Answer:
[tex]T=8.1N[/tex]
Explanation:
From the question we are told that:
Mass m=0.40
Radius r=1.8m
Angle Beneath the Horizontal \theta =40 \textdegree
Speed v=5.0m/s
The Tension Angle
[tex]\alpha=90-\theta\\\\\alpha=90-40[/tex]
[tex]\alpha=50 \textdegree[/tex]
Generally the equation for Tension is is mathematically given by
[tex]T=\frac{mv^2}{r}+mgcos \alpha[/tex]
[tex]T=\frac{0.40*5^2}{1.8}+0.40*5cos50[/tex]
[tex]T=8.1N[/tex]
Cho dòng điện xoay chiều trong sản xuất và sinh hoạt ở nước ta có tần số f = 50Hz. Tính chu kỳ T và tần số góc ω?
Answer:
T = 1/f = 1/50(s)
ω = 2πf = 100π (rad/s)
(vote 5 sao nhó :3 )
HELP ME PLZ FAST
There is more than 1 answer,
The picture is down
Answer:
test her prototype and collect data about its flight
Express 6revolutions to radians
Answer:
About 37.70 radians.
Explanation:
1 revolution = 2[tex]\pi[/tex] radians
∴ 6 revolutions = (6)(2[tex]\pi[/tex] radians)
6 revolutions = 37.6991 or ≈ 37.70 radians
A spherically mirrored ball is slowly lowered at New Years Eve as midnight approaches. The ball has a diameter of 8.0 ft. Assume you are standing directly beneath it and looking up at the ball. When your reflection is half your size then the mirror is _______ ft above you.
Answer:
The distance between mirror and you is 2 ft.
Explanation:
diameter, d = 8 ft
radius of curvature, R = 4 ft
magnification, m = 0.5
focal length, f = R/2 = 4/2 = 2 ft
let the distance of object is u and the distance of image is v.
[tex]\frac{1}{f}=\frac{1}{v}+\frac{1}{u}\\\\\frac{1}{2}=\frac{1}{v}+\frac{1}{u}\\\\v = \frac {2 u}{u - 2}[/tex]
Use the formula of magnification
[tex]m = \frac{v}{u}\\\\0.5 =\frac { u}{u - 2}\\ \\u - 2 = 2 u \\\\u = -2 ft[/tex]
how will be electric lines of force where intensity of electric field is maximum ?
a. wider
b. +ve to -ve
c. narrow
d. -ve to +ve
i'm pretty sure the answer is A wider
Electric lines of force where intensity of electric field is maximum when its wider.
What is Electric field?The physical field that surrounds electrically charged particles and exerts force on all other charged particles in the field, either attracting or repelling them, is known as an electric field (also known as an E-field. It can also refer to a system of charged particles' physical field.
Electric charges and time-varying electric currents are the building blocks of electric fields. The electromagnetic field, one of the four fundamental interactions (also known as forces) of nature, manifests itself in both electric and magnetic fields.
Electrical technology makes use of electric fields, which are significant in many branches of physics. For instance, in atomic physics and chemistry, the electric field acts as an attracting force to hold atoms' atomic nuclei and electrons together.
Therefore, Electric lines of force where intensity of electric field is maximum when its wider.
To learn more about electric field, refer to the link:
https://brainly.com/question/1443103
#SPJ2
An object of mass 80 kg is released from rest from a boat into the water and allowed to sink. While gravity is pulling the object down, a buoyancy force of 1/50 times the weight of the object is pushing the object up (weight=mg). If we assume that water resistance exerts a force on the abject that is proportional to the velocity of the object, with proportionality constant 10 N-sec/m, find the equation of motion of the object. After how many seconds will the velocity of the object be 40 m/s? Assume that the acceleration due to gravity is 9.81 m/sec^2.
Answer:
a) Fnet = mg - Fb - Fr
b) 8.67 secs
Explanation:
mass of object = 80 kg
Buoyancy force = 1/50 * weight ( 80 * 9.81 ) = 15.696
Proportionality constant = 10 N-sec/m
a) Calculate equation of motion of the object
Force of resistance on object due to water = Fr ∝ V
= Fr = Kv = 10 V
Given that : Fb( due to buoyancy ) , Fr ( Force of resistance ) acts in the positive y-direction on the object while mg ( weight ) acts in the negative y - direction on the object.
