Answer:
16x+24
Step-by-step explanation:
8(2x)+8(3) [Distributive property]
16x+24
Answer:
16 x + 24
Step-by-step explanation:
8 ( 2 x + 3 )
use distributive property
8 × 2 x + 8 × 3
16 x + 24
Five minivans and three trucks are traveling on a 3.0 mile circular track and complete a full lap in 98.0, 108.0, 113.0, 108.0, 102.0, 101.0, 85.0, and 95.0 seconds, respectively. Assuming all vehicles are traveling at constant speeds, what is the time-mean speed of the minivans
Answer:
The time-mean speed of the minivans is of 105.8 seconds.
Step-by-step explanation:
Mean of a data-set:
The mean of a data-set is the sum of all values in the data-set divided by the number of values.
Five minivans, times of: 98.0, 108.0, 113.0, 108.0, 102.0, in seconds.
Thus, the mean is:
[tex]M = \frac{98 + 108 + 113 + 108 + 102}{5} = 105.8[/tex]
The time-mean speed of the minivans is of 105.8 seconds.
PLS HELP ASAP !!! WILL MARK BRAINLIEST !!
Answer:
c is equal to e
Step-by-step explanation: a
There are 28 chocolate-covered peanuts in 1 ounce (oz). Jay bought a 62 oz. jar of chocolate-covered peanuts.
Problem:
audio
How many chocolate-covered peanuts were there in the jar that Jay bought?
Enter your answer in the box.
Answer:
1,736 chocolate cover peanuts
Step-by-step explanation:
do 28×62 hope this helps
Answer:
1736 chocolate-covered peanuts
Step-by-step explanation:
[tex]\frac{1}{62} :\frac{28}{y}[/tex]
1 · y = 62 · 28
y = 1736
What is the integer x
so that x/9
lies between 71/7
and 113/11 ?
Answer:
(A) 89 (B) 91 (C) 92 (D) 95 4.If |x−2| = p, where x < 2, then x+1 equals (A) −2 (B) 3− p (C) |2p−2| (D) 2p−2 5.A
Step-by-step explanation:
Following are the calculation to the find the value of x:
Given:
Please find the question.
To find:
x=?
Solution:
[tex]\frac{71}{7} <\frac{x}{9} < \frac{113}{11}\\\\10 <\frac{71}{7} < 11 \\\\10< \frac{113}{11}<11\\\\\frac{x}{9} >10\\\\x>90\\\\\text{When}\ x=91 \\\\\frac{71}{7} > \frac{91}{9}\\\\x=92\\\\ \frac{71}{7}< \frac{92}{9} <\frac{113}{11}\\\\[/tex]
so, x= 92 \\\\
by compare score value x= 92
Learn more:
brainly.com/question/3922668
find the value of x, do not round until the final answer.
thank you!
Answer:
[tex]x\approx 5.48[/tex]
Step-by-step explanation:
Draw a line from the center of the circle O to the end of either side of the line marked as 4. This line represents two things:
A radius of the circleThe hypotenuse of a right triangle with legs 5.1 and 2In this case, both are important. Since [tex]x[/tex] is also a radius of the circle, the line must be equal to [tex]x[/tex], since all radii of a circle are equal. To find the length of this line, use the Pythagorean Theorem:
[tex]a^2+b^2=c^2[/tex], where [tex]c[/tex] is the hypotenuse of the triangle and [tex]a[/tex] and [tex]b[/tex] are the two legs of the triangle.
Since we're solving for the hypotenuse and the two legs are 5.1 and 2, we have:
[tex]5.1^2+2^2=c^2,\\26.01+4=c^2,\\c^2=30.01,\\c=5.47813836992\approx \boxed{5.48}[/tex] (round as necessary).
PLEASE HELP
Libby flips a quarter 2 times in a row.
What is the probability of the quarter landing on heads at least 1 time?
A. 1/4
B. 1/3
C. 3/4
D. 1/2
There were 25 teachers in a school whose mean age was 30 years. A teacher retired at the age of 60 years and a new teacher was appointed in his place. The mean age of teachers in the school was reduced by one year. Find the age of new teacher?
