Answer:
I think the answer is 1/3
Step-by-step explanation:
1/6+1/6
=2/6=1/3
Answer:
1/3
Step-by-step explanation:
The possible outcomes are 1,2,3,4,5,6
The good outcomes are 3 and 5 = 2 good outcomes
P(3 or 5) = number of good outcomes / total outcomes
= 2/6 = 1/3
helppp ASPPP plzz Select the correct answer.
Answer:
C. [tex]-2x^3+2\sqrt{x}[/tex]
Step-by-step explanation:
[tex]\sqrt{x} -x-(2x^3-\sqrt{x} -x)[/tex]
Change the signs of g(x)
[tex]\sqrt{x} -x-2x^3+\sqrt{x} +x[/tex]
Simplify
[tex]-2x^3+2\sqrt{x}[/tex]
I hope this helps!
pls ❤ and mark brainliest pls!
Tìm diện tích của mặt. Phần mặt x2+y2+z2=9 nằm bên trên mặt phẳng z=1.
If you're familiar with surface integrals, start by parameterizing the surface by the vector-valued function,
r(u, v) = 3 cos(u) sin(v) i + 3 sin(u) sin(v) j + 3 cos(v) k
with 0 ≤ u ≤ 2π and 0 ≤ v ≤ arccos(1/√8).
Then the area of the surface (I denote it by S) is
[tex]\displaystyle\iint_S\mathrm dA = \int_0^{2\pi}\int_0^{\arccos\left(1/\sqrt8\right)}\left\|\dfrac{\partial\mathbf r}{\partial u}\times\frac{\partial\mathbf r}{\partial v}\right\|\,\mathrm dv\,\mathrm du \\\\ = \int_0^{2\pi}\int_0^{\arccos\left(1/\sqrt8\right)}9\sin(v)\,\mathrm dv\,\mathrm du \\\\ =18\pi \int_0^{\arccos\left(1/\sqrt8\right)}\sin(v)\,\mathrm dv = \boxed{\frac{9(4-\sqrt2)\pi}2}[/tex]
Amira starts an exercise programme on the 3rd of March. She decides she will swim every
3 days and cycle every 4 days. On which dates in March will she swim and cycle on the
same day?
Answer:
12 days
Step-by-step explanation:
The answer of the problem is the LCM of 3 and 4=12. Hence the answer is 12 days
On 12 March she will swim and cycle on the same day if Amira starts an exercise program on the 3rd of March.
What is LCM?It is defined as the common number of two integers, which is the lowest number that is a multiple of two or more numbers. The full name of LCM is the least common multiple.
We have:
Amira starts an exercise program on the 3rd of March.
She will swim every 3 days and cycle every 4 days.
Total days =3 + 4 = 7 days = 1 week
The day she swims and cycles on the same day = LCM of 3 and 4
= 3, 6, 9, 12, 15
= 4, 8, 12, 16
= 12
Thus, on 12 March she will swim and cycle on the same day if Amira starts an exercise program on the 3rd of March.
Learn more about the LCM here:
brainly.com/question/20739723
#SPJ2
In a study on the time that
a student required to obtain a college degree is randomly selected to 80
students and it is discovered that they have an average of 4.8 years (according to data from the National
Center for Education Statistics). Assuming s 2.2 years, construct an estimate of a confidence interval of the population mean. The confidence interval
the result contradicts the fact that 39% of students get their college degree in four years?
The 95% confidence interval of the population mean, in years, is (4.3, 5.3). 4 years is not part of the confidence interval, which means that it contradicts the fact that 39% of students get their college degree in four years.
-----------------------------
To solve this question, we need to find the confidence interval for the amount of time it takes the students to get the degree.
We have the standard deviation for the sample, which means that the t-distribution is used to solve this question.
-----------------------------
The first step to solve this problem is finding how many degrees of freedom,which is the sample size subtracted by 1. So
df = 80 - 1 = 79
-----------------------------
95% confidence interval
Standard level of confidence, we have to find a value of T, which is found looking at the t table, with 79 degrees of freedom(y-axis) and a confidence level of [tex]1 - \frac{1 - 0.95}{2} = 0.975[/tex]. So we have T = 1.9905.
-----------------------------
The margin of error is:
[tex]M = T\frac{s}{\sqrt{n}} = 1.9905\frac{2.2}{\sqrt{80}} = 0.5[/tex]
In which s is the standard deviation of the sample and n is the size of the sample.
