b(8b+7)
Answer:
Solution given;
8b²+7b
let look what is common there;
8*b*b+7*b
over here b is common
take common and keep other remaining on bracket
b(8b+7)
In a simple way b(8b+7) is a factorise form of
8b²+7b
Not sure how to do this
f(x) = 2x2 + 4x - 5
g(x) = 6x3 – 2x2 + 3
Find (f + g)(x).
Answer:
4x-5=4x-5
(f+g) (x)=6x³+3Step-by-step explanation:
if p is a acute angle then p is how many degrees
Answer:
Less than 90⁰
Step-by-step explaination:
If p is an acute angle then, p can be equal to any measurement less than 90⁰
It can be upto 89⁰
Answer:
0 < angle < 90
Step-by-step explanation:
Acute angles are between 0 and up to 90 degrees
Right angles are 90 degrees
Obtuse angles are greater than 90 degrees and less than 180 degrees
How many subsets will the sets have? {sheep that have eight legs }
Answer:
256
Step-by-step explanation:
How to find subsets = 2 raise the power n.
N=number of elements in a set.
=2raise the power 8 which is 256.
Find x on this triangle
Answer:
3 sqrt(3) =x
Step-by-step explanation:
Since this is a right triangle, we can use trig functions
cos theta = adj / hyp
cos 30 = x/6
6 cos 30 = x
6 ( sqrt(3)/2) = x
3 sqrt(3) =x
Find the exact length of the curve. x=et+e−t, y=5−2t, 0≤t≤2 For a curve given by parametric equations x=f(t) and y=g(t), arc length is given by
The length of a curve C parameterized by a vector function r(t) = x(t) i + y(t) j over an interval a ≤ t ≤ b is
[tex]\displaystyle\int_C\mathrm ds = \int_a^b \sqrt{\left(\frac{\mathrm dx}{\mathrm dt}\right)^2+\left(\frac{\mathrm dy}{\mathrm dt}\right)^2} \,\mathrm dt[/tex]
In this case, we have
x(t) = exp(t ) + exp(-t ) ==> dx/dt = exp(t ) - exp(-t )
y(t) = 5 - 2t ==> dy/dt = -2
and [a, b] = [0, 2]. The length of the curve is then
[tex]\displaystyle\int_0^2 \sqrt{\left(e^t-e^{-t}\right)^2+(-2)^2} \,\mathrm dt = \int_0^2 \sqrt{e^{2t}-2+e^{-2t}+4}\,\mathrm dt[/tex]
[tex]=\displaystyle\int_0^2 \sqrt{e^{2t}+2+e^{-2t}} \,\mathrm dt[/tex]
[tex]=\displaystyle\int_0^2\sqrt{\left(e^t+e^{-t}\right)^2} \,\mathrm dt[/tex]
[tex]=\displaystyle\int_0^2\left(e^t+e^{-t}\right)\,\mathrm dt[/tex]
[tex]=\left(e^t-e^{-t}\right)\bigg|_0^2 = \left(e^2-e^{-2}\right)-\left(e^0-e^{-0}\right) = \boxed{e^2-\frac1{e^2}}[/tex]
The exact length of the curve when the parametric equations are x = f(t) and y = g(t) is given below.
[tex]e^2 -\dfrac{1}{e^2 }[/tex]
What is integration?It is the reverse of differentiation.
The parametric equations are given below.
[tex]\rm x=e^t+e^{-t}, \ \ 0\leq t\leq 2\\\\y=5-2t, \ \ \ \ \ 0\leq t\leq 2[/tex]
Then the arc length of the curve will be given as
[tex]\int _0^2 \sqrt{(\dfrac{dx}{dt})^2+(\dfrac{dy}{dx})^2}[/tex]
Then we have
[tex]\rm \dfrac{dx}{dt} = e^t-e^{-t}\\\\ \dfrac{dy}{dt} = -2[/tex]
Then
[tex]\rightarrow \int _0^2 \sqrt{(\dfrac{dx}{dt})^2+(\dfrac{dy}{dx})^2}\ \ dt\\\\\rightarrow \int _0^2 \sqrt{(e^t-e^{-t})^2 + (-2)^2} \ dt\\\\\rightarrow \int _0^2 \sqrt{(e^t+e^{-t})^2} \ dt\\\\\rightarrow \int _0^2 (e^t+e^{-t}) \ dt\\\\\rightarrow (e^2-e^{-2}) \\\\\rightarrow e^2 - \dfrac{1}{e^2}[/tex]
More about the integration link is given below.
https://brainly.com/question/18651211
15
Simplify
a
25
O A. a3
O B. a10
O c. a-10
O D. a-3
Answer:
B is the correct answer of your question.
