Answer:
See below.
Step-by-step explanation:
It depends on the sentence or phrase. If the sentence includes an operation of numbers or something related to comparing numbers, then maybe it can be translated into symbols. If the sentence or phrase has nothing to do with quantities, or operations or comparison of quantities, then probably it can't.
Examples:
1) The boy went for a walk.
There's nothing to translate into symbols in this case.
2) I had $10 in my bank account, then I deposited n dollars. Now I have $30 in my account.
In this case, I can translate the sentence into an equation.
10 + n = 30
A work shift for an employee at Starbucks consists of 8 hours (whole).
What FRACTION (part) of the employees work shift is represented by 2
hours? *
Answer:
1/4 of an hour
Step-by-step explanation:
2 divided by 8 = 1/4
Answer:
1/4
Step-by-step explanation:
A whole shift is 8 hours
Part over whole is the fraction
2/8
Divide top and bottom by 2
1/4
Complete the statement to describe the expression abc+def
The expression consists of ____ terms,and each term contains___ factors
Answer:
3 each
Step-by-step explanation:
The answer is already on this site
Use the set of ordered pairs to determine whether the relation is a one-to-one function. {(−6,21),(−23,21),(−12,9),(−24,−10),(−2,22),(−22,−22)}
Answer:
the relation is not one-to-one.
Step-by-step explanation:
it can't because every number is in the 4th quadrant.
Which geometric sequence has a first term equal to 55 and a common ratio of -5? {-55, 11, -2.2, 0.44, …} {55; 275; 1,375; 6,875; …} {55, 11, 2.2, 0.44, …} {55; -275; 1,375; -6,875; …}
Answer:
The answer is 55, -275, 1375, -6875......
Step-by-step explanation:
Given two points M & N on the coordinate plane, find the slope of MN , and state the slope of the line perpendicular to MN . (there's two questions)
1) M(9,6), N(1,4)
2) M(-2,2), N(4,-4)
Answer:
Problem 1) [tex] m = \dfrac{1}{4} [/tex] [tex] slope_{perpendicular} = -4 [/tex]
Problem 2) [tex] m = \dfrac{1}{3} [/tex] [tex] slope_{perpendicular} = -3 [/tex]
Step-by-step explanation:
[tex] slope = m = \dfrac{y_2 - y_1}{x_2 - x_1} [/tex]
[tex] slope_{perpendicular} = \dfrac{-1}{m} [/tex]
Problem 1) M(9,6), N(1,4)
[tex] slope = m = \dfrac{6 - 4}{9 - 1} = \dfrac{2}{8} = \dfrac{1}{4} [/tex]
[tex] slope_{perpendicular} = \dfrac{-1}{\frac{1}{4}} = -4 [/tex]
Problem 2) M(-2,2), N(4,-4)
[tex] slope = m = \dfrac{4 - 2}{4 - (-2)} = \dfrac{2}{6} = \dfrac{1}{3} [/tex]
[tex] slope_{perpendicular} = \dfrac{-1}{\frac{1}{3}} = -3 [/tex]
Find the derivative of the function f(x) = (x3 - 2x + 1)(x – 3) using the product rule.
then by distributing and make sure they are the same answer
Answer:
Step-by-step explanation:
Hello, first, let's use the product rule.
Derivative of uv is u'v + u v', so it gives:
[tex]f(x)=(x^3-2x+1)(x-3)=u(x) \cdot v(x)\\\\f'(x)=u'(x)v(x)+u(x)v'(x)\\\\ \text{ **** } u(x)=x^3-2x+1 \ \ \ so \ \ \ u'(x)=3x^2-2\\\\\text{ **** } v(x)=x-3 \ \ \ so \ \ \ v'(x)=1\\\\f'(x)=(3x^2-2)(x-3)+(x^3-2x+1)(1)\\\\f'(x)=3x^3-9x^2-2x+6 + x^3-2x+1\\\\\boxed{f'(x)=4x^3-9x^2-4x+7}[/tex]
Now, we distribute the expression of f(x) and find the derivative afterwards.