-----------------------------
The lower end of the interval is the sample mean subtracted by M. So it is 4.8 - 0.3 = 4.3 years.
The upper end of the interval is the sample mean added to M. So it is 4.8 + 0.3 = 5.3 years.
-----------------------------
The 95% confidence interval of the population mean, in years, is (4.3, 5.3). 4 years is not part of the confidence interval, which means that it contradicts the fact that 39% of students get their college degree in four years.
A similar question is given at https://brainly.com/question/24278748
The bar graph shows the z-score results of four students on two different mathematics tests. The students took Test 1 and then, a month later, took Test 2. Which student had the lowest score on Test 2? Euan Felicia Dave Carla
Answer:
euan had lowest score on test 2
The student with lowest score on test 2 is Euan.
What is bar graph ?Bar graph is used for the graphical representation of data or quantities by using bars or strips.
Here,
The z-score results of four students on two different mathematics tests is represented by the given bar graph.
Calculating the scores of each students for the two tests respectively.
1) Carla
Test 1: 0.75
Test 2: -0.5
2) Dave
Test 1: -0.5
Test 2: 1
3) Euan
Test 1: 0.25
Test 2: -1
4) Felicia
Test 1: 1.25
Test 2: 1.5
Hence,
The student with lowest score on test 2 is Euan.
To learn more about bar graph, click:
https://brainly.com/question/17343218
#SPJ3
Rotation 90° counterclockwise around the origin of the point (-8,1)
Evaluate the expression for n = –8.
–2n − 6 =
Answer:
10Step-by-step explanation:
-2n - 6 = ?let n be -8-2 (-8) - 6 = ?= 10[tex]\tt{ \green{P} \orange{s} \red{y} \blue{x} \pink{c} \purple{h} \green{i} e}[/tex]
Find theta to the nearest tenth of a degree, if theta is between 0 degrees and 360 degrees for sin theta = 0.4649 with theta in quadrant 2
9514 1404 393
Answer:
152.3°
Step-by-step explanation:
The arcsine function only gives angles in quadrants I and IV. Since this is a quadrant II angle, its value will be ...
θ = 180° -arcsin(0.4649) = 180° -27.7°
θ = 152.3°
Translate and solve: fife less than z is 4
Answer:
z=9
Step-by-step explanation:
z-5=4. /+5
z=4+5
z=9
Answer:
z<-1
Step-by-step explanation:
5<z=4
collect like terms
z=<4-5
z<-1
find the equation of the line
A welding drawing shows that the weld-root reinforcement cannot exceed
" in thickness. Your weld measurement tools are metric, so this value needs to be converted to millimeters. You know that one inch equals 2.54 centimeters. What is the maximum weld-root reinforcement allowed in millimeters? Round your answer to the nearest tenth of a millimeter.
Answer:
3.2 millimeters
Step-by-step explanation:
1/8*2.54 *10 = 3.175
= 3.2 millimeter. (rounded to nearest tenth)
find the volume of the following figure round your answer to the nearest tenth if necessary and make sure to use pi
Answer:
524cm^2
Step-by-step explanation:
Formula for Volume of sphere= 4/3 πr^2
We have,
r=5cm
Now,
Volume(v)=4/3 πr^2 = 4/3π 5^3= 4/3π 125 = 166.666666667π = 523.598775599
Rounding to the nearest tenth,
Volume=524cm^2
The HCF of two numbers is 175. The LCM of these two numbers is 12600. Both numbers are greater than their HCF. Find the two numbers
Answer:
Hello,
Answer : 1400 and 1575
Step-by-step explanation:
Let's say a and b the ywo numbers
[tex]HCF(a,b)=a\vee b=175=5^2*7\\LCM(a,b)=a\wedge b=12600\\\\a*b=(a\vee b)*(a\wedge b)=(2^3*3^2*5^2*7)*(5^2*7)=2^3*3^2*(5^2*7^2)^2\\\\Both\ numbers\ are\ greater\ than\ their HCF\\a=175*k_1\\b=175*k_2\\\\k_1=2^3\ and\ k_2=3^2\\\\a=175*2^3=1400\\b=175*3^2=1575\\\\[/tex]
What integer is equal to 5!×2!?