I HOPE I HELP YOU....
Please I need a step by step explanation ASAP.
Calculate the perimeter and area of the shape below:
Answer:
38.6 cm
Step-by-step explanation:
add all of the sides up to get your perimeter
The travel time on a section of a Long Island Expressway (LIE) is normally distributed with a mean of 80 seconds and a standard deviation of 6 seconds. What travel time separates the top 2.5% of the travel times from the rest
Answer:
The travel time that separates the top 2.5% of the travel times from the rest is of 91.76 seconds.
Step-by-step explanation:
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Mean of 80 seconds and a standard deviation of 6 seconds.
This means that [tex]\mu = 80, \sigma = 6[/tex]
What travel time separates the top 2.5% of the travel times from the rest?
This is the 100 - 2.5 = 97.5th percentile, which is X when Z has a p-value of 0.975, so X when Z = 1.96.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]1.96 = \frac{X - 80}{6}[/tex]
[tex]X - 80 = 6*1.96[/tex]
[tex]X = 91.76[/tex]
The travel time that separates the top 2.5% of the travel times from the rest is of 91.76 seconds.
Josue leans a 26-foot ladder against a wall so that it forms an
angle of 80° with the ground. How high up the wall does the
ladder reach? Round your answer to the nearest hundredth of a
foot if necessary.
Answer:
25.61 feet
Step-by-step explanation:
First, we can draw a picture (see attached picture). With the wall representing the rightmost line, and the ground representing the bottom line, the ladder (the hypotenuse) forms a 80 degree angle with the ground and the wall and ground form a 90 degree angle.
Without solving for other angles, we know one angle and the hypotenuse, and want to find the opposite side of the angle.
One formula that encompasses this is sin(x) = opposite/hypotenuse, with x being 80 degrees and the hypotenuse being 26 feet. We thus have
sin(80°) = opposite / 26 feet
multiply both sides by 26 feet
sin(80°) * 26 feet = opposite
= 25.61 feet as the height of the wall the ladder reaches
The height of the wall does the ladder reach to the nearest hundredth of the foot is 25.61 feet.
What is a right-angle triangle?It is a type of triangle in which one angle is 90 degrees and it follows the Pythagoras theorem and we can use the trigonometry function. The Pythagoras is the sum of the square of two sides is equal to the square of the longest side.
Josue leans a 26 feet ladder against a wall so that it forms an angle of 80° with the ground.
The condition is shown in the diagram.
Then the height of the wall will be
[tex]\rm \dfrac{h }{26 } = sin 80 \\\\h \ \ = 26 \times sin 80\\\\h \ \ = 25.61 \ ft[/tex]
More about the right-angle triangle link is given below.
https://brainly.com/question/3770177
Rubin grew 9 tomatoes with 6 seed packs. How many seed packs does Rubin need to have a total of 21 tomatoes in his garden?
Answer: 14 seed packs
Step-by-step explanation:
You'd divide the 9 tomatoes by the 6 seed packs that were necessary to grow them, resulting in 1.5 tomatoes per seed pack. Divide 21 by this 1.5 to find the number of seed packs needed to grow 21 tomatoes, which would be 14.
WILL MAKE BRAINLIEST
Answer:
x=3
Step-by-step explanation:
The ratios need to be the same
AB CB
---------- = ----------
AD ED
3 x
----- = ---------
3+9 12
3 x
----- = ---------
12 12
X must equal 3
Answer this please~!!!!
Answer:
12
Step-by-step explanation:
113.04=3.14 x 3^2 x h/3
What is the value of the expression 10(6 + 5)² when b = 3?