The new age of the teacher is 25
Answer:
The age of the new teacher is 35
Juan borrowed $1500 from a credit union for 7 years and was charged simple interest at a rate of 2.97%. What is the amount of interest he paid at the end of the loan
Answer:
The amount of interest he paid at the end of the loan is $ 311.85.
Step-by-step explanation:
Given that Juan borrowed $ 1500 from a credit union for 7 years and was charged simple interest at a rate of 2.97%, to determine what is the amount of interest he paid at the end of the loan, the following calculation must be performed:
(1500 x 0.0297) x 7 = X
44.55 x 7 = X
311.85 = X
Therefore, the amount of interest he paid at the end of the loan is $ 311.85.
In the radius of a circle with an area of 10 inches squared is reduced by half what is the area of the new circle
Answer:
Hence when the radius is halved the area is divided by 4
2.5 inches^2
Step-by-step explanation:
Given data
Area= 10inches^2
We know that the expression for the area of a circle is given as
Area= πr^2
10= 3.142*r^2
10/3.142= r^2
r^2= 3.18
Square both sides
r= √3.18
r= 1.78 inches
Now let us half the radius and find the area of the new circle
r/2= 1.78/2
r= 0.89
Area of the new circle is
Area= 3.142*0.89^2
Area= 3.142*0.7921
Area= 2.5 inches^2
If 25% = 1 over 4. what fraction is 12.5%?
Whose answer will be the best will be marked as the brainlest
Answer:- Hey Buddy! Hope this helps:-
12.5%= 125/10 and when simplified becomes 25/2
pls mark brainliest
a tv cost £800 plus VAT at 20% what is the total cost of the tv?
Answer:
Given:
Cost = £ 800
Tax = 20%
To find:
The total cost
Solution:
Total cost = Cost + Tax
Tax = 20 % of cost
20 / 100 * 800
Tax = £ 160
Hence,
Total cost = £ 800 + £ 160
Total cost = £ 960
one lap around a field is 4/5 of a mile .Adrian ran these laps . how far did he run?
Consider the following data. 15,−4,−10,8,14,−10,−2,−11
Step 1 of 3: Determine the mean of the given data
Step 2 of 3: Determine the median of the given data.
Step 3 of 3: Determine if the data set is unimodal, bimodal, multimodal, or has no mode. Identify the mode(s), if any exist.
Answer:
(a) The mean is 0
(b) The median is -30
(c) The mode is unimodal
Step-by-step explanation:
Given
[tex]Data: 15,-4,-10,8,14,-10,-2,-11[/tex]
Solving (a): The mean.
This is calculated using:
[tex]\bar x = \frac{\sum x}{n}[/tex]
So, we have:
[tex]\bar x =\frac{15-4-10+8+14-10-2-11}{8}[/tex]
[tex]\bar x =\frac{0}{8}[/tex]
[tex]\bar x =0[/tex]
Solving (b): The median
First, arrange the data
[tex]Sorted: -11,-10, -10, -4, -2,8,14,15[/tex]
There are 4 elements in the dataset. So, the median is the mean of the 4th and 5th item.
[tex]Median = \frac{-4-2}{2}[/tex]
[tex]Median = \frac{-6}{2}[/tex]
[tex]Median = -3[/tex]
Solving (c): The mode
The item that has occurs most is -10.
Hence, the mode is -10. The dataset is unimodal because it has only 1 mode (-10).
Find the equation of the least squares regression line. Show all calculations, and be sure to define any variables used.
What is the distance between A(-8, 4) and B(4, -1)?
Answer:
The distance between A(-8, 4) and B(4, -1) is 13 units.
Step-by-step explanation:
To find the distance between any two points, we can use the distance formula given by:
[tex]\displaystyle d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2[/tex]
We have the two points A(-8, 4) and B(4, -1). Let A(-8, 4) be (x₁, y₁) and let B(4, -1) be (x₂, y₂). Substitute:
[tex]d=\sqrt{(4-(-8))^2+(-1-4)^2}[/tex]
Evaluate:
[tex]d=\sqrt{(12)^2+(-5)^2}[/tex]
So:
[tex]d=\sqrt{144+25}=\sqrt{169}=13\text{ units}[/tex]
The distance between A(-8, 4) and B(4, -1) is 13 units.