Fnet = mg - Fb - Fr
∴ Equation of motion of the object ( Ma = mg - Fb - Fr )
b) Calculate how long before velocity of the object hits 40 m/s
Ma = mg - Fb - Fr
a = 9.81 - 0.1962 - 0.125 V = 9.6138 - 0.125 V
V = u + at ---- ( 1 )
u = 0
V = 40 m/s
a = 9.6138 - 0.125 V
back to equation 1
40 = 0 + ( 9.6138 - 0.125 (40) ) t
40 = 4.6138 t
∴ t = 40 / 4.6138 = 8.67 secs
A diffraction grating has 6000 lines per centimeter ruled on it. What is the angular separation (in degrees) between the second and the third orders on the same side of the central bright fringe when the grating is illuminated with a beam of light of wavelength 500 nm
Explanation:
Hope it Will help he hsuejwoamxgehanwpalasmbwfwfqoqlmdbehendalmZbgevzuxwllw. yeh we pabdvddxhspapalw. X
The angular separation (in degrees) between the second and the third orders on the same side of the central bright fringe if the wavelength is 500 nm and A diffraction grating has 6000 lines per centimeter ruled on it, is 27.29°.
What is diffraction?Waves spreading outward around obstructions are known as diffraction. Sound, electromagnetic radiation like light, X-rays, and gamma rays, as well as very small moving particles like atoms, neutrons, and electrons that exhibit wavelike qualities all exhibit diffraction.
Given:
The number of lines = 6000 per cm,
The Wavelength, λ = 500 nm = 500 × 10 ⁻⁹ m
Calculate the diffraction grating,
[tex]d = 1 / no\ of\ lines[/tex]
d = 10⁻² / 6000 m,
Calculate the second-order maxima angle and third-order maxima angle by the formula given below,
[tex]dsin\theta_1 = n_1 \lambda[/tex]
[tex]sin\theta_1 = n_1\lambda / d[/tex]
[tex]\theta _1 = sin^{-1}[2\times 500\times 10 ^{-9}/10^{-2}\times 6000][/tex]
θ₁ = sin⁻¹(0.6)
θ₁ = 36.87°
Similarly, for θ₂,
θ₂ = sin⁻¹(3 × 500 × 10 ⁻⁹ / 10⁻² × 6000)
θ₂ = sin⁻¹(0.9)
θ₂ = 64.16°
Calculate the separation as follows,
θ₂ - θ₁ = 64.16° - 36.87°
θ₂ - θ₁ = 27.29°
Therefore, the angular separation (in degrees) between the second and the third orders on the same side of the central bright fringe if the wavelength is 500 nm and A diffraction grating has 6000 lines per centimeter ruled on it, is 27.29°.
To know more about diffraction:
https://brainly.com/question/12290582
#SPJ2
Mass A, 2.0 kg, is moving with an initial velocity of 15 m/s in the x-direction, and it collides with mass M, 4.0 kg, initially moving at 7.0 m/s in the x-direction. After the collision, the two objects stick together and move as one. What is the change in kinetic energy of the system as a result of the collision, in joules
Answer:
the change in the kinetic energy of the system is -42.47 J
Explanation:
Given;
mass A, Ma = 2 kg
initial velocity of mass A, Ua = 15 m/s
Mass M, Mm = 4 kg
initial velocity of mass M, Um = 7 m/s
Let the common velocity of the two masses after collision = V
Apply the principle of conservation of linear momentum, to determine the final velocity of the two masses;
[tex]M_aU_a + M_mU_m = V(M_a + M_m)\\\\(2\times 15 )+ (4\times 7) = V(2+4)\\\\58 = 6V\\\\V = \frac{58}{6} = 9.67 \ m/s[/tex]
The initial kinetic of the two masses;
[tex]K.E_i = \frac{1}{2} M_aU_a^2 \ + \ \frac{1}{2} M_mU_m^2\\\\K.E_i = (0.5 \times 2\times 15^2) \ + \ (0.5 \times 4\times 7^2)\\\\K.E_i = 323 \ J[/tex]
The final kinetic energy of the two masses;
[tex]K.E_f = \frac{1}{2} M_aV^2 \ + \ \frac{1}{2} M_mV^2\\\\K.E_f = \frac{1}{2} V^2(M_a + M_m)\\\\K.E_f = \frac{1}{2} \times 9.67^2(2+ 4)\\\\K.E_f = 280.53 \ J[/tex]
The change in kinetic energy is calculated as;
[tex]\Delta K.E = K.E_f \ - \ K.E_i\\\\\Delta K.E = 280.53 \ J \ - \ 323 \ J\\\\\Delta K.E = -42.47 \ J[/tex]
Therefore, the change in the kinetic energy of the system is -42.47 J
As the speed of a particle approaches the speed of light, the momentum of the particle Group of answer choices approaches zero. decreases. approaches infinity. remains the same. increases.