[tex]f(x)=(x^3-2x+1)(x-3)\\\\=x^4-2x^2+x-3x^3+6x-4\\\\=x^4-3x^3-2x^2+7x-4 \ \ \ so\\ \\\boxed{f'(x)=4x^3-9x^2-4x+7}[/tex]
Hope this helps.
Do not hesitate if you need further explanation.
Thank you
A height is labeled on the triangle below.
Which line segment shows the base that corresponds to the given height of the triangle
Option A,B,C
Answer:
A
Step-by-step explanation:
The height is always perpinducular to the base. The height here is perpendicular to line segment A.
Answer:
A
Step-by-step explanation:
For lunch, Kile can eat a sandwich with either ham or a bologna and with or without cheese. Kile also has the choice of drinking water or juice with his sandwich. The total number of lunches Kile can choose is
Answer:
8
Step-by-step explanation:
Ham with or without cheese-2 choices
Bologna with or without cheese-2 choices
Bologna with cheese with water or juice-2 choices
Bologna without cheese with juice or water-2 choices
Ham with cheese with juice or water -2 choices
Ham without cheese with juice or water -2 choices
2+2+2+2=8
Kile has 8 choices for lunch
Which expression is equivalent to x+y+x+y+3(y+5)
Answer:
2x + 5y + 15
Step-by-step explanation:
add like terms
(x+x) + (y+y)+3y+15
2x+2y+3y+15
2x + 5y + 15
i hope this helps!
One way to calculate the target heart rate of a physically fit adult during exercise is given by the formula h=0.8( 220−x ), where h is the number of heartbeats per minute and x is the age of the person in years. Which formula is equivalent and gives the age of the person in terms of the number of heartbeats per minute?
Answer:
The answer is:
C. [tex]\bold{x = -1.25h+220}[/tex]
Step-by-step explanation:
Given:
[tex]h=0.8( 220-x )[/tex]
Where [tex]h[/tex] is the heartbeats per minute and
[tex]x[/tex] is the age of person
To find:
Age of person in terms of heartbeats per minute = ?
To choose form the options:
[tex]A.\ x=176-h\\B.\ x=176-0.8h\\C.\ x=-1.25h+220\\D.\ x=h-0.8220[/tex]
Solution:
First of all, let us have a look at the given equation:
[tex]h=0.8( 220-x )[/tex]
It is value of [tex]h[/tex] in terms of [tex]x[/tex].
We have to find the value of [tex]x[/tex] in terms of [tex]h[/tex].
Let us divide the equation by 0.8 on both sides:
[tex]\dfrac{h}{0.8}=\dfrac{0.8( 220-x )}{0.8}\\\Rightarrow \dfrac{1}{0.8}h=220-x\\\Rightarrow 1.25h=220-x[/tex]
Now, subtracting 220 from both sides:
[tex]\Rightarrow 1.25h-220=220-x-220\\\Rightarrow 1.25h-220=-x[/tex]
Now, multiplying with -1 on both sides:
[tex]-1.25h+220=x\\OR\\\bold{x = -1.25h+220}[/tex]
So, the answer is:
C. [tex]\bold{x = -1.25h+220}[/tex]
Find the vertex of this parabola:
y = x2 + 2x - 3
Answer:
(-1,-4)
Step-by-step explanation:
The equation of a parabola os written as: ax^2+bx+c
This parabola's equation is x^2+2x-3
● a= 1
● b= 2
● c = -3
The coordinates of the parabola are: ( (-b/2a) ; f(-b/2a) )
● -b/2a = -2/2 = -1
● f(-b/2a) = (-1)^2+2×(-1)-3=1-2-3= -4
So the vertex coordinates are (-1,-4)
Answer:
-1+2X
Step-by-step explanation:
How many feet are in 26 miles, 1, 155 feet? Enter only the number. Do not include units
The solution is
Answer:
137, 280 feet
Step-by-step explanation:
There are 5,280 feet in a mile.
26 * 5,280 = 137,280
There are 137, 280 feet in 26 miles.
There are 137,280 feet in 26 miles.
What is the unitary method?The unitary method is a method for solving a problem by the first value of a single unit and then finding the value by multiplying the single value.
We know that there are 5,280 feet in a mile.
So, the solution would be;
26 x 5,280 = 137,280
Thus, There are 137,280 feet in 26 miles.
Learn more about the unitary method;
https://brainly.com/question/23423168
#SPJ2
Find the surface area of the figure. ft
Answer:
486
Step-by-step explanation:
Hello!
To find the surface area of a cube we use the equation
[tex]S = 6a^{2}[/tex]
S is the surface area
a is the side length
Put what we know into the equation
[tex]S = 6*9^{2}[/tex]
Solve
S = 6 * 81
S = 486
Hope this Helps!
Answer:486[tex]ft^{2}[/tex]
Step-by-step explanation:
surface area= 6[tex]l^{2}[/tex]
l=9
sa=6 ([tex]9^{2}[/tex])= 6 x 81=486[tex]ft^{2}[/tex]
What number represents the same amount as 8 hundreds + 10 tens + 0 ones? i was told 810 is incorrect
Answer:
900
Step-by-step explanation:
You have 10 tens not 1 ten
8 * 100 + 10 * 10 + 0*1
800 + 100 + 0
900
Answer:
[tex]900[/tex]
Step-by-step explanation:
[tex]8 \times 100 + 10 \times 10 + 0 \times 1 \\ 800 + 100 + 0 \\ = 900[/tex]
To find ∫ (x − y) dx + (x + y) dy directly, we must parameterize C. Since C is a circle with radius 2 centered at the origin, then a parameterization is the following. (Use t as the independent variable.)
x = 2 cos(t)
y = 2 sin(t)
0 ≤ t ≤ 2π
With this parameterization, find the followings
dy=_____
dx=_____
Answer:
Step-by-step explanation:
Hello, please consider the following.
[tex]x=x(t)=2cos(t)\\\\dx=\dfrac{dx}{dt}dt=x'(t)dt=-2sin(t)dt[/tex]
and
[tex]y=y(t)=2sin(t)\\\\dy=\dfrac{dy}{dt}dt=y'(t)dt=2cos(t)dt[/tex]
Hope this helps.
Do not hesitate if you need further explanation.
Thank you
The values of dx and dy are give as -2sin(t)dt and 2cos(t)dt respectively. The answer to the given problem can be stated as,
dy = 2cos(t)dt
And, dx = -2sin(t)dt.
What is the integration of a function?The integration can be defined as the inverse operation of differentiation. If a function is the integration of some function f(x) , then differentiation of that function is f(x).
The given integral over C is ∫ (x − y) dx + (x + y) dy.
And, the parameters for C are as follows,
x = 2cos(t)
y = 2sin(t)
0 ≤ t ≤ 2π
Now, on the basis of these parameters dx and dy can be found as follows,
x = 2cos(t)
Differentiate both sides with respect to t as follows,
dx/dt = 2d(cos(t))/dt
=> dx/dt = -2sin(t)
=> dx = -2sin(t)dt
And, y = 2sin(t)
Differentiate both sides with respect to t as follows,
dy/dt = 2d(sin(t))/dt
=> dy/dt = 2cos(t)
=> dy = 2cos(t)dt
Hence, the value of dx and dy as per the given parameters is -2sin(t)dt and 2cos(t)dt respectively.
To know more about integration click on,
https://brainly.com/question/18125359
#SPJ2
There are two pitchers of lemonade in the fridge there are 1.5 gallons of lemonade in 1 pitcher and 9 quarts of lemonade in the other pitcher how many cups of lemonade are there in the fridge
Answer:
52 cups
Step-by-step explanation:
1 gallon = 4 quarts
1.5 gallons = 6 quarts
6 + 9 = 13 quarts of lemonade in the fridge.
1 quart = 4 cups
13 quarts = 4 × 13 = 52 cups
52 cups of lemonade are in the fridge.
I would really appreciate it if you would mark me brainliest!
Have a blessed day!
Answer:
60 cups
Step-by-step explanation:
1 gal = 16 cups
1 quart = 4 cups
16 cups
1.5 gal x ------------- = 24 cups
1 gal.
4 cups
9 quarts x ----------- = 36 cups
1 quart
number of cups of lemonade in the fridge = 24 cups + 36 cups = 60 cups
Solve for x: 7 > x/4
Answer: x < 28
Step-by-step explanation:
estimate the number 4576
Nearest 1000: 5000
Nearest 100: 4600
Nearest 10: 4580
Hope that helped!!! k
------------------------------------------------------------------------------------------
Determine two pairs of polar coordinates for the point (4, -4) with 0° ≤ θ < 360°.
Answer:
[tex] \sqrt{4 {}^{2} + ( - 4) {}^{2} } [/tex]
[tex] \sqrt{32} [/tex]
and the angle
[tex] \tan( \alpha ) = - 4 \div 4 = - 1[/tex]
and since the sin component is -ve, we have our angle on 4th quadrant, which equals 315 degrees
Options:
Determine two pairs of polar coordinates for the point (-4, 4) with 0° ≤ θ < 360°. (5 points)
Group of answer choices
(4 , 135°), (-4 , 315°)
(4 , 45°), (-4 , 225°)
(4 , 315°), (-4 , 135°)
(4 , 225°), (-4 , 45°)
Step-by-step explanation:
The guy asking forgot to provide the options you can comment the awnswe in the comments just do it before brainly turns off comments to try and prevent people from learning
A sequence of 1 million iid symbols(+1 and +2), Xi, are transmitted through a channel and summed to produce a new random variable W. Assume that the probability of transmitting a +1 is 0.4. Show your work
a) Determine the expected value for W
b) Determine the variance of W
Answer:
E(w) = 1600000
v(w) = 240000
Step-by-step explanation:
given data
sequence = 1 million iid (+1 and +2)
probability of transmitting a +1 = 0.4
solution
sequence will be here as
P{Xi = k } = 0.4 for k = +1
0.6 for k = +2
and define is
x1 + x2 + ................ + X1000000
so for expected value for W
E(w) = E( x1 + x2 + ................ + X1000000 ) ......................1
as per the linear probability of expectation
E(w) = 1000000 ( 0.4 × 1 + 0.6 × 2)
E(w) = 1600000
and
for variance of W
v(w) = V ( x1 + x2 + ................ + X1000000 ) ..........................2
v(w) = V x1 + V x2 + ................ + V X1000000
here also same as that xi are i.e d so cov(xi, xj ) = 0 and i ≠ j
so
v(w) = 1000000 ( v(x) )
v(w) = 1000000 ( 0.24)
v(w) = 240000
which expression have a value of 2/3
A: 8+(24 divided by 12) X 4
B:8+24 divided by (12X4)
C: 8+24 divided 12X4
D: (8+24) divided (12X4)
A population of bacteria P is changing at a rate of dP/dt = 3000/1+0.25t where t is the time in days. The initial population (when t=0) is 1000. Write an equation that gives the population at any time t. Then find the population when t = 3 days.
Answer:
- At any time t, the population is:
P = 375t² + 3000t + 1000
- At time t = 3 days, the population is:
P = 13,375
Step-by-step explanation:
Given the rate of change of the population of bacteria as:
dP/dt = 3000/(1 + 0.25t)
we need to rewrite the given differential equation, and solve.
Rewriting, we have:
dP/3000 = (1 + 0.25t)dt
Integrating both sides, we have
P/3000 = t + (0.25/2)t² + C
P/3000 = t + 0.125t² + C
When t = 0, P = 1000
So,
1000/3000 = C
C = 1/3
Therefore, at any time t, the population is:
P/3000 = 0.125t² + t + 1/3
P = 375t² + 3000t + 1000
At time t = 3 days, the population is :
P = 375(3²) + 3000(3) + 1000
= 3375 + 9000 + 1000
P = 13,375
An agriculture company is testing a new product that is designed to make plants grow taller. This can be thought of as a hypothesis test with the following hypotheses. H0: The product does not change the height of the plant. Ha: The product makes the plant grow taller. Is the following an example of a type I or type II error? The sample suggests that the product makes the plant grow taller, but it actually does not change the height of the plant.
Answer:
hi
Step-by-step explanation:
hji
Please help with this
Answer:
B) x=80°
Step-by-step explanation:
This is a hexagon, so it has interior angles equaling 720°. (N-2)*180
So the equation would be
78+134+136+132+2x+x=720
480+3x=720
3x=720-480
3x=240
x=80°
If the function Q(t)=4e-0.00938t models the quantity (in kg) of an element in a storage unit after t years, how long will it be before the quantity is less than 1.5kg? Round to the nearest year.
Answer:
105 years
Step-by-step explanation:
Given the function :
Q(t) = 4e^(-0.00938t)
Q = Quantity in kilogram of an element in a storage unit after t years
how long will it be before the quantity is less than 1.5kg
Inputting Q = 1.5kg into the equation:
1.5 = 4e^(-0.00938t)
Divide both sides by 4
(1.5 / 4) = (4e^(-0.00938t) / 4)
0.375 = e^(-0.00938t)
Take the ln of both sides
In(0.375) = In(e^(-0.00938t))
−0.980829 = -0.00938t
Divide both sides by 0.00938
0.00938t / 0.00938 = 0.980829 /0.00938
t = 104.56599
When t = 104.56599 years , the quantity in kilogram of the element in storage will be exactly 1.5kg
Therefore, when t = 105 years, the quantity of element in storage will be less than 1.5kg
Hi I need help with 800×200= 8 × ______ hundreds=_____ Hundreds = _______ plz help me
Answer:
800×200= 8 × 200 hundreds= 1600 Hundreds = 160000
nishan bought 7 marbles Rs.x per each. if he gave Rs.100 to the shop keeper. what is the balance he would receive?
9.3.2 Listed below are body temperatures from five different subjects measured at 8 AM and again at 12 AM. Find the values of d overbar and s Subscript d. In general, what does mu Subscript d represent? Temperature (degrees Upper F )at 8 AM 98.1 98.8 97.3 97.5 97.9 Temperature (degrees Upper F )at 12 AM 98.7 99.4 97.7 97.1 98.0 Let the temperature at 8 AM be the first sample, and the temperature at 12 AM be the second sample. Find the values of d overbar and s Subscript d.
Answer:
[tex]\frac{}{d}[/tex] = −0.26
[tex]s_{d}[/tex] = 0.4219
Step-by-step explanation:
Given:
Sample1: 98.1 98.8 97.3 97.5 97.9
Sample2: 98.7 99.4 97.7 97.1 98.0
Sample 1 Sample 2 Difference d
98.1 98.7 -0.6
98.8 99.4 -0.6
97.3 97.7 -0.4
97.5 97.1 0.4
97.9 98.0 -0.1
To find:
Find the values of [tex]\frac{}{d}[/tex] and [tex]s_{d}[/tex]
d overbar ( [tex]\frac{}{d}[/tex]) is the sample mean of the differences which is calculated by dividing the sum of all the values of difference d with the number of values i.e. n = 5
[tex]\frac{}{d}[/tex] = ∑d/n
= (−0.6 −0.6 −0.4 +0.4 −0.1) / 5
= −1.3 / 5
[tex]\frac{}{d}[/tex] = −0.26
s Subscript d is the sample standard deviation of the difference which is calculated as following:
[tex]s_{d}[/tex] = √∑([tex]d_{i}[/tex] - [tex]\frac{}{d}[/tex])²/ n-1
[tex]s_{d}[/tex] =
√ [tex](-0.6 - (-0.26))^{2} + (-0.6 - (-0.26))^{2} + (-0.4 - (-0.26))^{2} + (0.4-(-0.26))^{2} + (-0.1 - (-0.26))^{2} / 5-1[/tex]
= √ (−0.6 − (−0.26 ))² + (−0.6 − (−0.26))² + (−0.4 − (−0.26))² + (0.4 −
(−0.26))² + (−0.1 − (−0.26))² / 5−1
= [tex]\sqrt{\frac{0.1156 + 0.1156 + 0.0196 + 0.4356 + 0.0256}{4} }[/tex]
= [tex]\sqrt{\frac{0.712}{4} }[/tex]
= [tex]\sqrt{0.178}[/tex]
= 0.4219
[tex]s_{d}[/tex] = 0.4219
Subscript d represent
μ[tex]_{d}[/tex] represents the mean of differences in body temperatures measured at 8 AM and at 12 AM of population.
Select the correct answer. If , which statement is true? if g(x) = f(1/3x)
A. The graph of function f is stretched vertically by a scale factor of 3 to create the graph of function g.
B. The graph of function f is stretched horizontally by a scale factor of 3 to create the graph of function g.
C. The graph of function f is compressed horizontally by a scale factor of to create the graph of function g.
D. The graph of function f is compressed vertically by a scale factor of to create the graph of function g.
Answer:
B. The graph of function f is stretched horizontally by a scale factor of 3 to create the graph of function g.
Step-by-step explanation:
The rules for linear transformations are that
g(x) = a·f(b·(x-c)) +d
stretches the graph vertically by a factor of "a" (before the shift)
compresses the graph horizontally by a factor of "b" (before the shift)
shifts it to the right by amount "c"
shifts it up by amount "d".
Your equation has b=1/3, so the graph is compressed by a factor of 1/3, which is equivalent to a stretch by a factor of 3.
The appropriate choice of description is ...
b) the graph of g(x) is horizontally stretched by a factor of 3
Answer:
B
Step-by-step explanation:
Correct on Plato
Find the doubling time of an investment earning 8% interest if interest is compounded continuously. The doubling time of an investment earning 8% interest if interest is compounded continuously is ____ years.
Answer:
Step-by-step explanation:
Using FV = PV(1 + r)^n where FV = future value, PV = present value, r = interest rate per period, and n = # of periods
1/PV (FV) = (PV(1 + r^n)1/PV divide by PV
ln(FV/PV) = ln(1 + r^n) convert to natural log function
ln(FV/PV) = n[ln(1 + r)] by simplifying
n = ln(FV/PV) / ln(1 + r) solve for n
n = ln(2/1) / ln(1 + .08) solve for n, letting FV + 2, PV = 1 and rate = 8% or .08 compound annually
n = 9
n = ln(2/1) / ln(1 + .08/12) solve for n, letting FV + 2, PV = 1 and rate = .08/12 compound monthly
n = 104 months or 8.69 years
n = ln(2/1) / ln(1 + .08/365) solve for n, letting FV + 2, PV = 1 & rate = .08/365 compound daily
n = 3163 days or 8.67 years
Alternatively
A = P e ^(rt)
Given that r = 8%
= 8/100
= 0.08
2 = e^(0.08t)
ln(2)/0.08 = t
0.6931/0.08 = t
t= 8.664yrs
t = 8.67yrs
Which ever approach you choose to use,you will still arrive at the same answer.