___________________________________
Problem:What is the distance between A(-8,4) and B(4,-1)Given:[tex]\quad\quad\quad\quad\tt{A.) x\tiny{1}\small{=-8}, y\tiny{1}\small{=4}}[/tex]
[tex]\quad\quad\quad\quad\tt{B.) x\tiny{2}\small{=4}, y\tiny{2}\small{=-1}}[/tex]
Formula for distance (d):[tex]\quad\quad\quad\quad\tt{d = \sqrt{(x \tiny{2} \small{ - x \tiny{1} \small {)}^{2} + (y \tiny{2} \small{ - y \tiny{1} \small{)}^{2} } }}} [/tex]
Solution:[tex]\quad\quad\quad\quad\tt{d = \sqrt{(4 - \small{ (- 8}{))}^{2} + ( \small{- 1)}\small{ - {4)}}^{2} }}[/tex]
[tex]\quad\quad\quad\quad\tt{d = \sqrt{ ( {12)}^{2} + {( -5)}^{2} }}[/tex]
[tex]\quad\quad\quad\quad\tt{d = \sqrt{ {144} + {25}}}[/tex]
[tex]\quad\quad\quad\quad\tt{d = \sqrt{ 169}}[/tex]
[tex]\quad\quad\quad\quad\tt{d = 13}[/tex]
So the final answer is:[tex]\quad\quad\quad\quad\boxed{\boxed{\tt{\color{magenta}d = 13}}}[/tex]
___________________________________
#CarryOnLearning
✍︎ C.Rose❀
Which expression gives the measure of XYZ?
V
110°
w
D
42
O A. 110° - 42°
O B. 2(110° + 42°)
O c. 2(110° - 42°)
OD. 110° +420
Answer:
1/2( 110+42)
Step-by-step explanation:
Angle Formed by Two Chords= 1/2(sum of Intercepted Arcs)
<<XYZ = 1/2( 42+110)
What is the value of x?
Enter your answer in the box.
units
9514 1404 393
Answer:
x = 25
Step-by-step explanation:
The parallel lines divide the triangle sides proportionally.
x/40 = 15/24
x = 40(15/24) . . . . multiply by 40
x = 25
A study of college football games shows that the number of holding penalties assessed has a mean of penalties per game and a standard deviation of penalties per game. What is the probability that, for a sample of college games to be played next week, the mean number of holding penalties will be penalties per game or less
Answer:
The probability that the mean number of holding penalties per game is of X or less is the p-value of [tex]Z = \frac{X - \mu}{\frac{\sigma}{\sqrt{n}}}[/tex], in which [tex]\mu[/tex] is the mean number of penalties per game, [tex]\sigma[/tex] is the standard deviation and n is the number of games that will be sampled.
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
We have that:
The mean number of penalties per game is [tex]\mu[/tex] and the standard deviation is [tex]\sigma[/tex].
Sample of n games:
This means that [tex]s = \frac{\sigma}{\sqrt{n}}[/tex]
What is the probability that, for a sample of college games to be played next week, the mean number of holding penalties will be X penalties per game or less?
The probability that the mean number of holding penalties per game is of X or less is the p-value of [tex]Z = \frac{X - \mu}{\frac{\sigma}{\sqrt{n}}}[/tex], in which [tex]\mu[/tex] is the mean number of penalties per game, [tex]\sigma[/tex] is the standard deviation and n is the number of games that will be sampled.
What is 30 rounded to the nearest whole number percent?
Answer:
Thirty rounded to the nearest whole number percent is 30% (%=percent)
Step-by-step explanation:
Well, you see that if you have 30 out of one hundred then that's when all you have to do is go with the same number and just add percent or % to the end.
Please Mark as Brainliest
Hope this Helps
This is just evidence
Which
expression is equivalent to -3-4
Answer: wheres the photo ?