Answer:
approaches infinity
Explanation:
There are two momentums, the classical momentum which is equal to the product of mass and velocity, and the relativistic momentum, the one we should look at when we work with high speeds, and this happens because massive objects have a speed limit, in this case, we are approaching the speed of light, so we need to work with the relativistic momentum instead of the classical momentum.
The relativistic momentum can be written as:
[tex]p = \frac{1}{\sqrt{1 - \frac{u^2}{c^2} } } *m*u[/tex]
where
u = speed of the object relative to the observer, in this case we have that u tends to c, the speed of light.
m = mass of the object
c = speed of light.
So, as u tends to c, we will have:
[tex]\lim_{u \to c} p = \frac{1}{\sqrt{1 - \frac{u^2}{c^2} } } *m*u[/tex]
Notice that when u tends to c, the denominator on the first term tends to zero, thus, the relativistic momentum of the object will tend to infinity.
Then the correct option is infinity, as the particle speed approaches the speed of light, the relativistic momentum of the particle tends to infinity.
A car is driving towards an intersection when the light turns red. The brakes apply a constant force of 1,398 newtons to bring the car to a complete stop in 25 meters. If the weight of the car is 4,729 newtons, how fast was the car going initially
Answer:
the initial velocity of the car is 12.04 m/s
Explanation:
Given;
force applied by the break, f = 1,398 N
distance moved by the car before stopping, d = 25 m
weight of the car, W = 4,729 N
The mass of the car is calculated as;
W = mg
m = W/g
m = (4,729) / (9.81)
m = 482.06 kg
The deceleration of the car when the force was applied;
-F = ma
a = -F/m
a = -1,398 / 482.06
a = -2.9 m/s²
The initial velocity of the car is calculated as;
v² = u² + 2ad
where;
v is the final velocity of the car at the point it stops = 0
u is the initial velocity of the car before the break was applied
0 = u² + 2(-a)d
0 = u² - 2ad
u² = 2ad
u = √2ad
u = √(2 x 2.9 x 25)
u =√(145)
u = 12.04 m/s
Therefore, the initial velocity of the car is 12.04 m/s
What is utilization of energy
Explanation:
Energy utilization focuses on technologies that can lead to new and potentially more efficient ways of using electricity in residential, commercial and industrial settings—as well as in the transportation sector
What is cubical expansivity of liquid while freezing
Answer:
"the ratio of increase in the volume of a solid per degree rise of temperature to its initial volume" -web
Explanation:
tbh up above ✅
Answer:
cubic meter
Explanation:
Increase in volume of a body on heating is referred to as volumetric expansion or cubical expansion
state the laws of reflection
Answer:
Explanation:
The law of reflection says that the reflected angle (measured from a vertical line to the surface called the normal) is equal to the reflected angle measured from the same normal line.
All other properties of reflection flow from this one statement.
A roller coaster uses 800 000 J of energy to get to the top of the first hill. During this climb, it gains 500 000 J of potential energy and pauses (velocity = 0) for a fraction of a second at the very top before heading down the other side.
a) Draw a sankey diagram for a roller coaster's climb.
A roller coaster uses 800 000 J of energy to get to the top of the first hill. During this climb, it gains 500 000 J of potential energy and pauses for a fraction of a second at the very top before heading down the other side. At the top of the hill total, the kinetic energy of the roller coaster would be zero as the velocity is zero at the top of the hill, therefore the total mechanical energy is only because of potential energy.
What is mechanical energy?Mechanical energy is the combination of all the energy in motion represented by total kinetic energy and the total stored energy in the system which is represented by total potential energy.
The expression for total mechanical energy is as follows
ME= KE+PE
As total mechanical energy is the sum of all the kinetic as well as potential energy stored in the system.As given in the problem a roller coaster uses 800000 J of energy to get to the top of the first hill. During this climb, it gains 500 000 J of potential energy which means 300000 J of energy is lost in the frictional energy while climbing the hill,
Thus at the top of the hill, the total energy of the roller coasters is only due to the potential energy.
