Answer:
64
Step-by-step explanation:
[tex]\sqrt[3]{512} = 8\\8x8 = 64[/tex]
26.3 times 1.2 please do with explanation worth 15 points
Answer - It’s 31.56
Step-by-step explanation: You just do regular multiplication and then add the decimal point
If m and n are positive integers and m^2 - n^2 = 9, which of the following could be the value of
n?
A) 1
B) 16
C) 9
D) 4
Answer:
4
Problem:
If m and n are positive integers and m^2 - n^2 = 9, which of the following could be the value of
n?
A) 1
B) 16
C) 9
D) 4
Step-by-step explanation:
One approach would be to plug in the choices and see.
If n=1, then we have m^2-1=9.
This would give m^2=10 after adding 1 on both sides. There is no integer m when squared would give us 10. ( Square root of 9 is a decimal )
If n=16, then we would have m^2-256=9.
This would give m^2=265 after adding 256 on both sides. There is no integer m when squared would give us 265. ( Square root of 265 is a decimal )
If n=9, then we would have m^2-81=9.
This would give m^2=90 after adding 81 on both sides. There is no integer m when squared would give us 90. ( Square root of 90 is a decimal )
If n=4, then we would have m^2-16=9.
This would give m^2=25 after adding 16 on both sides. There is an integer m when squared would give us 25. ( Square root of 25 is a 5)
Plz help I’ll mark u
Answer:
SAS=side angle side
there is two side and one angle
Answer:
SAS theorem
explanation:
Question 5 Multiple Choice Worth 1 points)
(01.03 MC)
Bunny Hill Ski Resort charges $35 for ski rental and $10 an hour to ski. Black Diamond Ski Resort charges $40 for ski rental and $5 an hour to ski. Create an equation to determine at what point
the cost of both ski slopes is the same.
Answer:
Bunny Hill Ski Resort:
y = 10x + 35
Diamond Ski Resort:
y = 5x + 40
Point where the cost is the same:
(1, 45)
Step-by-step explanation:
The question tells us that:
$35 and $40 are initial fees
$10 and $5 are hourly fees
This means that x and y will equal:
x = number of hours
y = total cost of ski rental after a number of hours
So we can form these 2 equations:
y = 10x + 35
y = 5x + 40
Now we are going to use System of Equations to find what point the cost of both ski slopes is the same.
Because they both equal y, we can set the equations equal to each other:
10x + 35 = 5x + 40
And we use basic algebra to solve for x:
10x + 35 = 5x + 40
(subtract 5x from both sides)
5x + 35 = 40
(subtract 35 from both sides)
5x = 5
(divide both sides by 5)
x = 1
Remember, x equals the number of hours.
That means when your rent out the skis for 1 hour, you will get the same price of $45 (you find the price by plugging in 1 into both of the equations)
Hope it helps (●'◡'●)
Help asap please!!..
Answer:
9x² - 4/3x + ¼
Step-by-step explanation:
(3x - ½)²
(3x - ½)(3x -½)
9x² - ⅔x - ⅔x + ¼
9x² - 4/3x + ¼
What is the rate of change of the line on the graph
Answer:
A. ¼
Step-by-step explanation:
Rate of change (m) = [tex] \frac{y_2 - y_1}{x_2 - x_1} [/tex]
Using two points on the line, (4, 1) and (-4, -1), find the rate of change using the formula stated above:
Where,
[tex] (4, 1) = (x_1, y_1) [/tex]
[tex] (-4, -1) = (x_2, y_2) [/tex]
Plug in the values
Rate of change (m) = [tex] \frac{-1 - 1}{-4 - 4} [/tex]
= [tex] \frac{-2}{-8} [/tex]
= [tex] \frac{1}{4} [/tex]
Rate of change = ¼
Marla scored 70% on her last unit exam in her statistics class. When Marla took the SAT exam, she scored at the 70th percentile in mathematics. Explain the difference in these two scores.
Answer:
The difference is that Marla's exam in her statistics class was graded by percent of correct answers, in her case 70%, while the SAT is graded into a curve, taking other students' grades also into account, and since she scored in the 70th percentile, Marla scored better than 70% of the students.
Step-by-step explanation:
Marla scored 70% on her last unit exam in her statistics class.
This means that in her statistics class, Marla got 70% of her test correct.
When Marla took the SAT exam, she scored at the 70th percentile in mathematics.
This means that on the SAT exam, graded on a curve, Marla scored better than 70% of the students.
Explain the difference in these two scores.
The difference is that Marla's exam in her statistics class was graded by percent of correct answers, in her case 70%, while the SAT is graded into a curve, taking other students' grades also into account, and since she scored in the 70th percentile, Marla scored better than 70% of the students.
Help asap!!!!!!
A.
B.
C.
D.
Answer:
Function has a minimum value
So, f(x)=0 and f(4)=-3
f(x)= - 1/2x^2+4x-11f(4)=-3 and f(x)=-x+4
f(4)=0
OAmalOHopeO
We roll a pair dice 10,000 times. Estimate the probability that the number of times we get snake eyes (two ones) is between 280 and 300.
Answer:
0.3573 = 35.7%
Step-by-step explanation:
We roll a pair of dice 10,000 times so the mean and standard deviation is,
μ = 10000/36 =277.7 σ = [tex]\sqrt{10000*\frac{35}{36^{2} } } =16.4[/tex]
[tex]z_{1}[/tex] = (280 - 277.7)/16.4 = .14
[tex]z_{2}[/tex] = (300 - 277.7)/16.4 = 1.35
Probablity (range)
0.3573
Z(low)=0.14 0.555766357
Z(upper)=1.36 0.91304644
the campus bookshop sells exercise books and textbooks, where, the total cost of 10 exercise books and 2 textbooks is $1400.00. One also finds the total cost of 3 textbooks and 30 exercise books is $3000. Then determine the price of 1 exercise book?
Answer:
The price of 1 exercise book is $122.45.
Step-by-step explanation:
This question is solved using a system of equations.
I am going to say that:
x is the price of one exercise book.
y is the price of one textbook.
Total cost of 10 exercise books and 2 textbooks is $1400.00.
This means that:
[tex]10x + 2y = 1400[/tex]
Since we want x:
[tex]2y = 1400 - 10x[/tex]
[tex]y = 700 - 5x[/tex]
One also finds the total cost of 3 textbooks and 30 exercise books is $3000.
This means that:
[tex]3x + 30y = 3000[/tex]
Since [tex]y = 700 - 5x[/tex]
[tex]3x + 30(700 - 5x) = 3000[/tex]
[tex]3x + 21000 - 150x = 3000[/tex]
[tex]147x = 18000[/tex]
[tex]x = \frac{18000}{147}[/tex]
[tex]x = 122.45[/tex]
The price of 1 exercise book is $122.45.
solve 5x^2-2=-12 by taking the square root
Answer:
[tex]x = \sqrt{-2} = 2i[/tex]
Step-by-step explanation:
[tex]5x^2-2=-12[/tex]
[tex]5x^2 =-10[/tex]
[tex]x^2 =-2[/tex]
[tex]x = \sqrt{-2} = 2i[/tex]
Find, correct to the nearest degree, the three angles of the triangle with the given ven
A(1, 0, -1), B(4, -3,0), C(1, 2, 3)
o
CAB =
O
LABC =
O
LBCA =
9514 1404 393
Answer:
∠CAB = 86°
∠ABC = 43°
∠BCA = 51°
Step-by-step explanation:
This can be done a couple of different ways (as with most math problems). We can use the distance formula to find the side lengths, then the law of cosines to find the angles. Or, we could use the dot product. In the end, the math is about the same.
The lengths of the sides are given by the distance formula.
AB² = (4-1)² +(-3-0)² +(0-(-1)) = 16 +9 +1 = 26
BC² = (1-4)² +(2-(-3))³ +(3-0)² = 9 +25 +9 = 43
CA² = (1-1)² +(0-2)² +(-1-3)² = 4 +16 = 20
From the law of cosines, ...
∠A = arccos((AB² +CA² -BC²)/(2·AB·CA)) = arccos((26 +20 -43)/(2√(26·20)))
∠A = arccos(3/(4√130)) ≈ 86°
∠B = arccos((AB² +BC² -AC²)/(2·AB·BC)) = arccos((26 +43 -20)/(2√(26·43)))
∠B = arccos(49/(2√1118)) ≈ 43°
∠C = arccos((BC² +CA² -AB²)/(2·BC·CA)) = arccos((43 +20 -26)/(2√(43·20)))
∠C = arccos(37/(4√215)) ≈ 51°
The three angles are ...
∠CAB = 86°
∠ABC = 43°
∠BCA = 51°
_____
Additional comment
This sort of repetitive arithmetic is nicely done by a spreadsheet.
what is the difference between the products of the digits in 425 and the sum of the digits in the numeral 92784
Answer: 10
Step-by-step explanation:
4 x 2 x 5 = 40
9 + 2 + 7 + 8 + 4 = 30
40 - 30 = 10
= 10
hello can anyone help with this?
Answer:
<2 and <13 are alternate exterior angles.
In simple form, alternate exterior angles are the opposite angle on the opposing parallel line. So, to make you understand better, <4 and <15 are alternate exterior angles.
Hope this helps :D
On a map of a town, 3 cm represents 150 m. Two points in the town are 1 km apart. How far apart are the two points on the map?
Answer:
5000 km
Step-by-step explanation:
We are given that
3 cm represents on a map of a town=150 m
Distance between two points=1 km
We have to find the distance between two points on the map.
3 cm represents on a map of a town=150 m
1 cm represents on a map of a town=150/3 m
1 km=1000 m
1 m=100 cm
[tex]1km=1000\times 100=100000 cm[/tex]
100000 cm represents on a map of a town
=[tex]\frac{150}{3}\times 100000[/tex] m
100000 cm represents on a map of a town=5000000 m
100000 cm represents on a map of a town
=[tex]\frac{5000000}{1000} km[/tex]
100000 cm represents on a map of a town=5000 km
Hence, two points are separated by 5000 km on the map.
In a random sample of students at a university, stated that they were nonsmokers. Based on this sample, compute a confidence interval for the proportion of all students at the university who are nonsmokers. Then find the lower limit and upper limit of the confidence interval.
Answer:
(0.8165 ; 0.8819)
Lower boundary = 0.8165
Upper boundary = 0.8819
Step-by-step explanation:
Given :
Sample proportion. Phat = x/ n = 276/ 325 = 0.8492
Confidence interval :
Phat ± margin of error
Margin of Error = Zα/2* [√Phat(1 - Phat) / n]
Phat ± Zα/2* [√Phat(1 - Phat) / n]
The 90% Z critical value is = 1.645
0.8492 ± 1.645*[√0.8492(1 - 0.8492) / 325)
0.8492 ± 1.645*[√0.8492(0.1508) / 325]
0.8492 ± 1.645*√0.0003940288
0.8492 ± 0.0326535
Lower boundary = 0.8492 - 0.0326535 = 0.8165
Upper boundary = 0.8492 + 0.0326535 = 0.8819
Confidence interval = (0.8165 ; 0.8819)
stuck on this problem
Answer:
B
Step-by-step explanation:
When we reflect something across the y axis, the y axis stays the same but the x values change by a factor of -1.
B is the Answer
Answer:
c. switch the x-values and y-values in the table
Step-by-step explanation:
For any table or graph reflection over the line y=x
The rule is (x,y) ----> (y,x)
f(x) is reflected over the line y=x, so the coordinates of f(x) becomes
(-2,-31) becomes (-31,-2)
(-1,0) becomes (0,-1)
(1,2) becomes (2,1)
(2,33) becomes (33,2)
As per the rule, we switch the x-values and y-values in the table
For reflection over the line y=x , the coordinate becomes
(-31,-2)
(0,-1)
(2,1)
(33,2)
Prove that the square of an odd number is always 1 more than a multiple of 4
Answer:
By these examples you are able to see that the square of an odd number is always 1 more than a multiple of 4.
Step-by-step explanation:
For examples,
Let's consider squares of 3, 11, 25, 37 and 131.
[tex] {3}^{2} = 9[/tex]
8 is a multiple of 4, and 9 is more than 8.
[tex] {11}^{2} = 121[/tex]
120 is a multiple of 4 and 121 is one more than it.
[tex] {25}^{2} = 625[/tex]
624 is a multiple of 4 and 625 is one more than it.
[tex] {37}^{2} = 1369[/tex]
1368 is a multiple of 4 and 1369 is one more than 1368.
[tex] {131}^{2} = 17161[/tex]
17160 is a multiple of 4.
Complete the following statement.
Answer:
Hello dude
[tex] - 1 \frac{21}{24} + 1 \frac{22}{24} = + \frac{1}{24} [/tex]
so it's positive
HAVE A NİCE DAY
Step-by-step explanation:
GREETİNGS FROM TURKEY ツ
Can someone help me out?
Answer:
Terms:
-5x4-x-1Like Terms:
-5x and -x4 and -1Coefficients:
The coefficient of -5x is -5.The coefficient of -x is -1.Constants:
4-1You simplify the expression by combining like terms:
-5x + 4 - x - 1 = -6x + 5
(7b - 4) + (-2b + a + 1) = 7b - 4 - 2b + a + 1 = 5b + a - 3
Lolz please help me I would gladly appreciate it
Pentagon has sum of 540°
19.Find dy/dx
of the function y = f(x) definded by x²+xy-y2 = 4.
Answer:
2x + y
Step-by-step explanation:
x² + xy - y² = 4
→ Remember the rule, bring the power down then minus 1
2x + y
Can you help me answer this question? Screenshot is added.
9514 1404 393
Answer:
(c)
Step-by-step explanation:
[tex]\displaystyle\sqrt[3]{xy^5}\sqrt[3]{x^7y^{17}}=\sqrt[3]{x^{1+7}y^{5+17}}=\sqrt[3]{x^6x^2y^{21}y}=\sqrt[3]{x^6y^{21}}\sqrt[3]{x^2y}\\\\=\boxed{x^2y^7\sqrt[3]{x^2y}}[/tex]
Х/10 is between 1/5
and 0.6. What could the value of x be?
Answer:
2 < x < 6
Step-by-step explanation:
x/10
1/5 = 2/10
.6 = 6/10
2 < x < 6
simplify 6 x + 3y /3
Answer:
6x + y
Step-by-step explanation:
6x + 3y/3
6x + y
Answer:
6x + y
Step-by-step explanation:
6x + 3y / 3
cancel 3y by 3
6x + y
SOMEONE PLS HELP ME I WILL MAKE U BRAINLIST ! In a survey sample of 83 respondents, about 30.1 percent of the samplework less than 40 hours per week. What is the estimated standard error for the group of respondents who work 40 hours or more per week?
(*round to two decimal places)
Answer:
Answer = √(0.301 × 0.699 / 83) ≈ 0.050
A 68 percent confidence interval for the proportion of persons who work less than 40 hours per week is (0.251, 0.351), or equivalently (25.1%, 35.1%)
Step-by-step explanation:
√(0.301 × 0.699 / 83) ≈ 0.050
We have a large sample size of n = 83 respondents. Let p be the true proportion of persons who work less than 40 hours per week. A point estimate of p is because about 30.1 percent of the sample work less than 40 hours per week. We can estimate the standard deviation of as . A confidence interval is given by , then, a 68% confidence interval is , i.e., , i.e., (0.251, 0.351). is the value that satisfies that there is an area of 0.16 above this and under the standard normal curve.The standard error for a proportion is √(pq/n), where q=1−p.
Hope this answer helps you :)
Have a great day
Mark brainliest
How would I solve the question below? In what order would I solve it?
4 ⋅ 3 + 2 ⋅ 9 − 40
Step-by-step explanation:
You would multiply 4 and 3, and 2 and 9 separately, then add them, then subtract 40. Remember PEMDAS.
(4*3) + (2*9) - 40
12 + 18 - 40
-10
Hope that helps
Agan Interior Design provides home and office decorating assistance to its customers. In normal operation, an average of 2.5 customers arrive each hour. One design consultant is available to answer customer questions and make product recommendations. The consultant averages 10 minutes with each customer. Compute the operating characteristics of the customer waiting line, assuming Poisson arrivals and exponential service times. Round your answers to four decimal places. Do not round intermediate calculations.
Answer:
the operating characteristics have been solved below
Step-by-step explanation:
we have an average of 10 minutes per customers
μ = mean service rate = 60/10 = 6 customers in one hr
the average number of customers that are waiting in line
mean arrival λ = 2.5
μ = 6
[tex]Lq = \frac{2.5^{2} }{6(6-2.5)} \\[/tex]
= 6.25/21
= 0.2976
we calculate the average number of customers that are in the system
[tex]L=Lq+\frac{2.5}{6}[/tex]
= 0.2976+0.4167
= 0.7143
we find the average time that a customer spends in waiting
[tex]Wq=\frac{0.2976}{2.5}[/tex]
= 0.1190 hours
when converted to minutes = 0.1190*60 = 7.1424 minutes
[tex]0.1190+\frac{1}{6}[/tex]
=0.2857
probability that arriving customers would wait for the service
= 2.5÷6 = 0.4167
Young invested GH150,000 and 2.5% per annum simple interest. how long will it take this amount to. yield an interest of GH11,250,00
Answer: 3 years
Step-by-step explanation:
Interest is calculated as:
= (P × R × T) / 100
where
P = principal = 150,000
R = rate = 2.5%.
I = interest = 11250
T = time = unknown.
I = (P × R × T) / 100
11250 = (150000 × 2.5 × T)/100
Cross multiply
1125000 = 375000T
T = 1125000/375000
T = 3
The time taken will be 3 years
Cathy is planning to take the Certified Public Accountant Examination (CPA exam). Records kept by the college of business from which she graduated indicate that 73% of students who graduated pass the CPA exam. Assume that the exam is changed each time it is given. Let n = 1, 2, 3, ... represent the number of times a person takes the CPA test until the first pass. (Assume the trials are independent).
(a) What is the probability that Cathy passes the CPA test on the first try?
(b) What is the probability that Cathy passes the CPA test on the second or third try?
Answer:
The responses to these question can be defined as follows:
Step-by-step explanation:
For point a:
[tex]\to P(1) = 0.73[/tex]
For point b:
[tex]\to P(2\ or\ 3) = P(2) + P(3)[/tex]
[tex]= 0.27 \times 0.73 + 0.27\times 0.27\times0.73\\\\=0.1971+0.1971\times 0.27\\\\=0.1971+0.053217\\\\=0.250317[/tex]