Answer:
D
Explanation:
used to provide energy to the body
The energy source for active transport is ________ , while the force driving facilitated diffusion is ________.
Answer:
JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ
Explanation:
The Hardy-Weinberg principle is written as the equation p2 + 2pq + q2 = 1. What does prepresent?
Explanation:
Hardy-Weinberg principle can be illustrated mathematically with the equation: p2+2pq+q2 = 1, where 'p' and 'q' represent the frequencies of alleles. ... The principle behind it is that, in a population where certain conditions are met (see below), the frequency of the alleles in the gene pool will be constant.
In pea plants, flowers are either white or purple: the purple color is produced by pigments called anthocyanins. The production of anthocyanins is a two-step process: the first step is controlled by the C gene and the second by the P gene. Both genes must produce functional proteins for anthocyanin to be produced. This is an example of:
Answer:
This is an example of gene translation.
Explanation:
Gene translation refers to the genetic process where a set of genes is used to create amino acids that will be responsible for creating a protein needed to perform some function or characteristic of the organism. In the question above, we can see that anthocyanin, responsible for the pigment of flowers, is created through the work of proteins that are created from gebes C and P. This is an example of gene translation, as it presents the formation of proteins regulated by genes.
The organisms in Kingdom Monera do not have complete cell. They are called ____________.
A. autotrophs
B. Prokaryotic
C. Eukaryotic
D. Heterotrophs
Answer:
The correct answer is - A. prokaryotic.
Explanation:
Monera is the kingdom that has not complete cell organization as eukaryotic cells and shows similar cell organization like prokaryotic cells with no clear nuclear membrane and a unicellular body.
The true bacteria and cyanobacteria are the member of this group. The nature of the organisms is either autotrophic or heterotrophic. Thus, the correct answer is - prokaryotic.
The organisms in Kingdom Monera do not have complete cell. They are called
B. prokaryotic
que contiene el condón?
Answer:
plss translate it in English so i Can easyly answer it.
Explanation:
Thank you.
Cystic fibrosis is most common in individuals of Northern European descent, affecting 1 in 3200 newborns. Assuming that these alleles are at Hardy-Weinberg equilibrium, what is the frequency of the disease-causing CFTR alleles in this population
Answer:
0.0177
Explanation:
Cystic fibrosis is an autosomal recessive disease, thereby an individual must have both copies of the CFTR mutant alleles to have this disease. The Hardy-Weinberg equilibrium states that p² + 2pq + q² = 1, where p² represents the frequency of the homo-zygous dominant genotype (normal phenotype), q² represents the frequency of the homo-zygous recessive genotype (cystic fibrosis phenotype), and 2pq represents the frequency of the heterozygous genotype (individuals that carry one copy of the CFTR mutant allele). Moreover, under Hardy-Weinberg equilibrium, the sum of the dominant 'p' allele frequency and the recessive 'q' allele frequency is equal to 1. In this case, we can observe that the frequency of the homo-zygous recessive condition for cystic fibrosis (q²) is 1/3200. In consequence, the frequency of the recessive allele for cystic fibrosis can be calculated as follows:
1/3200 = q² (have two CFTR mutant alleles) >>
q = √ (1/3200) = 1/56.57 >>
- Frequency of the CFTR allele q = 1/56.57 = 0.0177
- Frequency of the dominant 'normal' allele p = 1 - q = 1 - 0.0177 = 0.9823
Which of the following is the best definition of anaerobic respiration?
Answer:
C.
Explanation:
Anaerobic respiration is a process of cellular respiration. In this type of cellular process of respiration, oxygen is not needed to break down complex food substances such as glucose. Energy is generated in the process which is used for other cell functions.
Therefore, the answer is C.
Which is true if energy in ecosystem
Explanation:
energy flows in only one direction through an ecosystem.
Which of the following sentences uses commas correctly? Carol was the last person out of the house wasn't, she? Carol was the last person, out of the house wasn't she? Carol was the last person out of the house, wasn't she? Carol, was the last person out of the house wasn't she?
Answer:
The third sentence......................
Explanation:
The correct sentence is Carol was the last person out of the house, wasn't she?
Why is a comma important?Commas help your reader figure out which words go together in a sentence and which parts of your sentences are most important. Using commas incorrectly may confuse the reader, signal ignorance of writing rules, or indicate carelessness.