Answer:
240
Step-by-step explanation:
! means factorial or to multiply by the previous number down to one so 5!=5*4*3*2*1=120 120*2=240.
Consider the graph below, and identify the piecewise function that describes it.
Answer:
f(x)=-x when x belongs to (-infinity, 3)
f(x)=-2 when x belongs to [3, 6]
f(x)=2x-7 when x belongs to (6, infinity)
How to solve this question
hopefully this answer can help you to answer the next question. can you choose this answer as the brainliest answer and give five stars
I need help this is confusing to me
Answer:i think it is b not really sure
Step-by-step explanation:
Solve the equation.
0.50x +0.45(50) = 48.5
x=?
Answer:
x=52 Here is y
Step-by-step explanation:
A lawyer commutes daily from his suburban home to his midtown office. The average time for a one-way trip is 24 minutes, with a standard deviation of 3.8 minutes. Assume the distribution of trip times to be normally distributed.
(a) What is the probability that a trip will take at least ½ hour?
(b) If the office opens at 9:00 A.M. and he leaves his house at 8:45 A.M. daily, what percentage of the time is he late for work?
(c) If he leaves the house at 8:35 A.M. and coffee is served at the office from 8:50 A.M. until 9:00 A.M., what is the probability that he misses coffee?
(d) Find the length of time above which we find the slowest 10% of trips.
(e) Find the probability that 2 of the next 3 trips will take at least one half
1/2 hour.
Answer:
Step-by-step explanation:
a) Probability-Above 30 min = 5.72% = .0572
b) Probability-Above 15 min = 99.11% = .9911
c) *Probability-Between 1 - 59.49% = .4051
d) 19.136 minutes z = -1.28
a) The probability that trip will take at least 1/2 hour will be 0.0606.
b) The percentage of time the lawyer is late for work will be 99.18%.
c) The probability that lawyer misses coffee will be 0.3659.
d) The length of time above which we find the slowest 10% of trips will be 0.5438.
e) The probability that exactly 2 out of 3 trips will take at least one half
1/2 hour is 0.0103.
What do you mean by normal distribution ?
A probability distribution known as a "normal distribution" shows that data are more likely to occur when they are close to the mean than when they are far from the mean.
Let assume the time taken for a one way trip be x .
x ⇒ N( μ , σ ²)
x ⇒ N( 24 , 3.8 ²)
a)
The probability that trip will take at least 1/2 hour or 30 minutes will be :
P ( x ≥ 30)
= P [ (x - μ) / σ ≥ (30 - μ) / σ ]
We know that , (x - μ) / σ = z.
= P [ z ≥ (30 - 24) / 3.8)]
= P [ z ≥ 1.578 ]
= 1 - P [ z ≤ 1.578 ]
Now , using the standard normal table :
P ( x ≥ 30)
= 1 - 0.9394
= 0.0606
b)
The percentage of the time the lawyer is late for work will be :
P ( x ≥ 15)
= P [ z ≥ -2.368 ]
= P [ z ≤ 2.368]
= 0.9918
or
99.18%
c)
The probability that lawyer misses coffee :
P ( 15 < x < 25 ) = P ( x < 25 ) - P ( x < 15)
= P [ z < 0.263] - P ( z < -2.368)
or
= 0.3659
d)
The length of time above which we find the slowest 10% of trips :
P( x ≥ X ) ≤ 0.10
= 0.5438
e)
Let's assume that y represents the number of trips that takes at least half hour.
y ⇒ B ( n , p)
y ⇒ B ( 3 , 0.0606)
So , the probability that exactly 2 out of 3 trips will take at least one half
1/2 hour is :
P ( Y = 2 )
= 3C2 × (0.0606)² × ( 1 - 0.0606)
= 0.0103
Therefore , the answers are :
a) The probability that trip will take at least 1/2 hour will be 0.0606.
b) The percentage of time the lawyer is late for work will be 99.18%.
c) The probability that lawyer misses coffee will be 0.3659.
d) The length of time above which we find the slowest 10% of trips will be 0.5438.
e) The probability that exactly 2 out of 3 trips will take at least one half
1/2 hour is 0.0103.
Learn more about normal distribution here :
https://brainly.com/question/26822684
#SPJ2
The answer pl shhaoksngausinxbbs pls
Answer:
D. 3
Step-by-step explanation:
A triangle can be defined as a two-dimensional shape that comprises three (3) sides, three (3) vertices and three (3) angles.
