Answer:
x = -5
Step-by-step explanation:
5x = -25
Divide each side by 5
5x/5 = -25/5
x = -5
Answer:
[tex]Option\ B,\ x = -5[/tex]
Step-by-step explanation:
Step 1: Divide both sides by 5
[tex]5x = -25[/tex]
[tex]5x / 5 = -25 / 5[/tex]
[tex]x = -25/5[/tex]
[tex]x = -5[/tex]
Answer: [tex]Option\ B,\ x = -5[/tex]
Joes bait shop brought in a gross profit in sales of $4,100.00 in the month of June. During the same month their operating expenses totaled $1990.00. Calculate the net income of the bait shop for the month of June
Answer:
2110
Step-by-step explanation:
4100-1990=2110
Suppose the volume of the cone is 324pi Find dy/dx when x=6 and y=27
Answer:
[tex]\displaystyle \frac{dy}{dx} \bigg| \limits_{x = 6} = -9[/tex]
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
Brackets Parenthesis Exponents Multiplication Division Addition Subtraction Left to RightEquality Properties
Multiplication Property of Equality Division Property of Equality Addition Property of Equality Subtraction Property of EqualityCalculus
Differentiation
DerivativesDerivative NotationBasic Power Rule:
f(x) = cxⁿf’(x) = c·nxⁿ⁻¹Derivative Rule [Quotient Rule]: [tex]\displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}[/tex]
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle V = \frac{1}{3} \pi x^2y[/tex]
[tex]\displaystyle V = 324 \pi[/tex]
[tex]\displaystyle x = 6[/tex]
[tex]\displaystyle y = 27[/tex]
Step 2: Differentiate
Substitute in volume [Volume Formula]: [tex]\displaystyle 324 \pi = \frac{1}{3} \pi x^2y[/tex][Equality Properties] Rewrite: [tex]\displaystyle y = \frac{972}{x^2}[/tex]Quotient Rule: [tex]\displaystyle \frac{dy}{dx} = \frac{(972)'x^2 - (x^2)'972}{(x^2)^2}[/tex]Basic Power Rule: [tex]\displaystyle \frac{dy}{dx} = \frac{0x^2 - (2x)972}{(x^2)^2}[/tex]Simplify: [tex]\displaystyle \frac{dy}{dx} = \frac{-1944x}{x^4}[/tex]Simplify: [tex]\displaystyle \frac{dy}{dx} = \frac{-1944}{x^3}[/tex]Step 3: Evaluate
Substitute in variables [Derivative]: [tex]\displaystyle \frac{dy}{dx} \bigg| \limits_{x = 6} = \frac{-1944}{6^3}[/tex]Simplify: [tex]\displaystyle \frac{dy}{dx} \bigg| \limits_{x = 6} = -9[/tex]Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation
I need help completing this problem ASAP
4/(√x - √(x - 2)) × (√x + √(x - 2))/(√x + √(x - 2))
= 4 (√x + √(x - 2)) / ((√x)² - (√(x - 2))²)
= 4 (√x + √(x - 2)) / (x - (x - 2))
= 4 (√x + √(x - 2)) / (x - x + 2)
= 4 (√x + √(x - 2)) / 2
= 2 (√x + √(x - 2))
what is the answer to EVAULATE 8+-9+-6
Answer:
11
Step-by-step explanation:
8 + 9 + -6
8 + 9 = 17
17 + (-6) = 11
Answered by Gauthmath
Given the formula A = 5h (B + b); solve for B.
2
Answer:
A=5h(B+b)
A/5h=B+b
A/5h - b= B
What is the common ratio for this geometric sequence?
27, 9, 3, 1, ...
Answer:
1/3
Step-by-step explanation:
common ratio is
9÷27=1/3
3÷9=1/3
1÷3=1/3
therefore common ratio is 1/3
Answer: 1/3
Step-by-step explanation:
Let us confirm that this is a geometric sequence. 9/27 = 1/3 and 3/9 = 1/3. Thus, the common ratio is 1/3.