10(3+5)^2
10(8)^2
10(64)
=640
If there is a 65% chance you will make a free throw, what percent of the
time you will miss? *
Given:
There is a 65% chance you will make a free throw.
To find:
The percent of the time you will miss.
Solution:
If p is the percent of success and q is the percent of failure, then
[tex]p+q=100\%[/tex]
[tex]q=100\%-p[/tex] ...(i)
It is given that there is a 65% chance you will make a free throw. It means the percent of success is 65%. We need to find the percent of the time you will miss. It means we have to find the percent of failure.
Substituting p=65% in (i), we get
[tex]q=100\%-65\%[/tex]
[tex]q=35\%[/tex]
Therefore, there is a 35% chance you will miss the free throw.
A solid oblique pyramid has a square base with edges measuring x cm. The height of the pyramid is (x + 2) cm.
A solid oblique pyramid has a square base with edges measuring x centimeters. The height is (x + 2) centimeters.
Which expression represents the volume of the pyramid?
StartFraction x cubed + 2 x squared Over 3 EndFraction cm3
StartFraction x squared + 2 x squared Over 2 EndFraction cm3
StartFraction x cubed Over 3 EndFraction cm3
StartFraction x cubed + 2 x squared Over 2 EndFraction cm3
Answer:
Hello,
Answer A StartFraction x cubed + 2 x squared Over 3 EndFraction cm3
Step-by-step explanation:
[tex]V=x^2*\dfrac{x+2}{3} \\\\\boxed{V=\dfrac{x^3+2x^2}{3} }\\[/tex]
the third of the sum of the cube of x and double of the square of x ( cm³)
The Volume of pyramid with a square base of side x cm and height of (x + 2) cm is (x³ + 2x²) / 3
What is volume?
Volume is the amount of space occupied by a three dimensional shape or object.
Area of the square base = x * x = x² cm²
Volume of pyramid = (1/3) * area of base * height = (1/3) * x² * (x + 2)
Volume of pyramid = (x³ + 2x²) / 3
The Volume of pyramid with a square base of side x cm and height of (x + 2) cm is (x³ + 2x²) / 3
Find out more on volume at: https://brainly.com/question/12410983
wrote the terms below.
–8, –4, 0, 4, 8, 12
What do these terms represent?
an arithmetic series
an arithmetic sequence
a geometric series
a geometric sequence
Answer:
an arithmetic sequence
Step-by-step explanation:
an arithmetic series is wrong also heres an example i found of an arithmetic sequence
The terms in the given sequence represents an arithmetic sequence.
What is Arithmetic Sequence?Arithmetic sequence is a sequence of numbers where the numbers are arranged ion a definite order such that the difference of two consecutive numbers is a constant. This constant of difference is called common difference which is commonly denoted by the letter 'd'.
Given sequence of numbers is,
-8, -4, 0, 4, 8, 12, ......
We have to find which sequence does it represent.
This is not a series since they are not represented as the sum.
If the sequence is a geometric sequence, then the ratio of consecutive numbers will be same.
If it is arithmetic sequence, then the difference of consecutive numbers will be same.
Here, ratio is not same.
Difference are same.
-4 - -8 = 4, 0 - -4 = 4, 4 - 0 = 4, 8 - 4 = 4, ........
Common difference is 4.
Hence it is an arithmetic sequence.
Learn more about arithmetic Sequence here :
https://brainly.com/question/15412619
#SPJ3
Hii guys if you have time plz help me
Answer:
[tex]5 {x}^{2} + 21 + 5x[/tex]
Step-by-step explanation:
TOTAL AMOUNT earned = Tim money + Melina money
[tex]5 {x}^{2} - 4x + 8 + (9x + 13)[/tex]
[tex] = 5 {x}^{2} - 4x + 8 + 9x + 13[/tex]
[tex] = 5 {x}^{2} + 21 + 5x[/tex]
For a standard normal distribution, find:
P(z > -1.6)
Express the probability as a decimal rounded to 4 decimal places.
Answer:
P(z > -1.76) = 1 - P(z < -1.76) = 1 - 0.0392 = 0.960
In forming a confidence interval for μ1 - μ2, only two assumptions are required: independent samples and sample sizes of at least 30.
a. True
b. False
can someone help me out with this question???
Answer:
a
Step-by-step explanation:
In the picture the exponent says 5/3
Answer:
the answer is B
Step-by-step explanation:
[tex] {{ (- 2)}^{3}}^{5 \div 3} = { ( - 2)}^{5} = - 32[/tex]
write -8 form of 2 on up and complete other steps
Assume that in the absence of immigration and emigration, the growth of a country's population P(t) satisfies dP/dt = kP for some constant k > 0.
a. Determine a differential equation governing the growing population P(t) of the country when individuals are allowed to immigrate into the country at a constant rate r > 0.
b. What is the differential equation for the population P(t) of the country when individuals are allowed to emigrate at a constant rate r > 0?
Answer:
[tex](a)\ \frac{dP}{dt} = kP + r[/tex]
[tex](b)\ \frac{dP}{dt} = kP - r[/tex]
Step-by-step explanation:
Given
[tex]\frac{dP}{dt} = kP[/tex]
Solving (a): Differential equation for immigration where [tex]r > 0[/tex]
We have:
[tex]\frac{dP}{dt} = kP[/tex]
Make dP the subject
[tex]dP =kP \cdot dt[/tex]
From the question, we understand that: [tex]r > 0[/tex]. This means that
[tex]dP =kP \cdot dt + r \cdot dt[/tex] --- i.e. the population will increase with time
Divide both sides by dt
[tex]\frac{dP}{dt} = kP + r[/tex]
Solving (b): Differential equation for emigration where [tex]r > 0[/tex]
We have:
[tex]\frac{dP}{dt} = kP[/tex]
Make dP the subject
[tex]dP =kP \cdot dt[/tex]
From the question, we understand that: [tex]r > 0[/tex]. This means that
[tex]dP =kP \cdot dt - r \cdot dt[/tex] --- i.e. the population will decrease with time
Divide both sides by dt
[tex]\frac{dP}{dt} = kP - r[/tex]
Given the exchange rate as K1: HK$1.353, calculate Hong Kong dollar equivalent of K70
Answer:
The Hong Kong dollar equivalent of K70 is HK $ 94.71.
Step-by-step explanation:
Given the exchange rate as K1: HK $ 1,353, to calculate Hong Kong dollar equivalent of K70 the following calculation must be performed:
1,353 x 70 = X
94.71 = X
Therefore, the Hong Kong dollar equivalent of K70 is HK $ 94.71.
a soft drink vendor at a popular beach analyzes his sales recods and finds that if he sells x cans of soda pop in one day, his profit (in dollars) is given by
Complete Question:
A soft-drink vendor at a popular beach analyzes his sales records, and finds that if he sells x cans of soda pop in one day, his profit (in dollars) is given by P(x) = -0.001x² + 3x - 1800.
a. What is his maximum profit per day?
b. How many cans must be sold in order to obtain the maximum profit?
Answer:
a. $450
b. 1500 cans
Step-by-step explanation:
Given the following quadratic function;
P(x) = -0.001x² + 3x - 1800 ......equation 1
a. To find his maximum profit per day;
Since P(x) is a quadratic equation, P(x) would be maximum when [tex] x = \frac {-b}{2a} [/tex]
Note : the standard form of a quadratic equation is ax² + bx + c = 0 ......equation 2
Comparing eqn 1 and eqn 2, we have;
a = -0.001, b = 3 and c = -1800
Now, we determine the maximum profit;
[tex] x = \frac {-b}{2a} [/tex]
Substituting the values, we have;
[tex] x = \frac {-3}{2*(-0.001)} [/tex]
Cancelling out the negative signs, we have;
[tex] x = \frac {3}{2*0.001} [/tex]
[tex] x = \frac {3}{0.002} [/tex]
x at maximum = 1500
Substituting the value of "x" into equation 1;
P(1500) = -0.001 * 1500² + 3(1500) - 1800
P(1500) = -0.001 * 2250000 + 4500 - 1800
P(1500) = -2250 + 2700
P(1500) = $450
b. Therefore, the soft-drink vendor must sell 1500 cans in order to obtain the maximum profit.
HELP PLZ<3
An international company has 28,300 employees in one country. If this represents 34.1% of the company's employees, how many employees does it have in
total?
Round your answer to the nearest whole number.
Answer:
82991 employees
Step-by-step explanation:
One way to solve this would be to solve for 1% of the company's employees and use that value to solve for 100% (100%=the whole part, or the total). We know that
28300 = 34.1%
If we divide a number by itself, it turns into 1. Dividing both sides by 34.1, we get
829.912 = 1%
Then, we know that anything multiplied by 1 is equal to itself. We want to figure out 100%, or the whole part, so we can multiply both sides by 100 to get
100% = 82991
What is the common difference in this sequence: 3, 11, 19, 27,35?
1
ОА.1/8
O B. 3
O C. 8
O D. 12
Answer:
8
Step-by-step explanation:
To determine the common difference, take the second term and subtract the first term
11-3 = 8
Check with the other terms in the sequence
19-11= 8
27-19 = 8
35-27=8
The common difference is 8
Answer:
C. 8
Step-by-step explanation:
There is a common difference between them and that’s 8.
3 + 8 = 11
11 + 8 = 19
19 + 8 = 27
27 + 8 = 35
Select the correct answer.
Simplify the following expression. Classify the resulting polynomial.
3x(x − 3) + (2x + 6)(-x − 3)
quadratic monomial
quadratic binomial
quadratic trinomial
linear binomial
Answer:
quadratic trinomial
Step-by-step explanation:
3x(x − 3) + (2x + 6)(-x − 3)
Distribute
3x^2 -9x + (2x + 6)(-x − 3)
FOIL
3x^2 -9x + -2x^2 -6x -6x -18
Combine like terms
x^2-21x-18
This has 3 terms so it is a trinomial
The highest power of x is 2 so it is quadratic
9514 1404 393
Answer:
x² -21x -18quadratic trinomialStep-by-step explanation:
Eliminating parentheses, we get ...
= (3x)(x) -(3x)(3) +(2x)(-x -3) +6(-x -3)
= 3x² -9x +(2x)(-x) +(2x)(-3) +(6)(-x) +(6)(-3)
= 3x² -9x -2x² -6x -6x -18
= x²(3 -2) +x(-9-6-6) -18
= x² -21x -18
The highest power is 2, so this is a quadratic.
There are 3 terms, so this is a trinomial.
If you make $11.25/hour, how many hours will you need to work to earn $416.25? Please explain how you figured this out.
Answer:
37 hours.
Step-by-step explanation:
Since you need $416.25 start with that. Then divide by $11.25 to see how many hours you need to work. 416.25 divided by 11.25 is 37.
Purpose: The purpose of this learning activity is to demonstrate the understanding of correlation and regression and how they could be important in your future practice. Instructions: Submit 1 paragraph answering the following questions: • What are the differences between results that demonstrate a correlation between two variables and results where a regression is run using two variables? • Think about your future clinical role and provide a clinical example of variables that you may want a correlation analysis run and explain. • Think about your future clinical role and provide a clinical example of variables that you may want a regression analysis run and explain.
Answer:
A correlation shows strength and regression tells the pattern.
Step-by-step explanation:
• The differences between the results that demonstrate a correlation between two variables and results where a regression is run using two variables are as follows
1) the correlation is the measure of degree to which any two variables may vary together.
2) if both variables tend to increase or decrease together the correlation is said to be direct or positive.
3) the correlation gives the strength of relationship between two quantities
4) The regression gives the relationship in the form of an equation.
5) The regression investigates the dependence of the dependent variable on the independent variable.
6) it shows the relationship whether it is linear or curved or parabolic etc.
• I may record the ages and the blood pressure of the patients and run a correlation analysis which may not be positive as blood pressure does not always increase with age
• I may record the ages and the blood pressure of the patients and may want to run a regression analysis which will show the relationship of the patients suffering from high blood pressure and their ages whether it follows a similar pattern or not.