Simply stated, any polygon with three (3) lengths of sides is a triangle.
In Geometry, a triangle is considered to be the most important shape.
Generally, there are three (3) main types of triangle based on the length of their sides and these include;
I. Equilateral triangle: it has all of its three (3) sides and interior angles equal.
II. Isosceles triangle: it has two (2) of its sides equal in length and two (2) equal angles.
III. Scalene triangle: it has all of its three (3) sides and interior angles different in length and size respectively.
In Geometry, an acute angle can be defined as any angle that has its size less than ninety (90) degrees.
Hence, we can deduce that the greatest number of acute angles that a triangle can contain is three (3) because the sum of all the interior angles of a triangle is 180 degrees.
Solve for the unknown variable
4y-2=8-2y+4y
y=?
Step-by-step explanation:
I hope it helped and it is easy to understand i hope it was helpful
1)4y-2=8-2y+4y
=4y-2y+4y=8-2
2y +4y=8-2
6y+6
12
Write the place and Value of Each Number
27 210 What place is the selected digit in?
What is the value of the selected digit?
48,177 What place is the selected digit in?
What is the value of the selected digit?
A
62,774 What place is the selected digit in?
What is the value of the selected digit?
73,646 What place is the selected digit in?
What is the value of the selected digit
A
Answer:
C
Step-by-step explanation:
3. In A PQR, MZP=(4x-5),
m2Q=(8x-50), and MZR=(3x+10).
Which of the following best describes
APQR?
® Right triangle
® Isosceles triangle
© Equlateral triangle
Scalene triangle
Answer:
B
Step-by-step explanation:
The sum of all of them will result in 180. 15x-45=180. x=15. P=55, Q=70 and R=55. It's an isosceles triangle
Answer:
b
Step-by-step explanation:
its b
find the missing side. round your answer to the nearest tenth. PLEASE HURRY
Answer:
5.4
Step-by-step explanation:
cos(theta) = B/H
cos(75)=x/21, x=5.4
You have $2,000 on a credit card that charges a 16% interest rate. If you want to pay off the credit card in 5 years, how much will you need to pay each month (assuming you don't charge anything new to the card)?
9514 1404 393
Answer:
$48.64
Step-by-step explanation:
The monthly payment amount is given by the amortization formula ...
A = P(r/n)/(1 -(1 +r/n)^(-nt))
where P is the loan amount, r is the annual interest rate compounded n times per year for t years.
Here, you have P=2000, r=0.16, n=12 (months per year), t=5 (years), so the payment is ...
A = $2000(0.16/12)/(1 -(1 +0.16/12)^(-12·5)) = $320/(12(0.54828942))
A ≈ $48.636 ≈ $48.64
You will need to pay $48.64 each month to pay off the charge in 5 years.
write your answer in simplest radical form
Answer:
x = 2 yd
Step-by-step explanation:
Angles of 45 degreees = two congruent legs
for the Pythagorean theorem
2x^2 = 8
x^2 = 4
x = 2
Tile is to be placed in an entryway, as shown below.
At $6.25 per square foot, how much does it cost to tile the entryway?
Calculate the area by using 2 rectangles:
13 x 5 = 65 square feet
5 x 4 = 20 square feet
Total area = 65 + 20 = 80 square feet.
Multiply price per square foot by total area:
6.25 x 80 = 500
Cost = $500
A powder diet is tested on 49 people, and a liquid diet is tested on 36 different people. Of interest is whether the liquid diet yields a higher mean weight loss than the powder diet. The powder diet group had a mean weight loss of 42 pounds with a standard deviation of 12 pounds. The liquid diet group had a mean weight loss of 45 pounds with a standard deviation of 14 pounds. Test at an alpha level at α=.05 and report results using APA format.
Answer:
Hence we do not have enough evidence to conclude that a liquid diet caused more weight loss.
Step-by-step explanation:
Here the answer is given as follows,
look at the image to find the question
Answer:
yes, the volume = 16 ft^3
Calculate the Standard Deviation of the following set of data. 14, 15, 16, 16, 9, 3, 16, 20, 29, 12
Answer:
6,78
Step-by-step explanat
ion:data size :10
Sample mean:15
Standard sample deviation :6,782
Answer:
6,78
Step-by-step explanation: