65. The weight of a body when totally immersed in a liquid is 4.2N if he weight of the liquid displaced is 2.5N. Find the weight of the body in air.​

Answers

Answer 1

Answer:

Given, Apparent weight(W₂)=4.2N

          Weight of liquid displaced (u)=2.5N

          Let weight of body in air = W₁

Solution,

             U=W₁-W₂

              W₁=4.2=2.5=6.7N

∴Weight of body in air is 6.7N


Related Questions

A device for acclimating military pilots to the high accelerations they must experience consists of a horizontal beam that rotates horizontally about one end while the pilot is seated at the other end. In order to achieve a radial acceleration of 26.5 m/s2 with a beam of length 5.89 m , what rotation frequency is required

Answers

Answer:

The angular acceleration is 4.5 rad/s^2.

Explanation:

Acceleration, a = 26.5 m/s2

length, L = 5.89 m

The angular acceleration is

[tex]\alpha =\frac{a}{L}\\\\\alpha = \frac{26.5}{5.89}=4.5 rad/s^2[/tex]

A basketball of mass 0.608 kg is dropped from rest from a height of 1.37 m. It rebounds to a height of 0.626 m.
(a) How much mechanical energy was lost during the collision with the floor?
(b) A basketball player dribbles the ball from a height of 1.37 m by exerting a constant downward force on it for a distance of 0.132 m. In dribbling, the player compensates for the mechanical energy lost during each bounce. If the ball now returns to a height of 1.37 m, what is the magnitude of the force?

Answers

Answer:

a)[tex]|\Delta E|=4.58\: J[/tex]  

b)[tex]F=61.90\: N[/tex]

Explanation:

a)

We can use conservation of energy between these heights.

[tex]\Delta E=mgh_{2}-mgh_{1}=mg(h_{2}-h_{1})[/tex]  

[tex]\Delta E=0.608*9.81(0.6026-1.37)[/tex]

Therefore, the lost energy is:

[tex]|\Delta E|=4.58\: J[/tex]  

b)

The force acting along the distance create a work, these work is equal to the potential energy.

[tex]W=\Delta E[/tex]

[tex]F*d=mgh[/tex]

Let's solve it for F.

[tex]F=\frac{mgh}{d}[/tex]

[tex]F=\frac{0.608*9.81*1.37}{0.132}[/tex]

Therefore, the force is:

[tex]F=61.90\: N[/tex]

I hope is helps you!

which vector best represents the net force acting on the +3 C charge

Answers

Vector ' W ' best and there ya go

A horizontal force of P=100 N is just sufficient to hold the crate from sliding down the plane, and a horizontal force of P=350 N is required to just push the crate up the plane. Determine the coefficient of static friction between the plane and the crate, and find the mass of the crate.

Answers

"down/up the plane" suggests an inclined plane, but no angle is given so I'll call it θ for the time being.

The free body diagram for the crate in either scenario is the same, except for the direction in which static friction is exerted on the crate. With the P = 100 N force holding up the crate, static friction points up the incline and keeps the crate from sliding downward. When P = 350 N, the crate is pushed upward, so static friction points down. (see attached FBDs)

Using Newton's second law, we set up the following equations.

• p = 100 N

F (parallel) = f + p cos(θ) - mg sin(θ) = 0

F (perpendicular) = n - p sin(θ) - mg cos(θ) = 0

P = 350 N

F (parallel) = P cos(θ) - F - mg sin(θ) = 0

F (perpendicular) = N - P sin(θ) - mg cos(θ) = 0

(where n and N are the magnitudes of the normal force in the respective scenarios; ditto for f and F which denote static friction, so that f = µn and F = µN, with µ = coefficient of static friction)

Solve for n and N :

n = p sin(θ) + mg cos(θ)

N = P sin(θ) - mg cos(θ)

Substitute these into the corresponding equations containing µ, and solve for µ :

µ = (mg sin(θ) - p cos(θ)) / (mg cos(θ) + p sin(θ))

µ = (P cos(θ) - mg sin(θ)) / (P sin(θ) + mg cos(θ))

Next, you would set these equal and solve for m :

(mg sin(θ) - p cos(θ)) / (mg cos(θ) + p sin(θ)) = (P cos(θ) - mg sin(θ)) / (P sin(θ) + mg cos(θ))

...