Put the following equation of a line into slope-intercept form, simplifying all fractions 2x-2y=14
Answer: y = x - 7
Slope intercept form: y = mx + b
[tex]2x-2y=14\\\\-2y=-2x+14\\\\y=\frac{-2x+14}{-2} =\frac{-2(x-7)}{-2} =x-7[/tex]
Write a 6-digit number that fits the description.
1. The value of its thousands digit is 5,000.
2. The value of its hundreds digit is 700.
3. Its tens digit is 2 less than the thousands digit.
4. Its hundred thousands digit is the same as the hundreds digit.
The number is?
Answer:
175731 is one of the answers of the 6 digit number
some others are:
275732
375733
475734
575735
675735
775734
875732
The 6-digit number is 175731.
What is the place value strategy?The place value strategies are defined as math strategies that use to assist you in resolving your elementary math problems, use your places values, such as tens and hundreds. It is possible to employ enlarged notation or compensation. Using regrouping techniques, you can make the problem easier by compensating for addition.
Let the number would be ABCDEF
Given the condition that the value of its thousands of digits is 5,000.
So C = 5
Given the condition that the value of its hundreds of digits is 700.
So D = 7
Given the condition that Its tens digit is 2 less than the thousand digits.
So E = 5-2 = 3
Given the condition that Its hundred thousand digits is the same as the hundred digits.
So B = 7
Therefore, all possible answers:
275732
375733
475734
575735
675735
775734
875732
Hence, the 6-digit number is 175731
Learn more about the place value strategy here:
brainly.com/question/654419
#SPJ2
HELP NEEDED PLEASE!!!!!
Answer:
1^1 + 0^1 =1
Step-by-step explanation:
sin^2 theta + cos^2 theta = 1
sin^2 (pi/2) + cos^2 (pi/2) =1
1^1 + 0^1 =1
Plz answer asap question in picture
Answer:
-1 <x < 7
(-1,7)
Step-by-step explanation:
open circle on the left means the number is greater than
-1 <x
Open circle on the right means the number is less than
x < 7
Since both statements are true. we combine them
-1 <x < 7
open circles means parentheses, closed circles mean brackets
Please help‼️
Given O below, if XY and YZ are congruent, what is the measure of chord XY?
Answer:
11.2
Step-by-step explanation:
yz = 11.2
since the corresponding arc of yz and xy are same, their measures will ba same too
Answered by GAUTHMATH
Answer:
11.2
Step-by-step explanation:
good luck!
50% of 80
50% of 48
50% of 15
25% of 120
25% of 90
Find the function G defined by G(x) =5x+3 find G(-1)
Answer:
G(-1) = -2
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
Brackets Parenthesis Exponents Multiplication Division Addition Subtraction Left to RightAlgebra I
Functions
Function NotationStep-by-step explanation:
Step 1: Define
Identify
G(x) = 5x + 3
Step 2: Evaluate
Substitute in x [Function G(x)]: G(-1) = 5(-1) + 3Multiply: G(-1) = -5 + 3Add: G(-1) = -2Answer:
G = -2
Step-by-step explanation:
Plug in -1 for x.
5(-1) + 3
-5 + 3
-2
G = -2
PLEASE HELP THIS IS DUE ASAP (answer in decimal!!!!)
Help
Plz!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
angle G
sin inverse (21/29) = 46.4
GH
c^2 - b^2 = a^2
29^2 - 21^2 = a^2
a = √(29^2 - 21^2)
GH = 20
therefore ans is B) <G = 46.4º, <I = 43.6º, GH = 20
Carol is having a hard time understanding the central limit theorem, so she decides to do her own experiment using the class data survey collected at the beginning of class on the number of hours a student takes during her Spring 2019 BUSI 2305 course. The data file has a total number of 54 students where the average is 10.8 with a standard deviation of 3.15. She sets out to collect the mean on 8 samples of 6 students. Based on this what are the total possible samples that could occur based on the population
Answer:
25827165
Step-by-step explanation:
from the question that we have here
the total population = 54 students
the sample size = 6 students
So given this information carol has to pick the total samples from the 54 students that we have here
the total ways that she has to do this
= 54 combination 6
= 54C6
= [tex]\frac{54!}{(54-6)!6!}[/tex]
= 25827165
this is the total number of possible samples that could occur given the total population of 54 students.
Solve for x using the
distributive property.
6(2 - 6x) = -24
X ?
⇛6(2 - 6x) = -24
⇛12 - 36x = -24
⇛-36x = -24 - 12
⇛-36x = -36
⇛x = -36/-36
⇛x = 1
6.(a) A laptop was bought at Canadian $ 770. If the tax of 20% and 13% VAT should be paid, find the least selling price of it in Nepali rupee that prevents the shopkeeper from loss?
The LEAST selling price of the laptop should be ;
$1024.1 in other to avoid loss.
Price of laptop = $770
Tax = 20%
VAT = 13%
TO avoid loss ;
both the VAT percentage and TAX must be added to the price of the laptop:
Total percentage = VAT + TAX = (20 + 13) = 33%
THEREFORE, Least selling price should be :
Price of laptop * (1 + 33%)
770 * 1.33
= $1024.1
Learn more about TAX :
https://brainly.in/question/31818297
A one lane highway runs through a tunnel in the shape of one half a sine curve cycle
The sine curve equation, y = 10·sin(x·π/24), that models the entrance of the
tunnel with a cross section that is the shape of half of a sine curve and the
height of the tunnel at the edge of the road, (approximately 7.07 ft.) are
found by applying the following steps
(a) The equation for the sine curve is y = 10·sin(x·π/24)
(b) The height of the tunnel at the edge of the road is approximately 7.07 feet
The reason for the above answers are presented as follows;
(a) From a similar question posted online, the missing part of the question
is, what is the height of the tunnel at the edge of the road
The known parameters;
The shape of the tunnel = One-half sine curve cycle
The height of the road at its highest point = 10 ft.
The opening of the tunnel at road level = 24 ft.
The unknown parameter;
The equation of the sine curve that fits the opening
Method;
Model the sine curve equation of the tunnel using the general equation of a sine curve;
The general equation of a sine curve is y = A·sin(B·(x - C) + D
Where;
y = The height at point x
A = The amplitude = The distance from the centerline of the sine wave to the top of a crest
Therefore;
The amplitude, A = The height of half the sine wave = The height of the tunnel = 10 ft.
D = 0, C = 0 (The origin, (0, 0) is on the left end, which is the central line)
The period is the distance between successive points where the curve passes through the center line while rising to a crest
Therefore
The period, T = 2·π/B = 2 × Opening at the road level = 2 × 24 ft. = 48 ft.
T = 48 ft.
We get;
48 = 2·π/B
B = 2·π/48 = π/24
By plugging in the values for A, B, C, and D, we get;
y = 10·sin((π/24)·(x - 0) + 0 = 10·sin(x·π/24)
The equation of the sine curve that fits the opening is y = 10·sin(x·π/24)
(b) The height of the tunnel at the edge of the road is given by substituting
the value of x at the edge of the road into the equation for the sine curve
as follows;
The width of the shoulders = 6 feet
∴ At the edge of the road, x = 0 + 6ft = 6 ft., and 6 ft. + 12 ft. = 18 ft.
Therefore, we get;
y = 10 × sin(6·π/24) = 10 × sin(π/4) = 5×√2
y = 10 × sin(18·π/24) = 10 × sin(3·π/4) = 5×√2
The height of the, y, tunnel at the edge of the road where, x = 6, and 18 is y = 5·√2 feet ≈ 7.07 ft.
