5. The time for a certain female student to commute to SCSU is Normally Distributed with mean 46.3 minutes and standard deviation of 7.7 minutes. a. Find the probability her commuting time is less tha

Answers

Answer 1

The given information for a certain female student to commute to SCSU is normally distributed, with a mean of 46.3 minutes and a standard deviation of 7.7 minutes. We are to find the probability that her commute time is less than X minutes.

Let X be the commuting time of a certain female student to SCSU. Thus, X~N(46.3,7.7). Therefore, the required probability that her commute time is less than X minutes is P(X X) = P(Z (X - ) /. Here is the mean of commuting time, i.e., 46.3 minutes; is the standard deviation of commuting time, i.e., 7.7 minutes; and Z is the standard normal variable. Hence, we have to find the probability that the commuting time of a certain female student is less than X minutes, which means we have to find P(X X). P(X X) = P(Z  (X - ) / ) P(X  X) = P(Z  (X - 46.3) / 7.7). According to the Z-table, P(Z -0.97) = 0.166. Therefore, the probability of the student's commute being less than X minutes is P(X X) = P(Z (X - 46.3) / 7.7) = 0.166, which can be written as 16.6%. Therefore, there is a 16.6% probability that the commuting time of a certain female student is less than X minutes.

Therefore, the probability of a certain female student's commuting time being less than X minutes is P(X < X) = P(Z < (X - 46.3) / 7.7) = 0.166, which can be written as 16.6%. Thus, there is a 16.6% probability that the commuting time of a certain female student is less than X minutes.

To know more about commuting time visit:

brainly.com/question/28647883

#SPJ11


Related Questions

the algebraic expression for the phrase 4 divided by the sum of 4 and a number is 44+�4+x4​

Answers

The phrase "4 divided by the sum of 4 and a number" can be translated into an algebraic expression as 4 / (4 + x). In this expression,

'x' represents the unknown number. The numerator, 4, indicates that we have 4 units. The denominator, (4 + x), represents the sum of 4 and the unknown number 'x'. Dividing 4 by the sum of 4 and 'x' gives us the ratio of 4 to the total value obtained by adding 4 and 'x'.

This algebraic expression allows us to calculate the result of dividing 4 by the sum of 4 and any given number 'x'.

To know more about expression visit-

brainly.com/question/29162175

#SPJ11

I want number 3 question's solution
2. The exit poll of 10,000 voters showed that 48.4% of voters voted for party A. Calculate a 95% confidence level upper bound on the turnout. [2pts] 3. What is the additional sample size to estimate t

Answers

The 95% confidence level upper bound on the turnout is 0.503.

To calculate the 95% confidence level upper bound on the turnout when 48.4% of voters voted for party A in an exit poll of 10,000 voters, we use the following formula:

Sample proportion = p = 48.4% = 0.484,

Sample size = n = 10,000

Margin of error at 95% confidence level = z*√(p*q/n),

where z* is the z-score at 95% confidence level and q = 1 - p.

Substituting the given values, we get:

Margin of error = 1.96*√ (0.484*0.516/10,000) = 0.019.

Therefore, the 95% confidence level upper bound on the turnout is:

Upper bound = Sample proportion + Margin of error =

0.484 + 0.019= 0.503.

The 95% confidence level upper bound on the turnout is 0.503.

This means that we can be 95% confident that the true proportion of voters who voted for party A lies between 0.484 and 0.503.

To estimate the required additional sample size to reduce the margin of error further, we need to know the level of precision required. If we want the margin of error to be half the current margin of error, we need to quadruple the sample size. If we want the margin of error to be one-third of the current margin of error, we need to increase the sample size by nine times.

Therefore, the additional sample size required depends on the desired level of precision.

Learn more about confidence level visit:

brainly.com/question/22851322

#SPJ11

HW 3: Problem 17 Previous Problem List Next (1 point) The probability density function of XI, the lifetime of a certain type of device (measured in months), is given by 0 if x ≤21 f(x) = { 21 if x >

Answers

The probability density function (PDF) of XI, the lifetime of a certain type of device, is defined as follows:

f(x) = 0, if x ≤ 21

f(x) = 1/21, if x > 21

This means that for any value of x less than or equal to 21, the PDF is zero, indicating that the device cannot have a lifetime less than or equal to 21 months.

For values of x greater than 21, the PDF is 1/21, indicating that the device has a constant probability of 1/21 per month of surviving beyond 21 months.

In other words, the device has a deterministic lifetime of 21 months or less, and after 21 months, it has a constant probability per month of continuing to operate.

It's important to note that this PDF represents a simplified model and may not accurately reflect the actual behavior of the device in real-world scenarios.

It assumes that the device either fails before or exactly at 21 months, or it continues to operate indefinitely with a constant probability of failure per month.

To calculate probabilities or expected values related to the lifetime of the device, additional information or assumptions would be needed, such as the desired time interval or specific events of interest.

For similar question on probability density function.  

https://brainly.com/question/31430268  

#SPJ8

Find the mean of the number of batteries sold over the weekend at a convenience store. Round two decimal places. Outcome X 2 4 6 8 0.20 0.40 0.32 0.08 Probability P(X) a.3.15 b.4.25 c.4.56 d. 1.31

Answers

The mean number of batteries sold over the weekend calculated using the mean formula is 4.56

Using the probability table given

Outcome (X) | Probability (P(X))

2 | 0.20

4 | 0.40

6 | 0.32

8 | 0.08

Mean = (2 * 0.20) + (4 * 0.40) + (6 * 0.32) + (8 * 0.08)

= 0.40 + 1.60 + 1.92 + 0.64

= 4.56

Therefore, the mean number of batteries sold over the weekend at the convenience store is 4.56.

Learn more on mean : https://brainly.com/question/20118982

#SPJ1

Let X1, X2,..., Xn denote a random sample from a population with pdf f(x) = 3x ^2; 0 < x < 1, and zero otherwise.

(a) Write down the joint pdf of X1, X2, ..., Xn.

(b) Find the probability that the first observation is less than 0.5, P(X1 < 0.5).

(c) Find the probability that all of the observations are less than 0.5.

Answers

a) f(x₁, x₂, ..., xₙ) = 3x₁² * 3x₂² * ... * 3xₙ² is the joint pdf of X1, X2, ..., Xn.

b) 0.125 is the probability that all of the observations are less than 0.5.

c) (0.125)ⁿ is the probability that all of the observations are less than 0.5.

(a) The joint pdf of X1, X2, ..., Xn is given by the product of the individual pdfs since the random variables are independent. Therefore, the joint pdf can be expressed as:

f(x₁, x₂, ..., xₙ) = f(x₁) * f(x₂) * ... * f(xₙ)

Since the pdf f(x) = 3x^2 for 0 < x < 1 and zero otherwise, the joint pdf becomes:

f(x₁, x₂, ..., xₙ) = 3x₁² * 3x₂² * ... * 3xₙ²

(b) To find the probability that the first observation is less than 0.5, P(X₁ < 0.5), we integrate the joint pdf over the given range:

P(X₁ < 0.5) = ∫[0.5]₀ 3x₁² dx₁

Integrating, we get:

P(X₁ < 0.5) = [x₁³]₀.₅ = (0.5)³ = 0.125

Therefore, the probability that the first observation is less than 0.5 is 0.125.

(c) To find the probability that all of the observations are less than 0.5, we take the product of the probabilities for each observation:

P(X₁ < 0.5, X₂ < 0.5, ..., Xₙ < 0.5) = P(X₁ < 0.5) * P(X₂ < 0.5) * ... * P(Xₙ < 0.5)

Since the random variables are independent, the joint probability is the product of the individual probabilities:

P(X₁ < 0.5, X₂ < 0.5, ..., Xₙ < 0.5) = (0.125)ⁿ

Therefore, the probability that all of the observations are less than 0.5 is (0.125)ⁿ.

To know more about joint pdf refer here:

https://brainly.com/question/31064509

#SPJ11

Use the diagram below to answer the questions. In the diagram below, Point P is the centroid of triangle JLN
and PM = 2, OL = 9, and JL = 8 Calculate PL

Answers

The length of segment PL in the triangle is 7.

What is the length of segment PL?

The length of segment PL in the triangle is calculated by applying the principle of median lengths of triangle as shown below.

From the diagram, we can see that;

length OL and JM are not in the same proportion

Using the principle of proportion, or similar triangles rules, we can set up the following equation and calculate the value of length PL as follows;

Length OP is congruent to length PM

length PM is given as 2, then Length OP = 2

Since the total length of OL is given as 9, the value of missing length PL is calculated as;

PL = OL - OP

PL = 9 - 2

PL = 7

Learn more about midsegments of triangles here: https://brainly.com/question/7423948

#SPJ1

This graph shows the number of Camaros sold by season in 2016. NUMBER OF CAMAROS SOLD SEASONALLY IN 2016 60,000 50,000 40,000 30,000 20,000 10,000 0 Winter Summer Fall Spring Season What type of data

Answers

The number of Camaros sold by season is a discrete variable.

What are continuous and discrete variables?

Continuous variables: Can assume decimal values.Discrete variables: Assume only countable values, such as 0, 1, 2, 3, …

For this problem, the variable is the number of cars sold, which cannot assume decimal values, as for each, there cannot be half a car sold.

As the number of cars sold can assume only whole numbers, we have that it is a discrete variable.

More can be learned about discrete and continuous variables at brainly.com/question/16978770

#SPJ1

Find the values of x for which the series converges. (Enter your answer using interval notation.) Sigma n=1 to infinity (x + 2)^n Find the sum of the series for those values of x.

Answers

We have to find the values of x for which the given series converges. Then we will find the sum of the series for those values of x. The given series is as follows: the values of x for which the series converges are -3 < x ≤ -1 and the sum of the series for those values of x is given by -(x + 2)/(x + 1).

Sigma n=1 to infinity (x + 2)^n

To test the convergence of this series, we will use the ratio test.

Ratio test:If L is the limit of |a(n+1)/a(n)| as n approaches infinity, then:

If L < 1, then the series converges absolutely.

If L > 1, then the series diverges.If L = 1, then the test is inconclusive.

We will apply the ratio test to our series:

Limit of [(x + 2)^(n + 1)/(x + 2)^n] as n approaches infinity: (x + 2)/(x + 2) = 1

Therefore, the ratio test is inconclusive.

Now we have to check for which values of x, the series converges. If x = -3, then the series becomes

Sigma n=1 to infinity (-1)^nwhich is an alternating series that converges by the Alternating Series Test. If x < -3, then the series diverges by the Divergence Test.If x > -1,

then the series diverges by the Divergence Test.

If -3 < x ≤ -1, then the series converges by the Geometric Series Test.

Using this test, we get the sum of the series for this interval as follows: S = a/(1 - r)where a

= first term and r = common ratio The first term of the series is a = (x + 2)T

he common ratio of the series is r = (x + 2)The series can be written asSigma n=1 to infinity a(r)^(n-1) = (x + 2) / (1 - (x + 2)) = (x + 2) / (-x - 1)

Therefore, the sum of the series for -3 < x ≤ -1 is -(x + 2)/(x + 1)

Thus, the values of x for which the series converges are -3 < x ≤ -1 and the sum of the series for those values of x is given by -(x + 2)/(x + 1).

To know more about Values  visit :

https://brainly.com/question/30145972

#SPJ11

please write out so i can understand the steps!
Pupils Per Teacher The frequency distribution shows the average number of pupils per teacher in some states of the United States. Find the variance and standard deviation for the data. Round your answ

Answers

The frequency distribution table given is given below:Number of pupils per teacher1112131415Frequency31116142219

The formula to calculate the variance is as follows:σ²=∑(f×X²)−(∑f×X¯²)/n

Where:f is the frequency of the respective class.X is the midpoint of the respective class.X¯ is the mean of the distribution.n is the total number of observations

The mean is calculated by dividing the sum of the products of class midpoint and frequency by the total frequency or sum of frequency.μ=X¯=∑f×X/∑f=631/100=6.31So, μ = 6.31

We calculate the variance by the formula:σ²=∑(f×X²)−(∑f×X¯²)/nσ²

= (3 × 1²) + (11 × 2²) + (16 × 3²) + (14 × 4²) + (22 × 5²) + (19 × 6²) − [(631)²/100]σ²= 3 + 44 + 144 + 224 + 550 + 684 − 3993.61σ²= 1640.39Variance = σ²/nVariance = 1640.39/100

Variance = 16.4039Standard deviation = σ = √Variance

Standard deviation = √16.4039Standard deviation = 4.05Therefore, the variance of the distribution is 16.4039, and the standard deviation is 4.05.

Summary: We are given a frequency distribution of the number of pupils per teacher in some states of the United States. We have to find the variance and standard deviation. We calculate the mean or the expected value of the distribution to be 6.31. Using the formula of variance, we calculate the variance to be 16.4039 and the standard deviation to be 4.05.

Learn more about frequency click here:

https://brainly.com/question/254161

#SPJ11

it says what is the area of the shaded region 0.96
Find each of the shaded areas under the standard normal curve using a TI-84 Plus calculator Round the answers to at mast Part: 0/4 Part 1 of 4 The area of the shaded region is

Answers

The area of the shaded region is 0.02 (rounded to 0.0001).

The shaded region for a standard normal distribution curve has an area of 0.96.

To find the area of this region, we use the TI-84 Plus calculator and follow this steps:1. Press the "2nd" button and then the "Vars" button to bring up the "DISTR" menu.

2. Scroll down and select "2:normalcdf(".

This opens the normal cumulative distribution function.

3. Type in -10 and 2.326 to get the area to the left of 2.326 (since the normal distribution is symmetric).

4. Subtract this area from 1 to get the area to the right of 2.326.5.

Multiply this area by 2 to get the total shaded area.6. Round the answer to at least 0.0001.

Part 1 of 4 The area of the shaded region is 0.02 (rounded to 0.0001).

Part 2 of 4 To find the area to the left of 2.326, we enter -10 as the lower limit and 2.326 as the upper limit, like this: normalcy (-10,2.326)Part 3 of 4

This gives us an answer of 0.9897628097 (rounded to 10 decimal places).

Part 4 of 4 To find the area to the right of 2.326, we subtract the area to the left of 2.326 from 1, like this:1 - 0.9897628097 = 0.0102371903 (rounded to 10 decimal places).

Now we multiply this area by 2 to get the total shaded area:

0.0102371903 x 2 = 0.020474381 (rounded to 9 decimal places).

The area of the shaded region is 0.02 (rounded to 0.0001).

Know more about standard normal distribution curve here:

https://brainly.com/question/4079902

#SPJ11

Descriptive Statistics for Home Loan Repayments in mid-2020 Mean Standard Error Standard Deviation n 1301.91 22.77 161 50 Hint: For the first three questions you need to use the sample statistics (mea

Answers

In the given problem, the descriptive statistics for home loan repayments in mid-2020 are as follows: Mean = 1301.91Standard error = 22.77Standard deviation = 161n = 50Now, let's look at some of the basic terms that are used in statistics, which are Mean, Median, Mode, and Range.

Mean is the average value of the dataset. Median is the middle value of the dataset. Mode is the value that occurs most frequently in the dataset. Range is the difference between the maximum and minimum values of the dataset. Hence, answering the given questions:What is the Mean value of home loan repayments?The mean value of home loan repayments is 1301.91. It is the average value of the given dataset.What is the Standard Error of home loan repayments?The standard error of home loan repayments is 22.77.

It tells us how much the sample mean is likely to differ from the true population mean.What is the Standard Deviation of home loan repayments?The standard deviation of home loan repayments is 161. It tells us how much the data values deviate from the mean value. A higher standard deviation indicates that the data values are more spread out.How many observations (n) are included in the dataset?The number of observations (n) included in the dataset is 50. It tells us the sample size of the given dataset.

To know more about statistics visit:

https://brainly.com/question/31538429

#SPJ11

The number of trams X arriving at the St. Peter's Square tram stop every t minutes has the following probability mass function: (0.25t)* p(x) = -exp(-0.25t) for x = 0,1,2,... x! The probability that 1

Answers

The probability that 1 tram arrives can be represented by the function 0.25t * exp(-0.25t).

The probability mass function (PMF) for the number of trams X arriving at the St. Peter's Square tram stop every t minutes is given as:

p(x) = (0.25t)^x * exp(-0.25t) / x!

To find the probability that 1 tram arrives, we substitute x = 1 into the PMF:

p(1) = (0.25t)^1 * exp(-0.25t) / 1!

= 0.25t * exp(-0.25t)

The probability that 1 tram arrives can be represented by the function 0.25t * exp(-0.25t).

Please note that this probability depends on the value of t, which represents the time interval. Without a specific value of t, we cannot provide a numeric result for the probability. The function 0.25t * exp(-0.25t) represents the probability as a function of t, indicating how the probability of one tram arriving changes with different time intervals.

To calculate the specific probability, you need to substitute a particular value for t into the function 0.25t * exp(-0.25t) and evaluate the expression. This will give you the probability of one tram arriving at the St. Peter's Square tram stop within that specific time interval.

Learn more about probability here

https://brainly.com/question/25839839

#SPJ11

Please help! Solve for the dimensions (LXW)

Answers

Let's denote the width of the poster as 'w' (in inches).

According to the given information, the length of the poster is 10 more inches than three times its width. So, the length can be expressed as 3w + 10.

The area of a rectangle is calculated by multiplying its length by its width. In this case, the area is given as 88 square inches:

Area = length * width
88 = (3w + 10) * w

To solve for the dimensions of the poster, we can rewrite this equation in quadratic form:

3w^2 + 10w - 88 = 0

Now, we can solve this quadratic equation. There are different methods to solve it, such as factoring, completing the square, or using the quadratic formula. Let's use the quadratic formula in this case.

The quadratic formula states that for an equation of the form ax^2 + bx + c = 0, the solutions for x can be found using the formula:

x = (-b ± √(b^2 - 4ac)) / (2a)

In our equation, a = 3, b = 10, and c = -88. Substituting these values into the quadratic formula, we get:

w = (-10 ± √(10^2 - 4 * 3 * -88)) / (2 * 3)

Simplifying further:

w = (-10 ± √(100 + 1056)) / 6
w = (-10 ± √1156) / 6
w = (-10 ± 34) / 6

Now, we can calculate the two possible values of 'w':

w₁ = (-10 + 34) / 6 = 24 / 6 = 4
w₂ = (-10 - 34) / 6 = -44 / 6 = -22/3 ≈ -7.33

Since the width of the poster cannot be negative, we discard the negative value.

Therefore, the width of the poster is 4 inches.

To find the length, we can substitute the value of 'w' into the expression for the length:

Length = 3w + 10 = 3 * 4 + 10 = 12 + 10 = 22 inches

Hence, the dimensions of the poster are length = 22 inches and width = 4 inches.