Step-by-step explanation:
Answer:
-3-4=-7
-3+(-4)
hope this helps
have a good day :)
Step-by-step explanation:
Do anyone know this youll get 20 points
Answer:
A. Acute
B. 80 degrees
Step-by-step explanation:
Wally bought a television for $987.00. The finance charge was $205 and she paid for it over 24 months. (Finance Ch arg e: #Months)(12) Amount Financed Use the formula Approximate APR to calculate her approximate APR. Round the answer to the nearest tenth.
Answer:
10.4%Step-by-step explanation:
Principal is $987.Finance charge is $205Time is 2 yearsAPR = ((Finance charge/Principal)/Time)*100% (simplified for this case)APR = ((205/987)/2)*100% = 10.4%The augmented matrix is given for a system of equations. If the system is consistent, find the general solution. Otherwise state that there is no solution.
[1 -5 -4
0 0 7]
A. X1 = - 4 + 5x2 X2 is free
B. (-4,7)
C. X1 = - 4 +5x2
X2=7
X3 is free
D. There is no solution.
Answer:
Option D (There is no solution) is the correct answer.
Step-by-step explanation:
According to the question, the matrix is:
⇒ [tex]\left[\begin{array}{ccc}1&-5&-4\\0&0&7\end{array}\right][/tex]
The linear equation will be:
⇒ [tex]x-5y=-4[/tex]
and
⇒ [tex]0.x+0.y=7[/tex]
i.e,
[tex]0=7[/tex] (Not possible)
Thus the above given matrix has no solution. So the above is the correct option.
Alex is planning to surround his pool ABCD with a single line of tiles. How many units of tile will he need to surround his pool? Round your answer to the nearest hundredth.
Answers:
8.96
10.48
13.42
20.42
Answer:19.82
Step-by-step explanation:
Got it right i did it on a test
A box of 10 flashbulbs contains defective . A random sample of 2 is selected and tested. Let X be the random variable associated with the number of defective bulbs in the sample. a. Find the probability distribution of X. b. Find the expected number of defective bulbs in a sample.
Answer:
(a)
[tex]Pr(x = 0) = \frac{^7C_2}{45}[/tex] [tex]Pr(x = 1) = \frac{^7C_1 * ^3C_1}{45}[/tex] [tex]Pr(x = 2) = \frac{^3C_2}{45}[/tex]
(b)
[tex]E(x) = \frac{3}{5}[/tex]
Step-by-step explanation:
Given
[tex]n = 10[/tex] --- flashbulbs
[tex]k = 3[/tex] --- defective bulbs
[tex]r = 2[/tex] --- selected
Solving (a): The distribution of x
The total outcome is: [tex]^nC_r[/tex]
This gives:
[tex]^{10}C_2 = 45[/tex]
Having 3 defective bulbs means 7 are not.
When there is no defective bulb among the selected, the probability is:
[tex]Pr(x = 0) = \frac{^7C_2}{45}[/tex]
When 1 is defective:
[tex]Pr(x = 1) = \frac{^7C_1 * ^3C_2}{45}[/tex]
When both are defective
[tex]Pr(x = 2) = \frac{^3C_2}{45}[/tex]
So, the distribution is:
[tex]Pr(x = 0) = \frac{^7C_2}{45}[/tex]
[tex]Pr(x = 1) = \frac{^7C_1 * ^3C_1}{45}[/tex]
[tex]Pr(x = 2) = \frac{^3C_2}{45}[/tex]
Solving (b): The expected value
This is calculated as:
[tex]E(x) = \sum x * Pr(x)[/tex]
So, we have:
[tex]E(x) = x_1 * Pr(x_1) +x_2 * Pr(x_2) + ............... + x_n * Pr(x_n)[/tex]
The equation becomes:
[tex]E(x) = 0* Pr(x=0) +1* Pr(x=1) + 2 * Pr(x=2)[/tex]
[tex]E(x) = 1* Pr(x=1) + 2 * Pr(x=2)[/tex]
[tex]E(x) = Pr(x=1) + 2 * Pr(x=2)[/tex]
From the distribution in (a), we have:
[tex]E(x) = \frac{^7C_1 * ^3C_1}{45} + 2 * \frac{^3C_2}{45}[/tex]
[tex]E(x) = \frac{7 * 3}{45} + 2 * \frac{3}{45}[/tex]
[tex]E(x) = \frac{21}{45} + \frac{6}{45}[/tex]
[tex]E(x) = \frac{21+6}{45}[/tex]
[tex]E(x) = \frac{27}{45}[/tex]
Simplify
[tex]E(x) = \frac{3}{5}[/tex]
prove that tan theta * sin theta = (1 - cos^2 theta)/(sqrt(1 - sin^2 theta))
Answer:
This identity holds as long as [tex]\displaystyle \theta \ne k\, \pi + \frac{\pi}{2}[/tex] for all integer [tex]k[/tex].