Once you find m, you back-substitute and solve for µ, but as you might expect the result will be pretty complicated. If you take a simple angle like θ = 30°, you would end up with

m ≈ 36.5 kg

µ ≈ 0.256

The coefficient of static friction between the plane and the crate is μ = 0.256 and the mass of the crate is m=36.4 kg.

From the given,

The force that opposes the crate by sliding is P = 100N

In X-axis, the sum of forces is zero.

ΣF = 0

Pcosθ - mgsinθ-Ff = 0

Ff = Pcosθ - mgsinθ

In Y-axis

Psinθ - mgcosθ - N = 0

N = Psinθ-mgcosθ

Frictional force, Ff = μN, μ is the coefficient of friction

Ff = μN

Pcos30- mgsin30 + μ( Psin30+mgcos30) = 0

μ = mgsin30-Pcos30/Psin30+mgcos30 ------1

The block is sliding with the horizontal force, F = 350N

X-axis

P₂cosθ - mgsinθ-Ff = 0

Y-axis

P₂sinθ - mgcosθ - N = 0

N = P₂sinθ-mgcosθ

μ = P₂cos30-mgsin30/P₂sin30-mgcos30   -----2

Equate equations 1 and 2

mgsin30-Pcos30/Psin30+mgcos30 =P₂cos30-mgsin30/P₂sin30-mgcos30

4.905m-86.6/50+8.49 = 303.1-4.905m/175+8.49

41.7m² + 123m - 1.516×10⁴ = 0

-41.7m² +2330m -1.516×10⁴(4.905-86.6)(175+8.49) =(303.1-4.905)(50+8.49)

83.4m² - 2207m -3.03×10⁴ = 0

m= 36.4 kg

Hence, the mass of the crate is 36.4 Kg.

Substitute the value of m in equation 1,

μ = 4.905(36.4) - 86.6 / 50 + 8.49

μ  = 0.256

Thus, the coefficient of static friction is 0.256.

To learn more about friction and its types:

https://brainly.com/question/30886698

#SPJ1

Upon completing an interview, it is important that you send a follow-up thank you
note/letter/e-mail because it will show that you are a person who appreciates an opportunity.
A True
B
False

Answers

A True it shows that you are very grateful for the opportunity and it shows that you really would like the job and you’re not just doing it for the money even if you are. Also it just shows professionalism
A, it makes you seem like your a better person and grateful for the opportunity you have.

The block in the drawing has dimensions L0×2L0×3L0,where L0 =0.2 m. The block has a thermal conductivity of 150 J/(s·m·C˚). In drawings A, B, and C, heat is conducted through the block in three different directions; in each case the temperature of the warmer surface is 35 ˚C and that of the cooler surface is 16 ˚C Determine the heat that flows in 6 s for each case.

Answers

Answer:

1140 J, 6840 J, 10260 J

Explanation:

Lo x 2 Lo x 3 Lo, Lo = 0.2 m,  K = 150 J/(s · m · C˚) , T = 35 ˚C, T' = 16 ˚C,

time, t = 6 s

The heat conducted is

[tex]H = \frac{K A (T - T') t}{d}\\\\H = \frac{150\times 3\times 0.2\times 0.2\times (35-16) \times 6}{3\times 0.2}\\\\H = 1140 J[/tex]

The heat conducted is

[tex]H = \frac{K A (T - T') t}{d}\\\\H = \frac{150\times 3\times 0.2\times 2\times0.2\times (35-16) \times 6}{3\times 0.2}\\\\H = 6840 J[/tex]

The heat conducted is

[tex]H = \frac{K A (T - T') t}{d}\\\\H = \frac{150\times 3\times 0.2\times 2\times0.2\times (35-16) \times 6}{2\times 0.2}\\\\H = 10260 J[/tex]

Is the actual height the puck reached greater or less than your prediction? Offer a possible reason why this might be.

Answers

Answer:

Answer to the following question is as follows;

Explanation:

The puck's real altitude is lower than ones projection. That's because the mechanism may not be completely frictionless. Electricity is nevertheless wasted owing to particle interactions such as friction, which might explain why the present the results is lower than predicted.

as the ball rises the vertical component of it's velocity_____. explain​

Answers

Answer:

Decreases

Explanation:

because its moving against gravitational attraction and at maximum height its velocity will be and it will decrease until it reaches maximum height and the start to increase again

A ball has a mass of 4.65kg and approximates a ping pong ball of mass 0.060kg that is at rest by striking it in an elastic collision. The initial velocity of the bowling ball is 5.00m/s, determine the final velocities of both masses after the collision.

Answers

Answer:

Look at work

Explanation:

Elastic Collision: Ki=Kf

M1=4.65kg

M2: 0.060kg

v1=5m/s

v2=0m/s

4.65*5+0.060*0=4.65*v1'+0.060*v2'

23.25+0=4.65v1'+0.060v2'

Also since it is an elastic collision we can use

v1+v1'=v2+v2'

4.65+v1'=v2'

4.65+v1'=v2'

Substitute into the earlier equation

23.25=4.65v1'+0.060(4.65+v1')

Expand

23.25=4.65v1'+0.279+0.06v1'

Solve for v1'

22.971=4.71v1'

v1'=4.88m/s

v2'=4.65+4.88=9.53m/s

During a practice shot put throw, the 7.9-kg shot left world champion C. J. Hunter's hand at speed 16 m/s. While making the throw, his hand pushed the shot a distance of 1.4 m. Assume the acceleration was constant during the throw.

Required:
a. Determine the acceleration of the shot.
b. Determine the time it takes to accelerate the shot.
c, Determine the horizontal component of the force exerted on the shot by hand.

Answers

Answer:

a)   a = 91.4 m / s²,  b)    t = 0.175 s, c)  

Explanation:

a) This is a kinematics exercise

           v² = vox ² + 2a (x-xo)

           a = v² - 0/2 (x-0)

           

let's calculate

          a = 16² / 2 1.4

          a = 91.4 m / s²

b) the shooting time

          v = vox + a t

          t = v-vox / a

          t = 16 / 91.4

          t = 0.175 s

c) let's use Newton's second law

          F = ma

          F = 7.9 91.4

          F = 733 N

ACCORDING TO NEWTON'S THIRD LAW EVERY ACTION HAS EQUAL AND OPPOSITE REACTION BUT THEN WHY DON'T WE FLY WHEN WE FART??​

Answers

Answer:

Your fart only has so much force, not nearly enough to launch you into oblivion. Your fart and you still exert a force onto each other, so I guess, hypothetically, you could fly if you really, really try hard enough. Just make sure you don't try too hard and prolapse as a result :)

A 1,200kg roller coaster car starts rolling up a slope at a speed of 15m/s. What is the highest point it could reach

Answers

Answer: 11.36 m

Explanation:

Given

Mass of roller coaster is m=1200 kg

Initial speed of roller coaster is v=15 m/s

Energy at bottom and at the top is same i.e.

[tex]\Rightarrow \dfrac{1}{2}mv^2=mgh\\\\\Rightarrow \dfrac{1}{2}\times 1200\times 15^2=1200\times 9.8\times h\\\\\Rightarrow h=\dfrac{15^2}{2\times 9.8}\\\\\Rightarrow h=11.36\ m[/tex]

Thus, the highest point reach by the roller coaster is 11.36 m

Answer:

11.36m

Explanation:

You need to calculate the volume of berm that has a starting cross-sectional area of 118 SF, and an ending cross-sectional area of 245 SF. The berm is 300 ft long and is assumed to taper evenly between the two cross-sectional areas, what is the calculated volume of the berm in cubic feet

Answers

6 cubic feet I’m pretty sure that’s the answer

A rigid tank contains 10 lbm of air at 30 psia and 60 F. Find the volume of the tank in ft3. The tank is now heated until the pressure doubles. Find the heat transfer in Btu.