Please, show work clearly and graph.
1. For a population of cans of cocoa beans marked "12 ounces", a sample of 36 cans was selected and the contents of each can was weighed. The sample revealed a mean of 11.9 ounces with a sample standa

Answers

The 95% confidence interval for the true mean weight of cocoa beans contained in cans is [11.824, 11.976] ounces.

Confidence level = 95%The degree of freedom (df) = n - 1 = 36 - 1 = 35

From the t-table, we can find the value of t for a 95% confidence level and 35 degrees of freedom:

t = 2.028Now, we can use the formula to calculate the confidence interval:

CI = X ± t(α/2) × s/√n

Where,CI = Confidence interval

X = Sample meant

= t-valueα

= significance level (1 - confidence level)

= 0.05/2

= 0.025s

= sample standard deviation

n = sample size

Putting the values, CI = 11.9 ± 2.028 × 0.21/√36

= 11.9 ± 0.076 ounce

Therefore, the 95% confidence interval for the true mean weight of cocoa beans contained in cans is [11.824, 11.976] ounces.

Know more about 95% confidence interval here:

https://brainly.com/question/29032399

#SPJ11

Question 1 An assumption of non parametric tests is that the distribution must be normal O True O False Question 2 One characteristic of the chi-square tests is that they can be used when the data are measured on a nominal scale. True O False Question 3 Which of the following accurately describes the observed frequencies for a chi-square test? They are always the same value. They are always whole numbers. O They can contain both positive and negative values. They can contain fractions or decimal values. Question 4 The term expected frequencies refers to the frequencies computed from the null hypothesis found in the population being examined found in the sample data O that are hypothesized for the population being examined

Answers

The given statement is false as an assumption of non-parametric tests is that the distribution does not need to be normal.

Question 2The given statement is true as chi-square tests can be used when the data is measured on a nominal scale. Question 3The observed frequencies for a chi-square test can contain fractions or decimal values. Question 4The term expected frequencies refers to the frequencies that are hypothesized for the population being examined. The expected frequencies are computed from the null hypothesis found in the sample data.The chi-square test is a non-parametric test used to determine the significance of how two or more frequencies are different in a particular population. The non-parametric test means that the distribution is not required to be normal. Instead, this test relies on the sample data and frequency counts.The chi-square test can be used for nominal scale data or categorical data. The observed frequencies for a chi-square test can contain fractions or decimal values. However, the expected frequencies are computed from the null hypothesis found in the sample data. The expected frequencies are the frequencies that are hypothesized for the population being examined. Therefore, option D correctly describes the expected frequencies.

To know more about FALSE statement  visit:

https://brainly.com/question/31965986

#SPJ11

dollar store discovers and returns $150 of defective merchandise purchased on november 1, and paid for on november 5, for a cash refund.

Answers

customers feel more confident in the products and services they buy, which can lead to more business opportunities.

Dollar store discovers and returns $150 of defective merchandise purchased on November 1, and paid for on November 5, for a cash refund. When it comes to business, customers' satisfaction is important. If they are not happy with your product or service, they can report a problem and demand a refund. It seems like the Dollar store has followed the same customer satisfaction policy. According to the given scenario, the defective merchandise worth $150 was purchased on November 1st and was paid on November 5th. After purchasing, Dollar store discovered that the products were not up to the mark. They immediately decided to refund the customer's payment of $150 in cash. This decision was made due to two reasons: to satisfy the customer and to maintain the company's reputation. These kinds of incidents help to improve customer satisfaction and build customer loyalty. In addition, customers feel more confident in the products and services they buy, which can lead to more business opportunities.

To know more about business visit:

https://brainly.com/question/15826604

#SPJ11

Find the missing value required to create a probability
distribution, then find the standard deviation for the given
probability distribution. Round to the nearest hundredth.
x / P(x)
0 / 0.07
1 / 2

Answers

The missing value required to complete the probability distribution is 2, and the standard deviation for the given probability distribution is approximately 1.034. This means that the data points in the distribution have an average deviation from the mean of approximately 1.034 units.

To determine the missing value and calculate the standard deviation for the probability distribution, we need to determine the probability for the missing value.

Let's denote the missing probability as P(2). Since the sum of all probabilities in a probability distribution should equal 1, we can calculate the missing probability:

P(0) + P(1) + P(2) = 0.07 + 0.2 + P(2) = 1

Solving for P(2):

0.27 + P(2) = 1

P(2) = 1 - 0.27

P(2) = 0.73

Now we have the complete probability distribution:

x  |  P(x)

---------

0  |  0.07

1  |  0.2

2  |  0.73

To compute the standard deviation, we need to calculate the variance first. The variance is given by the formula:

Var(X) = Σ(x - μ)² * P(x)

Where Σ represents the sum, x is the value, μ is the mean, and P(x) is the probability.

The mean (expected value) can be calculated as:

μ = Σ(x * P(x))

μ = (0 * 0.07) + (1 * 0.2) + (2 * 0.73) = 1.46

Using this mean, we can calculate the variance:

Var(X) = (0 - 1.46)² * 0.07 + (1 - 1.46)² * 0.2 + (2 - 1.46)² * 0.73

Var(X) = 1.0706

Finally, the standard deviation (σ) is the square root of the variance:

σ = √Var(X) = √1.0706 ≈ 1.034 (rounded to the nearest hundredth)

Therefore, the missing value to complete the probability distribution is 2, and the standard deviation is approximately 1.034.

To know more about probability distribution refer here:

https://brainly.com/question/29062095#

#SPJ11

find the value of dydx for the curve x=3te3t, y=e−9t at the point (0,1).

Answers

The value of the derivative dy/dx for the curve [tex]x = 3te^{(3t)}, y = e^{(-9t)}[/tex] at the point (0,1) is -3.

What is the derivative of y with respect to x for the given curve at the point (0,1)?

To find the value of dy/dx for the curve [tex]x = 3te^{(3t)}, y = e^{(-9t)}[/tex] at the point (0,1), we need to differentiate y with respect to x using the chain rule.

Let's start by finding dx/dt and dy/dt:

[tex]dx/dt = d/dt (3te^(3t))\\ = 3e^(3t) + 3t(3e^(3t))\\ = 3e^(3t) + 9te^(3t)\\dy/dt = d/dt (e^(-9t))\\ = -9e^(-9t)\\[/tex]

Now, we can calculate dy/dx:

dy/dx = (dy/dt) / (dx/dt)

At the point (0,1), t = 0. Substituting the values:

[tex]dx/dt = 3e^(3 * 0) + 9 * 0 * e^(3 * 0)\\ = 3[/tex]

[tex]dy/dt = -9e^(-9 * 0)\\ = -9\\dy/dx = (-9) / 3\\ = -3\\[/tex]

Therefore, the value of dy/dx for the curve[tex]x = 3te^(3t), y = e^(-9t)[/tex] at the point (0,1) is -3.

Learn more about derivatives using the chain rule

brainly.com/question/29077287

#SPJ11

The value of dy/dx for the curve x = 3te^(3t), y = e^(-9t) at the point (0,1) is -9.

What is the derivative of y with respect to x at the given point?

To find the value of dy/dx at the point (0,1), we need to differentiate the given parametric equations with respect to t and evaluate it at t = 0. Let's begin.

1. Differentiating x = 3te^(3t) with respect to t:

  Using the product rule, we get:

[tex]dx/dt = 3e\^ \ (3t) + 3t(3e\^ \ (3t))\\= 3e\^ \ (3t) + 9te\^ \ (3t)[/tex]

2. Differentiating y = e^(-9t) with respect to t:

  Applying the chain rule, we get:

[tex]dy/dt = -9e\^\ (-9t)[/tex]

3. Now, we need to find dy/dx by dividing dy/dt by dx/dt:

[tex]dy/dx = (dy/dt) / (dx/dt)\\= (-9e\^ \ (-9t)) / (3e\^ \ (3t) + 9te\^ \ (3t))[/tex]

To evaluate dy/dx at the point (0,1), substitute t = 0 into the expression:

[tex]dy/dx = (-9e\^ \ (-9(0))) / (3e\^ \ (3(0)) + 9(0)e\^ \ (3(0)))\\= (9) / (3)\\= -3[/tex]

Therefore, the value of dy/dx for the given curve at the point (0,1) is -3.

Learn more about Differentiate

brainly.com/question/31383100

#SPJ11

Income (in thousands rounded to nearest thousand) 35 8 10 23 24 15 8 8 16 9 26 10 40 11 20 12 7 13 23 14 7 15 8 16 19 17 15 18 25 19 9 20 8 21 22 22 36 23 31 24 28 25 18 For the income levels of famil

Answers

For the income levels of families as 35, 8, 10, 23, 24, 15, 8, 8, 16, 9, 26, 10, 40, 11, 20, 12, 7, 13, 23, 14, 7, 15, 8, 16, 19, 17, 15, 18, 25, 19, 9, 20, 8, 21, 22, 22, 36, 23, 31, 24, 28, 25, and 18, the mode is 8.

To find the mode, we identify the value(s) that appear most frequently in the given data set. In this case, the income levels of families are provided as a list.

1) Examine the data set.

Look for repeated values in the data set.

2) Identify the mode.

Determine which value(s) occur most frequently. The mode is the value that appears with the highest frequency.

In the given data set, the value 8 appears three times, which is more frequently than any other value. Therefore, the mode of the income levels is 8.

Hence, the mode of the income levels for the given list is 8.

To know more about income levels refer here:

https://brainly.com/question/30426207

#SPJ11

A soft-drink manufacturer purchases aluminum cans from an outside vendor. A random sample of 70 cans is selected from a large shipment, and each is tested for strength by applying an increasing load to the side of the can until it punctures. Of the 70 cans, 58 meet the specification for puncture resistance. Find a 95% confidence interval for the proportion of cans in the shipment that meet the specification. Round the answers to three decimal places The 95% confidence interval is

Answers

The 95% confidence interval for the proportion of cans in the shipment that meet the specification is approximately (0.753, 0.905).

We have,

To find the 95% confidence interval for the proportion of cans in the shipment that meet the specification, we can use the formula for a confidence interval for proportions.

The formula is:

Confidence Interval = Sample Proportion ± (Critical Value) x Standard Error

First, calculate the sample proportion:

Sample Proportion = Number of cans that meet specification / Sample Size

In this case, the number of cans that meet the specification is 58, and the sample size is 70:

Sample Proportion = 58 / 70 ≈ 0.829

Next, calculate the standard error:

Standard Error = sqrt((Sample Proportion x (1 - Sample Proportion)) / Sample Size)

Substituting the values:

Standard Error = √((0.829 x (1 - 0.829)) / 70) ≈ 0.039

Now, we need to find the critical value associated with a 95% confidence level.

For a two-tailed test, the critical value corresponds to an alpha level of 0.05 divided by 2, which gives us an alpha level of 0.025.

We can consult the standard normal distribution (Z-table) or use a calculator to find the critical value.

The critical value for a 95% confidence level is approximately 1.96.

Finally, we can calculate the confidence interval:

Confidence Interval = 0.829 ± (1.96) x 0.039

Calculating the expression within parentheses:

Confidence Interval = 0.829 ± 0.076

Therefore,

The 95% confidence interval for the proportion of cans in the shipment that meet the specification is approximately (0.753, 0.905).

Learn more about confidence intervals here:

https://brainly.com/question/32546207

#SPJ4

The average selling price of a smartphone purchased by a random sample of 31 customers was $318. Assume the population standard deviation was $30. a. Construct a 90% confidence interval to estimate th

Answers

The average selling price of a smartphone is estimated to be $318 with a 90% confidence interval.

a. Constructing a 90% confidence interval requires calculating the margin of error, which is obtained by multiplying the critical value (obtained from the t-distribution for the desired confidence level and degrees of freedom) with the standard error.

The standard error is calculated by dividing the population standard deviation by the square root of the sample size. With the given information, the margin of error can be determined, and by adding and subtracting it from the sample mean, the confidence interval can be constructed.

b. To calculate the margin of error, we use the formula: Margin of error = Critical value * Standard error. The critical value for a 90% confidence level and a sample size of 31 can be obtained from the t-distribution table. Multiplying the critical value with the standard error (which is the population standard deviation / square root of the sample size) will give us the margin of error. Adding and subtracting the margin of error to the sample mean will give us the lower and upper limits of the confidence interval, respectively.

To learn more about “standard deviation” refer to the https://brainly.com/question/475676

#SPJ11

The correct Question is: The average selling price of a smartphone purchased by a random sample of 31 customers was $318, assuming the population standard deviation was $30. a. Construct a 90% confidence interval to estimate the average selling price.

please help
5. The time for a certain female student to commute to SCSU is Normally Distributed with mean 46.3 minutes and standard deviation of 7.7 minutes. a. Find the probability her commuting time is less tha

Answers

The probability that the female student’s commuting time is less than 50 minutes is 0.645.

The computation is as follows:Let X be the commuting time of the female student. Then X ~ N (μ = 46.3, σ = 7.7)P (X < 50) = P [Z < (50 - 46.3) / 7.7] = P (Z < 0.48) = 0.645where Z is the standard normal random variable.To find the probability her commuting time is less than 50 minutes, we used the normal distribution function and the standard normal random variable. Therefore, the answer is 0.645.

We are given the mean and standard deviation of a certain female student’s commuting time to SCSU. The commuting time is assumed to be Normally Distributed. We are tasked to find the probability that her commuting time is less than 50 minutes.To solve this problem, we need to use the Normal Distribution Function and the Standard Normal Random Variable. Let X be the commuting time of the female student. Then X ~ N (μ = 46.3, σ = 7.7). Since we know that the distribution is normal, we can use the z-score formula to find the probability required. That is,P (X < 50) = P [Z < (50 - 46.3) / 7.7]where Z is the standard normal random variable. Evaluating the expression we have:P (X < 50) = P (Z < 0.48)Using a standard normal distribution table, we can find that the probability of Z being less than 0.48 is 0.645. Hence,P (X < 50) = 0.645Therefore, the probability that the female student’s commuting time is less than 50 minutes is 0.645.

The probability that the female student’s commuting time is less than 50 minutes is 0.645. The computation was done using the Normal Distribution Function and the Standard Normal Random Variable. Since the distribution was assumed to be normal, we used the z-score formula to find the probability required.

To know more about normal distribution visit:

brainly.com/question/15103234

#SPJ11

The probability of a certain female student's commuting time being less than 40 minutes is 0.205.

The probability of a certain female student's commuting time being less than 40 minutes is required to be found. Here, the commuting time follows a normal distribution with a mean of 46.3 minutes and a standard deviation of 7.7 minutes, given as, Mean = μ = 46.3 minutes Standard Deviation = σ = 7.7 minutes

Let's find the z-score for the given value of the commuting time using the formula for z-score, z = (x - μ) / σz = (40 - 46.3) / 7.7z = -0.818The area under the standard normal distribution curve that corresponds to the z-score of -0.818 can be found from the standard normal distribution table. From the table, the area is 0.2057.Thus, the probability of a certain female student's commuting time being less than 40 minutes is 0.205.

Thus, the probability of a certain female student's commuting time being less than 40 minutes is 0.2057.

To know more about normal distribution curve visit:

brainly.com/question/30783928

#SPJ11

PLEASE USE REFERENCE
TRIANGLES!
3. Find the exact value of the expression using reference triangles. Oxs (tan-1152-800-12) COS sec

Answers

The exact value of the expression using reference triangles is: `-0.53104 × 0.88386 × 1.13427 = -0.5151` (rounded to four decimal places). Hence, the solution to the given problem is `-0.5151`.

Given that the expression is `(tan-1152-800-12) COS sec

We need to find the exact value of the expression using reference triangles.

To find the exact value of the expression using reference triangles, we need to draw a reference triangle.

Here is the reference triangle:

We can find the length of adjacent side OX by using the Pythagorean theorem:```
OQ^2 = OP^2 + PQ^2
PQ = 800 meters (Given)
OP = 12 meters (Given)
OQ^2 = 800^2 + 12^2
OQ^2 = 640144
OQ = sqrt(640144)
OQ = 800.09 meters (rounded to two decimal places)
Now we can use this reference triangle to find the exact value of the expression.

Tan(-1152) = -tan(180°-1152°)=-tan(28°)=-0.53104 (rounded to five decimal places)Cos(28°)=0.88386 (rounded to five decimal places)Sec(28°)=1.13427 (rounded to five decimal places)

Therefore, the exact value of the expression using reference triangles is: `-0.53104 × 0.88386 × 1.13427 = -0.5151` (rounded to four decimal places). Hence, the solution to the given problem is `-0.5151`.

To know more about triangles visit:

https://brainly.com/question/2773823

#SPJ11

The difference in mean size between shells taken from sheltered and exposed reefs was found to be 2 mm. A randomisation test with 10,000 randomisations found that the absolute difference between group means was greater than or equal to 2 mm in 490 of the randomisations. What can we conclude? Select one: a. There was a highly significant difference between groups (p = 0.0049). b. There was a significant difference between groups (p= 0.49). c. There was no significant difference between groups (p= 0.49). d. There is not enough information to draw a conclusion. Oe. There was a marginally significant difference between groups (p = 0.049).

Answers

A randomization test with 10,000 randomizations found that the absolute difference between group means was greater than or equal to 2 mm in 490 of the randomizations. We can conclude that there was a marginally significant difference between groups (p = 0.049).

Randomization tests are used to examine the null hypothesis that two populations have similar characteristics. The hypothesis testing approach used in statistics is a formal method of decision-making based on data. In hypothesis testing, a null hypothesis and an alternative hypothesis are used to determine if the results of the data support the null hypothesis or the alternative hypothesis. A p-value is calculated and compared to a significance level (usually 0.05) to determine whether the null hypothesis should be rejected or not. In this scenario, the difference in mean size between shells taken from sheltered and exposed reefs was found to be 2 mm. A randomization test with 10,000 randomizations found that the absolute difference between group means was greater than or equal to 2 mm in 490 of the randomizations. Since the number of randomizations in which the absolute difference between group means was greater than or equal to 2 mm was less than the significance level (0.05), we can conclude that there was a marginally significant difference between groups (p = 0.049).

We can conclude that there was a marginally significant difference between groups (p = 0.049).

To know more about alternative hypothesis visit:

brainly.com/question/30535681

#SPJ11

We can reject the null hypothesis and conclude that there is a marginally significant difference between groups (p = 0.049)

To solve this problem, we need to perform a hypothesis test where:

Null Hypothesis, H0: There is no difference between the two groups.

Alternate Hypothesis, H1: There is a difference between the two groups.

Here, the mean difference between the two groups is given to be 2 mm. Also, we are given that 490 out of 10000 randomizations have an absolute difference between group means of 2 mm or more.

The p-value can be calculated by the following formula:

p-value = (number of randomizations with an absolute difference between group means of 2 mm or more) / (total number of randomizations)

Substituting the given values in the above formula, we get:

p-value = 490 / 10000p-value = 0.049

Therefore, the p-value is 0.049 which is less than 0.05. Hence, we can reject the null hypothesis and conclude that there is a marginally significant difference between groups (p = 0.049).

The correct option is (e) There was a marginally significant difference between groups (p = 0.049).

To know more about alternate hypothesis visit:

brainly.com/question/29511315

#SPJ11

22. (6 points) The time to complete a standardized exam is approximately Normal with a mean of 70 minutes and a standard deviation of 10 minutes. a) If a student is randomly selected, what is the probability that the student completes the exam in less than 45 minutes? b) How much time should be given to complete the exam so 80% of the students will complete the exam in the time given?

Answers

a) 0.0062 is the probability that the student completes the exam in less than 45 minutes.

b) 77.4 minutes should be given to complete the exam so 80% of the students will complete the exam in the time given.

a) The probability that a student completes the exam in less than 45 minutes can be calculated using the standard normal distribution. By converting the given values to z-scores, we can use a standard normal distribution table or a calculator to find the probability.

To convert the given time of 45 minutes to a z-score, we use the formula: z = (x - μ) / σ, where x is the given time, μ is the mean, and σ is the standard deviation. Substituting the values, we get z = (45 - 70) / 10 = -2.5.

Using the standard normal distribution table or a calculator, we can find that the probability corresponding to a z-score of -2.5 is approximately 0.0062.

Therefore, the probability that a student completes the exam in less than 45 minutes is approximately 0.0062, or 0.62%.

b) To determine the time needed for 80% of the students to complete the exam, we need to find the corresponding z-score for the cumulative probability of 0.8.

Using the standard normal distribution table or a calculator, we find that the z-score corresponding to a cumulative probability of 0.8 is approximately 0.84.

Using the formula for z-score, we can solve for the time x: z = (x - μ) / σ. Rearranging the formula, we get x = μ + (z * σ). Substituting the values, we get x = 70 + (0.84 * 10) = 77.4.

Therefore, approximately 77.4 minutes should be given to complete the exam so that 80% of the students will complete it within the given time.

To know more about probability refer here:

https://brainly.com/question/30034780

#SPJ11

find the area enclosed by the polar curve r=72sinθ. write the exact answer. do not round.

Answers

The polar curve equation of r = 72 sin θ represents a with an inner loop touching the pole at θ = π/2 and an outer loop having the pole at θ = 3π/2.

To know more about scatter plot visit:

https://brainly.com/question/13984412

#SPJ11

Which headings correctly complete the chart?
a. x: turtles, y: crocodilians
b. x: crocodilians, y: turtles c. x: snakes, y: turtles
d. x: crocodilians, y: snakes

Answers

The headings that correctly complete the chart are x: snakes, y: turtles.

To determine the correct headings that complete the chart, we need to consider the relationship between the variables and their respective values. The chart is likely displaying a relationship between two variables, x and y. We need to identify what those variables represent based on the given options.

Option a. x: turtles, y: crocodilians:

This option suggests that turtles are represented by the x-values and crocodilians are represented by the y-values. However, without further context, it is unclear how these variables relate to each other or what the chart is measuring.

Option b. x: crocodilians, y: turtles:

This option suggests that crocodilians are represented by the x-values and turtles are represented by the y-values. Again, without additional information, it is uncertain how these variables are related or what the chart is representing.

Option c. x: snakes, y: turtles:

This option suggests that snakes are represented by the x-values and turtles are represented by the y-values. This combination of variables seems more plausible, as it implies a potential relationship or comparison between snakes and turtles.

Option d. x: crocodilians, y: snakes:

This option suggests that crocodilians are represented by the x-values and snakes are represented by the y-values. While this combination is also possible, it does not match the given options in the chart.

Considering the options and the given chart, the most reasonable choice is: c. x: snakes, y: turtles.

To know more about snakes,

https://brainly.com/question/29402091

#SPJ11

find the critical points of the given function and then determine whether they are local maxima, local minima, or saddle points. f(x, y) = x^2+ y^2 +2xy.

Answers

The probability of selecting a 5 given that a blue disk is selected is 2/7.What we need to find is the conditional probability of selecting a 5 given that a blue disk is selected.

This is represented as P(5 | B).We can use the formula for conditional probability, which is:P(A | B) = P(A and B) / P(B)In our case, A is the event of selecting a 5 and B is the event of selecting a blue disk.P(A and B) is the probability of selecting a 5 and a blue disk. From the diagram, we see that there are two disks that satisfy this condition: the blue disk with the number 5 and the blue disk with the number 2.

Therefore:P(A and B) = 2/10P(B) is the probability of selecting a blue disk. From the diagram, we see that there are four blue disks out of a total of ten disks. Therefore:P(B) = 4/10Now we can substitute these values into the formula:P(5 | B) = P(5 and B) / P(B)P(5 | B) = (2/10) / (4/10)P(5 | B) = 2/4P(5 | B) = 1/2Therefore, the probability of selecting a 5 given that a blue disk is selected is 1/2 or 2/4.

To know more about arithmetic progression visit:

https://brainly.com/question/16947807

#SPJ11

the slope field shown is for the differential equation ⅆy/ⅆx=ky−2y62 , where k is a constant. what is the value of k ?
A. 2
B. 4
C. 6
D. 8

Answers

The value of k is 2.

To determine the value of k in the given differential equation dy/dx = ky - 2y^6, we can examine the slope field associated with the equation. A slope field represents the behavior of the solutions to a differential equation by indicating the slope of the solution curve at each point.

By observing the slope field, we can identify the value of k that best matches the field's pattern. In this case, the slope field suggests that the slope at each point is determined by the difference between ky and 2y^6.

By comparing the equation with the slope field, we can see that the term ky - 2y^6 in the differential equation corresponds to the slope depicted in the field. Since the slope is determined by ky - 2y^6, we can conclude that k must equal 2.

Therefore, the value of k in the given differential equation is 2.

Learn more about Differential equations

brainly.com/question/25731911

#SPJ11

for a standard normal distribution, the probability of obtaining a z value between -2.4 to -2.0 is

Answers

The required probability of obtaining a z value between -2.4 to -2.0 is 0.0146.

Given, for a standard normal distribution, the probability of obtaining a z value between -2.4 to -2.0 is.

Now, we have to find the probability of obtaining a z value between -2.4 to -2.0.

To find this, we use the standard normal table which gives the area to the left of the z-score.