For the proof, make use of the fact that:
[tex]\displaystyle \tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)}[/tex] (definition of tangents,) and
[tex]\cos(\theta) = \sqrt{1 - \sin^{2}(\theta)}[/tex] (Pythagorean identity,) which is equivalent to [tex]1 - \cos^{2}(\theta) = \sin^{2}(\theta)[/tex].
Step-by-step explanation:
Assume that [tex]\displaystyle \theta \ne k\, \pi + \frac{\pi}{2}[/tex] for all integer [tex]k[/tex]. This requirement ensures that the [tex]\tan(\theta)[/tex] on the left-hand side takes a finite value. Doing so also ensures that the denominator [tex]\sqrt{1 - \sin^2(\theta)}[/tex] on the right-hand side is non-zero.
Make use of the fact that [tex]\displaystyle \tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)}[/tex] to rewrite the left-hand side:
[tex]\begin{aligned} & \tan(\theta) \cdot \sin(\theta) \\ =&\; \frac{\sin({\theta})}{\cos({\theta})} \cdot \sin(\theta) \\ =&\; \frac{\sin^{2}(\theta)}{\cos(\theta)}\end{aligned}[/tex].
Apply the Pythagorean identity [tex]\sin^{2}(\theta) = 1 - \cos^{2}(\theta)[/tex] and [tex]\cos(\theta) = \sqrt{1 - \sin^{2}(\theta)}[/tex] to rewrite this fraction:
[tex]\begin{aligned} & \frac{\sin^{2}(\theta)}{\cos(\theta)}\\ =\; &\frac{1 - \cos^{2}(\theta)}{\cos(\theta)}\\ =\; & \frac{1 - \cos^{2}(\theta)}{\sqrt{1 - \sin^{2}(\theta)}}\end{aligned}[/tex].
Hence, [tex]\displaystyle \tan(\theta) \cdot \sin(\theta) = \frac{1 - \cos^{2}(\theta)}{\sqrt{1 - \sin^{2}(\theta)}}[/tex].
A man travelled a distance of 61 miles in 7 hours. He covered a part of the distance at a speed of 8 miles/ hr and the remaining at a speed of 10 miles/ hr. How long did he travel at 8 miles/ hr?
Answer:
4.5 hours
Step-by-step explanation:
8t + 10(7-t) = 61
8t +70-10t=61
-2t = 61-70
-2t= -9
t = -9/-2
t = 4.5
What is the equation of the line that passes through the point (1,7)and has a slope of -1
?
Answer:
y = -x + 8
Step-by-step explanation:
First, plug in the slope.
y = mx + b
y = -1x + b
y = -x + b
Then, plug in the point.
7 = -(1) + b
7 = -1 + b
8 = b
Evaluate f(x) =
f(x) = x for x = 4.
3
Answer:
x=3
Step-by-step explanation:
Standard form for -3x^+ x=13
Answer:
to put the equation into standard for we must multiply the terms on the right side of the equation. To multiply these two terms you multiply each individual term in the left parenthesis by each individual term in the right parenthesis.
Step-by-step explanation:
y
=
(
x
−
13
)
(
x
−
12
)
becomes:
y
=
(
x
×
x
)
−
(
x
×
12
)
−
(
13
×
x
)
+
(
13
×
12
)
y
=
x
2
−
12
x
−
13
x
+
156
We can now combine like terms:
y
=
x
2
+
(
−
12
−
13
)
x
+
156
y
=
x
2
+
(
−
25
)
x
+
156
y
=
x
2
−
25
x
+
156