Answers

Answer:

Hence the amount of heat transfer is 918.75 Btu.

Explanation:

Now,

A cylindrical tank with radius 7 m is being filled with water at a rate of 2 m3/min. How fast is the height of the water increasing (in m/min)?

Answers

Answer:

0.013 m/min

Explanation:

Applying,

dV/dt = (dh/dt)(dV/dh)............. Equation 1

Where

V = πr²h................ Equation 2

Where V = volume of the tank, r = radius, h = height.

dV/dh = πr²............ Equation 3

Substitute equation 3 into equation 1

dV/dt = πr²(dh/dt)

From the question,

Given: dV/dt = 2 m³/min, r = 7 m, π = 3.14

Substitute these values into equation 3

2 = (3.14)(7²)(dh/dt)

dh/dt = 2/(3.14×7²)

dh/dt = 0.013 m/min

The relation of mass m, angular velocity o and radius of the circular path r of an object with the centripetal force is-
a. F = m²wr
b. F = mwr²
c. F = mw²r
d. F = mwr. ​

Answers

Answer:

Correct option not indicated

Explanation:

There are few mistakes in the question. The angular velocity ought to have been denoted with "ω" and not "o" (as also suggested in the options).

The formula to calculate a centripetal force (F) is

F = mv²/r

Where m is mass, v is velocity and r is radius

where

While the formula to calculate a centrifugal force (F) is

F = mω²r

where m is mass, ω is angular velocity and r is radius of the circular path.

From the above, it can be denoted that the relationship been referred to in the question is that of a centrifugal force and not centripetal force, thus the correct option should be C.

NOTE: Centripetal force is the force required to keep an object moving in a circular path/motion and acts inward towards the centre of rotation while centrifugal force is the force felt by an object in circular motion which acts outward away from the centre of rotation.

1. A message signal m(t) has a bandwidth of 5kHz and a peak magnitude of 2V. Estimate the bandwidth of the signal u(t) obtained when m(t) frequency modulates a carrier with a) kf = 10 Hz/V, b) kf = 100 Hz/V, and c) kf = 1000 Hz/V.

Answers

Answer:

3v at 5.3 herts

Explanation:

A room has dimensions of 15 ft by 15 ft by 20 ft contains air with a density of 0.0724 pounds-mass per cubic feet. The weight of air in the room in pounds-force is

Answers

Answer:

the weight of the air in pound-force (lb-f) is 325.8 lbf

Explanation:

Given;

dimension of the room, = 15 ft by 15 ft by 20 ft

density of air in the room, ρ = 0.0724 lbm/ft³

The volume of air in the room is calculated as;

Volume = 15 ft x 15 ft x 20 ft = 4,500 ft³

The mass of the air is calculated as;

mass = density x volume

mass = 0.0724 lbm/ft³  x  4,500 ft³

mass = 325.8 lb-m

The weight of the air is calculated as;

Weight = mass x gravity

Weight = 325.8 lb-m x 32.174 ft/s²

Weight = 10482.29 lbm.ft/s²

The weight of the air in pound-force (lb-f) is calculated as;

1 lbf = 32.174 lbm.ft/s²

[tex]Weight =10,482.29\ lbm.ft/s^2\times \frac{1 \ lbf}{32.174 \ lbm.ft/s^2} \\\\Weight = 325.8 \ lbf[/tex]

Therefore, the weight of the air in pound-force (lb-f) is 325.8 lbf

convert 56km/h to m/s.​

Answers

Explanation:

15.556 metres per second

prove mathematically :
1. v = u + at
2. s = ut+1*2 at ​

Answers

Answer:

a.v=u+v/2

a.v=s/t

combining two equation we get,

u+v/2=s/t

(u+v)t/2=s

(u+v)t/2=s

{u+(u+at)}t/2=s

(u+u+at)t/2=s

(2u+at)t/2=s

2ut+at^2/2=s

2ut/2+at^2/2=s

UT +1/2at^2=s

proved

a=v-u/t

at=v-u

u+at=v

Question 9 of 10
According to the law of conservation of momentum, the total initial
momentum equals the total final momentum in a(n)
A. Interacting system
B. System interacting with one other system
C. Isolated system
D. System of balanced forces

Answers

Answer:

The answer is C. Isolated System

Answer:

C. Isolated system

Explanation :

∵According to law of  conservation of momentum ,In an isolated system ,the total momentum remains conserved.

A 31 kg block is initially at rest on a horizontal surface. A horizontal force of 83 N is required to set the block in motion. After it is in motion, a horizontal force of 55 N i required to keep it moving with constant speed. From this information, find the coefficients of static and kinetic friction

Answers

Answer:

The static and kinetic coefficients of friction are 0.273 and 0.181, respectively.

Explanation:

By Newton's Laws of Motion and definition of maximum friction force, we derive the following two formulas for the static and kinetic coefficients of friction:

[tex]\mu_{s} = \frac{f_{s}}{m\cdot g}[/tex] (1)

[tex]\mu_{k} = \frac{f_{k}}{m\cdot g}[/tex] (2)

Where:

[tex]\mu_{s}[/tex] - Static coefficient of friction, no unit.

[tex]\mu_{k}[/tex] - Kinetic coefficient of friction, no unit.

[tex]f_{s}[/tex] - Static friction force, in newtons.

[tex]f_{k}[/tex] - Kinetic friction force, in newtons.

[tex]m[/tex] - Mass, in kilograms.

[tex]g[/tex] - Gravitational constant, in meters per square second.

If we know that [tex]f_{s} = 83\,N[/tex], [tex]f_{k} = 55\,N[/tex], [tex]m = 31\,kg[/tex] and [tex]g = 9.807\,\frac{m}{s^{2}}[/tex], then the coefficients of friction are, respectively:

[tex]\mu_{s} = \frac{83\,N}{(31\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)}[/tex]

[tex]\mu_{s} = 0.273[/tex]

[tex]\mu_{k} = \frac{55\,N}{(31\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)}[/tex]

[tex]\mu_{k} = 0.181[/tex]

The static and kinetic coefficients of friction are 0.273 and 0.181, respectively.

Assume that I = E/(R + r), prove that 1/1 = R/E + r/E​

Answers

[tex]\implies {\blue {\boxed {\boxed {\purple {\sf { \frac{1}{I} = \frac{R}{E} + \frac{r}{E} }}}}}}[/tex]

[tex]\large\mathfrak{{\pmb{\underline{\orange{Step-by-step\:explanation}}{\orange{:}}}}}[/tex]

[tex]I = \frac{ E}{ R + r} \\[/tex]

[tex] ➺\:\frac{I}{1} = \frac{E}{R + r} \\[/tex]

Since [tex]\frac{a}{b} = \frac{c}{d} [/tex] can be written as [tex]ad = bc[/tex], we have

[tex]➺ \: I \: (R + r) = E \times 1[/tex]

[tex]➺ \: \frac{1}{I} = \frac{R + r}{E} \\ [/tex]

[tex]➺ \: \frac{1}{I} = \frac{R}{E} + \frac{r}{E} \\ [/tex]

[tex]\boxed{ Hence\:proved. }[/tex]

[tex]\red{\large\qquad \qquad \underline{ \pmb{{ \mathbb{ \maltese \: \: Mystique35ヅ}}}}}[/tex]

1.- Que distancia recorrió una carga de 2,5x10-6 coul, generando así un campo eléctrico de 55new/coul.​

Answers

Answer:

r = 20.22 m

Explanation:

Given that,

Charge,[tex]q=2.5\times 10^{-6}\ C[/tex]

Electric field, [tex]E=55\ N/C[/tex]

We need to find the distance. We know that, the electric field a distance r is as follows :

[tex]E=\dfrac{kq}{r^2}\\\\r=\sqrt{\dfrac{kq}{E}}\\\\r=\sqrt{\dfrac{9\times 10^9\times 2.5\times 10^{-6}}{55}}\\\\r=20.22\ m[/tex]

So, the required distance is 20.22 m.

A block of mass M is connected by a string and pulley to a hanging mass m.The coefficient of kinetic friction between block M and the table is 0.2, and also, M = 20 kg, m = 10 kg. Find the acceleration of the system and tensions on the string.

Answers

The free body diagram for the block of mass M consists of four forces:

• the block's weight, Mg, pointing downward

• the normal force of the table pushing upward on the block, also with magnitude Mg

• kinetic friction with magnitude µMg = 0.2 Mg, pointing to the left

• tension of magnitude T pulling the block to the right

For the block of mass m, there are only two forces:

• its weight, mg, pulling downward

• tension T pulling upward

The m-block will pull the M-block toward the edge of the table, so we take the right direction to be positive for the M-block, and downward to be positive for the m-block.

Newton's second law gives us

T - 0.2Mg = Ma

mg - T = ma

where a is the acceleration of either block/the system. Adding these equations together eliminates T and we can solve for a :

mg - 0.2 Mg = (m + M) a

a = (m - 0.2M) / (m + M) g

a = 1.96 m/s²

Then the tension in the string is

T = m (g - a)

T = 78.4 N

can some one help me :< its music​

Answers

What do you want to know about the answer

a vessel with mass 10kg intially moving withthe velocicity 12m s along the x axis explodes into three exactly identical pieces Just after the explosion one piece moves with speed 10 m s along the x axis and asecond piece moves with speed 10 m s along the y axis What iis the magnitude of the component of velocity of the third piece along the y axiss

Answers

Answer:

Explanation:

Apply law of conservation of momentum along y-axis.

Initially there was no momentum along y-axis. So there will be nil momentum along y-axis again finally.

Let the mass of each piece after breaking be m .

Momentum of piece moving along positive y-axis

= m x 10 = 10m .

Let the component of velocity of third piece along y-axis be v .

Its momentum along the same direction = m v .

Total momentum along y -axis = 10 m + m v

According to law of conservation of momentum

10 m + mv = 0

v = - 10 m/s .

Component of velocity of the third piece along y-axis will be - 10 m/s .

In other words it will be along negative y-axis with speed of 10 m/s.

A beam of light has a wavelength of 549nm in a material of refractive index 1.50. In a different material of refractive index 1.07, its wavelength will be:_________.

Answers

Explanation:

someone to check if the answer is correct

If you and a friend are standing side-by-side watching a soccer game, would you both view the motion from the same reference frame?

a. Yes, we would both view the motion from the same reference point because both of us are at rest in Earth’s frame of reference.
b. Yes, we would both view the motion from the same reference point because both of us are observing the motion from two points on the same straight line.
c. No, we would both view the motion from different reference points because motion is viewed from two different points; the reference frames are similar but not the same.
d. No, we would both view the motion from different reference points because response times may be different; so, the motion observed by both of us would be different.

Answers

Answer:

the correct is C

Explanation:

The concept of a frame of reference is of crucial importance in physics, because it is the system from which measurements are made. Therefore, the relationships between the different reference frames must be clear so that the measurements made can be compared correctly.

In this case, the first observed sees the movement of the ball, suppose it moves a distance r, the second observed is next to me, separated by a distance x, therefore a frame of reference located in the movement of the ball. ball r '.

Consequently, the measurement carried out is related by

             r = r’ + x

where the bold letters indicate wind blowers.

With these explanations we review the different answers, the correct one is C

A transverse sine wave with an amplitude of 2.50 mm and a wavelength of 1.80 m travels, from left to right along a long, horizontal stretched string with a speed of 36.0 m s. I Take the origin at the left end of the undisturbed string. At time t = 0 the left end of the string has its maximum upward displacement,
(a) What is the frequency of the wave?
(b) What is the angular frequency of the wave?
(c) What is the wave number of the wave?
(d) What is the function y(x,t) that describes the wave?
(e) What is y(t) for a particle at the left end of the string?
(f) What is y(t) for a particle 1.35 m to the right of the origin?
(g) What is the maximum magnitude of transverse velocity of any particle of the string?
(h) Find the transverse displacement of a particle 1.35 m to the right of the origin at time t = 0.0625 s.
(i) Find the transverse velocity of a particle 1.35 m to the right of the origin at time t = 0.0625 s.