What are the Rules of commas?Comma Rules
Use a comma after an introductory phrase or clause. Use commas before and after a parenthetical phrase or clause. Use a comma to separate two independent clauses linked by a coordinating conjunction (and, but, for, nor or, so, yet) Use a comma to separate items in a series.Learn more about the use of commas here https://brainly.com/question/2251561
#SPJ2
Why do you think so many people seem to not care about the environmental issues we are facing?
Answer:
People are not aware of their causes and impacts.
Explanation:
First, people just seem to think that a little bit of harm won't impact the world at all, but that little bit for everyone adds up and the magnitude is a lot worse than people would imagine. Next, even if they/we do know the scale, they don't know how to help or are not interested enough to try and fix the problem. We all think that we won't be able to help enough to fix the issue.
In the aerobic metabolism of proteins by chemoheterotrophs (e.g., E. coli and you):____.
A. Proteins are broken down into smaller peptides and eventually into amino acids by proteases (peptidases).
B. Certain amino acids may be converted to pyruvate.
C. Certain amino acids may be converted to intermediates (e.g. oxaloacetate) of the Krebs cycle.
D. Certain amino acids may be converted to acetyl-CoA.
E. All of the above are true.
Dark skin ( a result of increased melanin production in equatorial populations), is likely a response to ultraviolet radiation because UV radiation causes:
Answer: Skin cancer
Explanation:
Melanin is a pigment derived from an amino called acid tyrosine. The most common form of melanin is called eumelanin, which is a polymer of dihydroxyindole carboxylic acids and their reduced forms. When a person is exposed to the ultraviolet light (UV) from the sun, the melanocytes will produce eumelanin to prevent the skin from burning and damage to the cell nuclei (where DNA is found) of the epidermis. This melanin production causes the skin to darken. The eumelanin in the skin then acts as a natural sunscreen by blocking the damaging effects of sunlight. So, skin darkens when exposed UV light, thus providing greater protection when needed by producing more eumelanin, but it also becomes more likely to develop melanoma, which is a type of skin cancer. This is because UV rays damage the DNA of skin cells. The DNA (deoxyribonucleic acid) is the genetic material that has the instructios to the growth and functioning of an organisms). Skin cancers begin when eumelanin protection is not sufficient and this damage affects the DNA of the genes that control the growth of skin cells. This results in a tumor, which is the uncontrolled growth of cells (in this case, skin cells) because there will be a mutation in DNA that affects the function of the cells.
the flowers of the ____ bloom with sunrise and close with sunset.
Explain why it is not advisable for two sickle cell carriers to marry.
Answer:
it results in pleiotropic effect and caused death of an offspring.
What is your opinion about climate change ?
Which of the following was not part of the original cell theory, but was added later after we learned more about cellular structure?
A. all cells have the same basic composition
B. all cells come from pre-existing cells
C. all cells have a nucleus
D. all cells have the same exact structures.
Answer:
c oooooooooooookkkkkkkkkkk
define cell and atom
Answer:
Cell is made of molecules whereas atoms make up molecules. Cells are the smallest functioning unit in a living organism.
Atom is the smallest unit of matter. Usually, a cell is on the micrometer scale while an atom is in the angstrom scale.
OAmalOHopeO
we should conserve environment give reason
Answer:
for healthy living and long life
Write an experiment to show that sunlight is necessary for photosynthesis.
Answer:
Explanationwe have two or three plants, they both get the same water every day they both get the same amount of soil and fertilizer, one is without sunlight and one is with, after a 2 weeks our results will be found
hope this helps
Describe the normal process of osteogenesis for compact and spongy bone using the three different types of bone cells and their functions
Answer:
Osteoblasts penetrate the disintegrating cartilage and replace it with spongy bone. This forms a primary ossification center. Ossification continues from this center toward the ends of the bones. After spongy bone is formed in the diaphysis, osteoclasts break down the newly formed bone to open up the medullary cavity.
When body temperature increases, thermoreceptors are stimulated and send nerve signals to the CNS. The CNS sends motor signals to sweat glands, which attempt to reduce body temperature. This is an example of a __________ reflex.a. organ.b. stretch.c. withdrawal.d. visceral.
Answer:
d. visceral.
Explanation:
The visceral reflex is one that happens autonomously in the body, aiming to maintain the balance of the body through quick responses to some specific impulses. An example of a visceral reflex is the reduction in body temperature with the release of sweat from the sweat glands.
The visceral reflexes are controlled by the autonomic nervous system, using the sympathetic and parasympathetic nervous system.
Vasopressin works on
Answer:
To treat diabetes insipidus, which is caused by a lack of this naturally occurring pituitary hormone in the body. And used to treat or prevent certain conditions of the stomach after surgery or during abdominal x-rays.
Which best explains why sawdust burns more quickly than a block of wood of equal mass under the same conditions?
The molecules move more quickly in the sawdust than in the block of wood.
The pressure of oxygen is greater on the sawdust.
More molecules in the sawdust can collide with oxygen molecules.
Oxygen is more concentrated near the sawdust than the block of wood.
Which best explains why, under the same circumstances, sawdust burns more fast than a wood block of equivalent mass The molecules in the sawdust move more swiftly than those in the
A thermal burn is what?
An injury to the skin or other organic tissue known as a burn is one that is primarily brought on by heat, radiation, radioactivity, electricity, friction, or contact with chemicals. When hot liquids, heated solids, or flames come in touch with the skin and other tissues, part or all of the skin's cells are destroyed (flame burns)
What various sorts of Burns are there?
This tiny burn merely penetrates the skin's surface layer (epidermis). It might hurt and make you red. second-degree burn Both the epithelium and the next layer of skin are affected by this kind of burn (dermis). It could result in skin that is swollen, red, white, or patchy. The pain may become intense and blisters may form. Scarring may result from second-degree burns that are deep.
To know more about burns visit:
https://brainly.com/question/14152400
#SPJ1
Answer:
C.More molecules in the sawdust can collide with oxygen molecules.
Explanation:
real
The membrane potential that occurs when neurotransmitters bind to their receptors is called _______.
Answer:
action potential
Explanation:
Transmission of a signal within a neuron (from dendrite to axon terminal) is carried by a brief reversal of the resting membrane potential called an action potential. When neurotransmitter molecules bind to receptors located on a neuron's dendrites, ion channels open.
Answer:
I guess action potential is the correct one
7. Shawn plotted the data in a bar graph with two bars: one representing the number of bees per colony in the control cages and the other representing the number of bees per colony in the cages exposed to the fungicide. If the results support the hypothesis that fungicides harm bee development, what would you expect this bar graph to show? Describe the expected pattern in a few sentences.
Answer:
The first bar increases in length as compared to the second bar.
Explanation:
The length of the bar of control cages in graph increases because the number of bees per colony increases while on the other hand, the length of the bar of the cage that is exposed to fungicides decreases because the bees are negatively affected from the application of fungicides. They act abnormal in behaviour and adversely affected the reproduction of bees that greatly affected its population.
Which of the cardiac cell characteristics describes the
ability to initiate an electrical impulse?
Answer:
The correct answer is: automaticity.
Explanation:
Cardiac muscle has several properties. These properties are: automaticity (given by the pacemaker cells), conductivity (meaning that each cardiac cell can transmit the electrical impulse to the next cardiac cells), contractility (like other types of muscles, cardiac muscle cells can contract), and irritability (each cell can contract on its own without the external stimuli).
Cardiac pacemaker cells are the ones with the capacity to initiate the electrical impulse by creating rhythmic impulses called action potentials, and thus directly regulating heart rate.
Pacemaker cells are located in the sinoatrial (SA) node, in the upper portion of the right atrial wall. In these cells, depolarization of the cardiac muscle begins, and the electrical impulse generated by it is transmitted to the atrioventricular (AV) node, the His bundle and then the Purkinje fibers - this order of events is necessary for the correct contraction of the heart to occur. All of these structures are part of the Conduction System of the heart.
Many of the phenotypes of DiGeorge syndrome have been traced back to one of the genes that is in the deleted region, TBX1. Some of the evidence for the important role of TBX1 in DiGeorge syndrome came from individuals who have some of the symptoms of DiGeorge syndrome without having the typical deletion. Closer examination showed that some of these individuals had SNV in the TBX1 gene. Which of the following SNVS would be most likely to create a similar phenotype to the deletion?
A. A variant in the promoter region of TBX1 that increases its expression
B. A variant in the intronic region of TBX1 that does not affect splicing. X
C. A nonsense variant near the 5' end of the TBX1 gene.
D. A silent variant near the 5' end of the TBX1 gene.
Answer:
D. A silent variant near the 5' end of the TBX1 gene.
Explanation:
TBX1 gene is wild type human being. It gives instructions for making protein called T-box 1. It plays an important role in tissue formation and organs during embryonic development.
