changes in the ________ of Earth relative to the Sun. if you are a mechanical engineer answer these questions:1. Are communication skills (reading, writing, and speaking) necessary in this profession?2. How are Communicative Competences integrated into this profession? Which of these statements was a Marxist critique of capitalism during the late 1800s? Too little wealth was being generated by people in the United States. Wealth was being distributed too unevenly in the United States. Too much wealth was being created by people in the United States. Wealth was being distributed too evenly in the United States. An aerospace engineer is designing a rocket to have three stages. Which isnot a reasonable explanation for this decision?A. To simplify the design of the rocketO B. To decrease the mass of the rocket as it fliesC. To take advantage of the lesser amount of thrust needed in spaceD. So the rocket only carries necessary mass A company purchased a computer system at a cost of $34,000. The estimated useful life is 8 years, and the estimated residual value is $9,000. Assuming the company uses the double-declining-balance method, what is the depreciation expense for the second year Write the equations that represent the first and second ionization steps for sulfuric acid (H2SO4) in water. Change the polar coordinates (r, ) to rectangular coordinates (x, y):(-2,sqrt2pi Find the area of the composite figure in terms of the figure (use 3.14 for pi) Rosa is trying to copy an angle. She reads and understands all of the steps, but insists on drawing circles instead of arcs. Which of the following is the best response to tell Rosa? A. It is acceptable to draw circles instead of arcs, but because they are bigger and take up more space, your drawing may become messy, increasing the chance for errors. The spread of AIDS in small-scale societies is often attributed to witchcraft and sorcery because: Select one: a. AIDS is a poorly understood disease of which there is no clear cause in the minds of the people b. modern medicine is relatively ineffective in treating AIDS c. AIDS appears to strike random, especially among the poor d. all of the above Helena builds a shed in her backyard. There is a larger section for large tools, like her lawn mower, and a smaller section for small tools. What is the length of the entire shed? What type of number is the length? List as many types of numbers for the length as you can. 10. Which of the following is NOT a method of transmission for the HIV Virus? A. O Casual contact with an infected person B. O Unprotected Sex C. O Sharing IV drug needles D. O Coming in contact with blood or body fluids Occupational fraud comes in many shapes and sizes. The fraud at Rite Aid is one such case. On February 10, 2015, the U.S. Attorney's Office for the Middle District of Pennsylvania announced that a former Rite Aid vice president, Jay Findling, pleaded guilty to charges in connection with a $29.1 million dollar surplus inventory sales/kickback scheme. Another former vice president, Timothy P. Foster, pleaded guilty to the same charges and making false statements to the authorities. Both charges are punishable by up to five years' imprisonment and a $250,000 fine.The charges relate to a nine-year conspiracy to defraud Rite Aid by lying to the company about the sale of surplus inventory to a company owned by Findling when it was sold to third parties for greater amounts. Findling would then kick back a portion of his profits to Foster.Findling admitted he established a bank account under the name "Rite Aid Salvage Liquidation" and used it to collect the payments from the real buyers of the surplus Rite Aid inventory. After the payments were received, Findling would send lesser amounts dictated by Foster to Rite Aid for the goods, thus inducing Rite Aid to believe the inventory had been purchased by J. Finn Industries, not the real buyers. The government alleged Findling received at least $127.7 million from the real buyers of the surplus inventory but, with Foster's help, only provided $98.6 million of that amount to Rite Aid, leaving Findling approximately $29.1 million in profits from the scheme. The government also alleged that Findling kicked back approximately $5.7 million of the $29.1 million to Foster.Foster admitted his role during the guilty plea stage of the trial. He voluntarily surrendered $2.9 million in cash he had received from Findling over the life of the conspiracy. Foster had stored the cash in three 5-gallon paint containers in his Phoenix, Arizona, garage.Assume you are the director of internal auditing at Rite Aid and discover the surplus inventory scheme. You know that Rite Aid has a comprehensive corporate governance system that complies with the requirements of Sarbanes-Oxley and the company has a strong ethics foundation. Moreover, the internal controls are consistent with the COSO framework.1. To encourage various groups to come forward and report fraud, Dodd-Frank extended whistle-blowing privileges and rewards to which of the following?A. Internal auditors.B. External auditors.C. The CEO.D. All of these are correct.2. Whistleblowers who meet the criteria are eligible to receive an award based on what was collected as a result of the monetary sanctions. This can vary from_________.a. 1 to 10 percent.b. 10 to 30 percent.c. 15 to 35 percent.d. 1 to 50 percent, depending on the magnitude of the fraud. What important social issue does Kate Chopin's "The Story of an Hour" primarily focus on? you walk 6 block east, 2 blocks north, 3 blocks west and then 2 blocks north. the total distance you travel is blocks What was the effect of the repeated lines on the previous slide?