So, the required probability can be calculated as shown below:

Let z1 = -2.4 and z2 = -2.0

Then, P(-2.4 < z < -2.0) = P(z < -2.0) - P(z < -2.4)

Now, from the standard normal table, we haveP(z < -2.0) = 0.0228 and P(z < -2.4) = 0.0082

Substituting these values, we get

P(-2.4 < z < -2.0) = 0.0228 - 0.0082= 0.0146

Therefore, the required probability of obtaining a z value between -2.4 to -2.0 is 0.0146.

Know more about probability here:

https://brainly.com/question/251701

#SPJ11

Other Questions
.The formula for determining the predetermined manufacturing overhead rate is:A. Budgeted Manufacturing Overhead/Budgeted Cost DriverB. Budgeted Direct Materials/Budgeted Direct LaborC. Budgeted Manufacturing Overhead/Budgeted ConversionD. Budgeted Cost Driver/Budgeted Manufacturing Overhead what is the power of the eye when viewing an object 50.0 cm away if the lens to retina distance is 2.00 cm? EJS is 35% financed by risk-free debt and 65% equity. The treasury bill rate is 3%, the expected market return is 15% and the beta of stock is 1.6. The tax rate is 30%. The firm is considering a project that is equally as risky as the overall firm. The project has an initial cash outflow of $1.5 million and annual cash inflows of $500 000 at the end of each year for 5 years. What is the NPV of the project? what is the net ionic equation for the reaction between aqueous solutions of sr(no3)2 and k2so4? when moderately compressed, gas molecules have _______ attraction for one another. Find the absolute maximum and absolute minimum values of the function f(x,y) = x^2+y^2-3y-xy on the solid disk x^2+y^29. In our discussion of the biochemical cycles of some of the major elements on Earth, we saw various interaction among biological, geological and chemical processes. Explain how the hydrologic, carbon, nitrogen and phosphorus cycles work and how humans have impacted each cycle, leading to changes on Earth. Provide specific examples. A teachers association publishes data on salaries in the public school system annually. The mean annual salary of (public) classroom teachers is $54.7 thousand.Assume a standard deviation of $8.0 thousand.What is the probability that the sampling error made in estimating the population mean salary of all classroom teachers by the mean salary of a sample of 64 classroom teachers will be at most $1 thousand i.e., between $53.7 thousand and $55.7 thousand? (Round answer to the nearest ten-thousandth, the fourth decimal place.) Does the following linear programming problem exhibit infeasibility, unboundedness, alternate optimal solutions or is the problem solvable with one solution? Min 1X + 1Y s.t. 5X + 3Y lessthanorequalto 30 3x + 4y greaterthanorequalto 36 Y lessthanorequalto 7 X, Y greaterthanorequalto 0 alternate optimal solutions one feasible solution point infeasibility unboundedness Suppose a mutation prevents dephosphorylation of glycogen synthase.How could glycogen levels remain high? Dry drawing media consists of coloring agents, which are mixed with what to hold them together? Select one:a. grouts b. pigments c. media d. binders 5. how much of an 800-gram sample of potassium-40 will remain after 3.9 109 years of radioactive decay?1) 50 grams2)100 grams3)200 grams4)400 grams serve the picture carefully and identify which products are formed as A and B. Powered coal Heat Fill in the left side of this equilibrium constant equation for the reaction of 4 -bromoaniline C6H4BrNH2 , a weak base, with water.___ = Kb Consider a uniform discrete distribution on the interval 1 to 10. What is P(X= 5)? O 0.4 O 0.1 O 0.5 i) Use two (2) coincidental indicators to explain the conditions that are experienced in a nation during a recession.ii) Examine the causes of business cycle fluctuations in a nation.Suppose the following information was published by the Australian Bureau of Statistics in 2017:ItemAmount (AUD billion)Household consumption5,029.81Government consumption20,340.92Exports1,386.39Value of cocaine seized at Sydney Airport20,500Value of intermediate goods in tractor manufacturing502,003Gross private domestic investment352.69Imports386.95Components used in the manufacture of cars40,000Gifts15,236Government investment88.19Value of second-hand goods500.00Value of banned endangered species elephant tasks seized at Melbourne Airport600.00iii) Use the information provided to calculate Australias GDP in 2017 Discussion Initial Response Due by Wednesday: It is payday! You look at your pay stub and realize you received a $4,500 bonus. What do you plan to do with your windfall? You have three choices: (1) buy a bond, (2) pay off a loan, or (3) loan the money to family. Using the present value charts in this link (lump sum) and this link (annuity), calculate present value of the three options. Do not forget to show your work. Discuss which option you would choose and why. Consider financial and non-financial influences. There are no right or wrong answers: simply support your decision. Discussion Response Due by Saturday: Respond to another student. Option Information Present Value Formula PV Answer Calculate the present value of investing in a start-up company if you expect to receive $5,000 in 4 Example years and the annual market rate is 6%. Remember to use the Present Value factor in your calculation. $5,000 X.79209 $3,960.45 #1 Pay $4,500 for a bond. The bond pays $5,000 at the end of 2 years with a 10% coupon (interest) paid semi-annually (every 6 months). What is the present value of the bond? Is this a good deal since you are paying $4,500? #2 Pay off a loan. The loan is due at the end of 2 years (balloon loan). It has a balance of $5,500 and an interest rate of 12% that accrues semi-annually. The bank said they will take the present value of the loan. Do you have enough money to pay off the loan? # 3 Lend money to your family for a home renovation. They will pay you $5,000 at the end of the 2 years. Is this a good deal if the annual market rate is 6%? the domain of the relation l is the set of all real numbers. for x, y r, xly if x < y. An effectively written ad must not only attract attention and communicate a value proposition, it must also be full of sophisticated words invite action be rich in warn colors be rich in cool colors If a retail website has a 50% profit margin on its products and its revenue per visitor averages $5, what is the most it should spend to attract a visitor? $3.00 $6.00 $0.75 $2.50 Propose the shortest synthetic route for the following transformation (5-dodecanone will also be produced in your synthetic route). Draw the steps of the transformation w W 1 = HBO 2 = HBr, HOOH w 3 = Br2 4 = H2SO4 5 = H2SO4, H20, HgSO4 6 = CH3CH2CH2CH2CH2CI 7 = CH3CH2CH2CH2CH2CH2CI 8 = CH3CH2CH2CH2CH2CH2CH2CI 9 = XS NaNH2/NH3 10 = H/Pt 11 = H/Wilkinson's Catalyst 12 = H Lindlar's Catalyst 13 = Na/NH3 14 = 1) O3 2) H20 15 = 1) O32) DMS