Learn more about the sine curve here;
https://brainly.com/question/3827606
i provided the question
Answer:
(0, 3)
Step-by-step explanation:
y = 3 is the horizontal tangent to y = x^2+3, and passes the parobala at (0, 3)
Given the linear function f(x) 2/3x + 6 evaluate f(-6)
the answer is on the photo
Write an equation in slope-intercept form for the line with slope -3/2
and y-intercept 5.
Answer: y = -3/2x + 5
Step-by-step explanation:
Slope-intercept form: y = mx + b
m = slope = -3/2b = y-intercept = 5y = -3/2x + 5
Answer:
y = -3/2x + 5 totally
Step-by-step explanation:
- 2/3 (2 - 1/5) use distributive property
Answer:
-6/5
Step-by-step explanation:
- 2/3 (2 - 1/5)
Distribute
-2/3 *2 -2/3 *(-1/5)
-4/3 + 2/15
Get a common denominator
-4/3 *5/5 +2/15
-20/15 +2/15
-18/15
Simplify
-6/5
Select the correct answer.
Given the following formula, solve for l.
A.
B.
C.
D.
Answer:
c
Step-by-step explanation:
took the test so i assume its this question
Hey I need helping with solving thank you
Answer:
the answer to this equation is c (10)
The sum of 'n' terms of an arithmetic sequence is 4n^2+3n. What is the first term, the common difference, and the sequence?
Answer:
The sequence has first term 7 and common difference is 8.
So the sequence is f(n)=7 + 8(n-1)
Step-by-step explanation:
Let a be the first term.
Let a+d be the second term where d is the common difference.
Then a+2d is the third....
And a+(n-1)d is the nth term.
Adding these terms we get:
an+(n-1)(n)/2×d
For the first term of this sum I seen we had n amount of a's and for the second term I used the well known identity sum of the first n positive integers is n(n+1)/2.
Let's simplify:
an+(n-1)(n)/2×d
Distribute:
an+(n^2d/2)-(nd/2)
Find common denominator:
(2an/2)+(n^2d/2)-(nd/2)
Combine terms into one:
(2an+n^2d-nd)/2
Reorder terms:
(n^2d+2an-nd)/2
Regroup terms:
(n^2d+(2a-d)n)/2
We want the following sum though:
4n^2+3n
This means d/2=4 (so d=8) and (2a-d)/2=3.
So plug d=8 into second equation to solve for a.
(2a-8)/2=3
2a-8=6
2a=14
a=7
The sequence has first term 7 and common difference is 8.
So the sequence is f(n)=7 + 8(n-1).
A swimmer dove off a board that was 50 ft above the water. The swimmer reached a depth of 15 ft in the pool. What number represents the swimmer's original height, in feet?
9514 1404 393
Answer:
50
Step-by-step explanation:
The number you choose depends on the location you consider to be zero height.
If we consider the surface of the pool to be zero height, and "up" to be the positive direction for measuring height, then the appropriate number for the original 50-ft height is 50.
Which of the following shows the extraneous solution to the logarithmic equation below?
2 log Subscript 5 Baseline (x + 1) = 2
Answer:
x=4
Step-by-step explanation:
log5(x+1)=1, (x+1)=5, x=4
Answer:
x= -6
Step-by-step explanation:
i got it wrong and the answer is -6
If (x+2) is a Factor x^3 + 2x^2 + 2x + k then find the value of K.
Answer:
4
Step-by-step explanation:
if x+2 is a factor of the above expression then,
x=-2
so putting the value of x in above expression we get,
(-2)^3+2×(-2)^2+2×(-2)+k=0
or,-8+8-4+k=0
k=4
Answer:
Step-by-step explanation:
If (x + 2) is a factor of a polynomial then ( - 2 ) is the zero of that polynomial ⇒ ( - 2 )³ + 2( - 2 )² + 2( - 2 ) + k = 0 ⇒ k = - 4
A lady wearing a McDonalds t-shirt with a delicious-looking Big Mac on it asks which fast food restaurant is your favourite. This leads to which type of bias?
a) Response Bias
b) Sampling Bias
c) Measurement Bias
d) Non-response Bias