What is a group of microscopic unicellular organisms
What are three techniques that can be used to show that the electron transport chain is found on the matrix side of the inner mitochondrial membrane. Select all that apply.
Answer:
Explanation:
Step 1: Generating a Proton Motive Force
The hydrogen carriers (NADH and FADH2) are oxidised and release high energy electrons and protons
The electrons are transferred to the electron transport chain, which consists of several transmembrane carrier proteins
As electrons pass through the chain, they lose energy – which is used by the chain to pump protons (H+ ions) from the matrix
The accumulation of H+ ions within the intermembrane space creates an electrochemical gradient (or a proton motive force)
Step Two: ATP Synthesis via Chemiosmosis
The proton motive force will cause H+ ions to move down their electrochemical gradient and diffuse back into matrix
This diffusion of protons is called chemiosmosis and is facilitated by the transmembrane enzyme ATP synthase
As the H+ ions move through ATP synthase they trigger the molecular rotation of the enzyme, synthesising ATP
Step Three: Reduction of Oxygen
In order for the electron transport chain to continue functioning, the de-energised electrons must be removed
Oxygen acts as the final electron acceptor, removing the de-energised electrons to prevent the chain from becoming blocked
Oxygen also binds with free protons in the matrix to form water – removing matrix protons maintains the hydrogen gradient
In the absence of oxygen, hydrogen carriers cannot transfer energised electrons to the chain and ATP production is halted
Below is a mature eukaryotic mRNA transcript. Translate this mRNA into a protein, also showing the tRNA anticodons involved. Make sure you start and end translation in the right place! Label the ends of the polypeptide chain as N and C terminus.
mRNA: 5'GMUUACAUGCGGCUCAGUUGAGGCGAAAAAA 3'
tRNA:
amino acids:
Answer:
mRNA ⇒ 5'GMU UAC AUG CGG CUC AGU UGA GGC GAA AAA A 3'
tRNA ⇒ UAC GCC GAG UCA ACU
protein ⇒ N - MET ARG LEU SER Stop - C
Explanation:
In protein synthesis, the ribosome reads mRNA in the 5´ to 3´ direction, and, according to the codons that are being readen, tRNA transfers the correct amino acids to build the polypeptide chain. A codon is a short sequence of three nucleotides that store the genetic information for the aminoacids´ assembly. Each tRNA has two important sites. One of them that couples with the codon of the mRNA molecule, named anticodon. The other site couples with an amino acid. tRNA allows amino acids to align according to the nucleotidic sequence in the mRNA molecule.
Once the new amino acid links to the growing peptidic chain, the binding between the amino acid and the tRNA molecule breaks. The tRNA is now free to join another amino acid and repeat the cycle.
The protein is synthesized from the amino terminus to the carboxy terminus, while the added amino acids to the chain are coded by a codon formed by three bases in the mRNA. mARNs also have a start and end codon that are the signals of the synthesis initiation and finish. When the ribosome reaches the end codon, protein synthesis is over.
Each of the codons represents one of the 20 amino acids used to build the protein. Each amino acid can be codified by more than one codon. From the total 64 codons, 61 codify amino acids, and one of them is a start codon. The left three codons are stopping translation points.
The codons indicating the initiation or stop points during the translation process are:
• The start codon AUG is the most common sequence used by eukaryotic cells and places near the 5´extreme of the molecule.
• The end codons are UAA, UAG, UGA.
Protein synthesis initiates in the AUG start codon -Metionin-, and ends when reaching either of the stop codons UAA, UAG, UGA.
In the exposed example we have the following mRNA.
mRNA ⇒ 5'GMU UAC AUG CGG CUC AGU UGA GGC GAA AAA A 3'
Codons are separated by a space left between them. AUG is the start codon placed near the 5´ extreme. UGA is the end codon near the 3´ extreme. tRNA will add amino acids from the start codon, not before.
tRNA ⇒ UAC GCC GAG UCA ACU
Anticodons are separated by a space left between them.
protein ⇒ N - MET ARG LEU SER Stop - C
Each mRNA codon codifies for an amino acid. The start codon codifies for methionine. AUG = Met, CGG = Arg, CUC = Leu, AGU = Ser, UGA = Stop codon. The amino terminus is represented as an N and the carboxy terminus is a C. The first extreme to be translated carries the amino-terminal group, while the other extreme carries the carboxy-terminus group.