Answers

Explanation:

Given that,

Amplitude, A = 2.5 nm

Wavelength,[tex]\lambda=1.8\ m[/tex]

The speed of the wave, v = 36 m/s

At time t = 0 the left end of the string has its maximum upward displacement.

(a) Let f is the frequency. So,

[tex]f=\dfrac{v}{\lambda}\\\\f=\dfrac{36}{1.8}\\\\f=20\ Hz[/tex]

(b) Angular frequency of the wave,

[tex]\omega=2\pi f\\\\=2\pi \times 20\\\\=125.7\ rad/s[/tex]

(c) The wave number of the wave[tex]=\dfrac{1}{\lambda}[/tex]

[tex]=\dfrac{1}{1.8}\\\\=0.56\ m^{-1}[/tex]

Other Questions
Dynamic Futon forecasts the following purchases from suppliers: Jan. Feb. Mar. Apr. May Jun.Value of goods ($ millions) 37 33 30 27 25 25a. Sixty percent of goods are supplied cash-on-delivery. The remainder are paid with an average delay of 1 month. If Dynamic Futon starts the year with payables of $27 million, what is the forecasted level of payables for each month?b. Suppose that, from the start of the year, the company stretches payables by paying 50% after 1 month and 20% after 2 months. (The remainder continue to be paid cash-on-delivery.) Recalculate payables for each month assuming that there are no cash penalties for late payment. Assume that Dynamic Futon didn't have any payable balance at the start of the year. How can I balance chemical equations by providing the correct coefficients? For example: [?]Pb(NO3)2 + [?]NaCrO4 = [?]PbCrO4 + [?]NaNO3 the code book To improve understanding of the excerpt, which questions are best to ask? Select 5 options. Cludio pode ir de sua casa a escola andando trs km para o Norte, 2 para o oeste, um para o sul, quatro para o leste e, finalmente, 2 para o sul ponto para ir de sua casa a escola em linha reta, Cludio deve andar: a) 1 km para o sul b) 2 Km para o leste c) 3 km para o oeste d) 4 km para o Norte e) 5 km para o leste Need helppppppp please Does the point (0, 37) satisfy the equation y = 79x - -37? yes no Vextra Corporation is considering the purchase of new equipment costing $38,000.The projected annual cash inflow is $11,600, to be received at the end of each year.The machine has a useful life of 4 years and no salvage value.Vextra requires a 12% return on its investments.The present value of an annuity of $1 for different periods follows:Periods12 Percent10.892921.690132.401843.0373What is the net present value of the machine (rounded to the nearest whole dollar)?a. $(35,233).b. $(2,767).c. $38,000.d. $(3,700).e. $5,233. Find the area in km2. Round answer to the nearest tenth if necessary through: (4,- 4), perp. to y = -4x - 2 When computing equivalent units of production, the method that combines partially completed units in beginning inventory with current-period production is the In 80-100 words , write a paragraph about the advantages of self-study What is the value of x in the equation 0.7x 1.4 = 3.5?1. -72. -33. 74. 3 State of high development of some countries is a cause of the under development of others. Discuss The circumference of a circle is 14 inches. Find the circle's radius and diameter.Please help :) A student claimed that thermometers are useless because athermometer always registers its own temperature. How would yourespond?[ The number line shows the car's starting point and the ending point.Find the distance between them. what number must you add to complete the square x^2+12x=40 determina la pendiente (0,4) (-5,0) Max can travel 100 miles in 2 hours. At this rate, how many hours will it take him to travel 650 miles? When a proposed merger between two companies is reviewed by the government, the relevant market is defined by ________.