Learn more about mechanical energy from here brainly.com/question/12319302
#SPJ2
Air is compressed polytropically from 150 kPa, 5 meter cube to 800 kPa. The polytropic exponent for the process is 1.28. Determine the work per unit mass of air required for the process in kilojoules
a) 1184
b) -1184
c) 678
d) -678
Answer:
wegkwe fhkrbhefdb
Explanation:B
How do you know that a liquid exerts pressure?
Answer:
The pressure of water progressively increases as the depth of the water increases. The pressure increases as the depth of a point in a liquid increases. The walls of the vessel in which liquids are held are likewise subjected to pressure. The sideways pressure exerted by liquids increases as the liquid depth increases.
trong cùng một nhiệt độ, lượng năng lượng trên mỗi mol của chất khí nào lớn nhất
a) Khí đơn nguyên tử
b) Khí có từ ba nguyên tử
c) Khí lưỡng nguyên tử
A 15.0 g bullet traveling horizontally at 865 m>s passes through a tank containing 13.5 kg of water and emerges with a speed of 534 m>s. What is the maximum temperature increase that the water could have as a result of this event
Answer:
The rise in temperature is 0.06 K.
Explanation:
mass of bullet, m = 15 g
initial speed, u = 865 m/s
final speed, v = 534 m/s
mass of water, M = 13.5 kg
specific heat of water, c = 4200 J/kg K
The change in kinetic energy
[tex]K = 0.5 m(u^2 - v^2)\\\\K = 0.5\times 0.015\times (865^2-534^2)\\\\K = 3473 J[/tex]
According to the conservation of energy, the change in kinetic energy is used to heat the water.
K = m c T
where, T is the rise in temperature.
3473 = 13.5 x 4200 x T
T = 0.06 K
A solenoid has a length , a radius , and turns. The solenoid has a net resistance . A circular loop with radius is placed around the solenoid, such that it lies in a plane whose normal is aligned with the solenoid axis, and the center of the outer loop lies on the solenoid axis. The outer loop has a resistance . At a time , the solenoid is connected to a battery that supplies a potential . At a time , what current flows through the outer loop
This question is incomplete, the complete question is;
A solenoid has a length 11.34 cm , a radius 1.85 cm , and 1627 turns. The solenoid has a net resistance of 144.9 Ω . A circular loop with radius of 3.77 cm is placed around the solenoid, such that it lies in a plane whose normal is aligned with the solenoid axis, and the center of the outer loop lies on the solenoid axis. The outer loop has a resistance of 1651.6 Ω. At a time of 0 s , the solenoid is connected to a battery that supplies a potential 34.95 V. At a time 2.58 μs , what current flows through the outer loop?
Answer:
the current flows through the outer loop is 1.3 × 10⁻⁵ A
Explanation:
Given the data in the question;
Length [tex]l[/tex] = 11.34 cm = 0.1134 m
radius a = 1.85 cm = 0.0185 m
turns N = 1627
Net resistance [tex]R_{sol[/tex] = 144.9 Ω
radius b = 3.77 cm = 0.0377 m
[tex]R_o[/tex] = 1651.6 Ω
ε = 34.95 V
t = 2.58 μs = 2.58 × 10⁻⁶ s
Now, Inductance; L = μ₀N²πa² / [tex]l[/tex]
so
L = [ ( 4π × 10⁻⁷ ) × ( 1627 )² × π( 0.0185 )² ] / 0.1134
L = 0.003576665 / 0.1134
L = 0.03154
Now,
ε = d∅/dt = [tex]\frac{d}{dt}[/tex]( BA ) = [tex]\frac{d}{dt}[/tex][ (μ₀In)πa² ]
so
ε = μ₀n [tex]\frac{dI}{dt}[/tex]( πa² )
ε = [ μ₀Nπa² / [tex]l[/tex] ] [tex]\frac{dI}{dt}[/tex]
ε = [ μ₀Nπa² / [tex]l[/tex] ] [ (ε/L)e^( -t/[tex]R_{sol[/tex]) ]
I = ε/[tex]R_o[/tex] = [ μ₀Nπa² / [tex]R_o[/tex][tex]l[/tex] ] [ (ε/L)e^( -t/[tex]R_{sol[/tex]) ]
so we substitute in our values;
I = [ (( 4π × 10⁻⁷ ) × 1627 × π(0.0185)²) / (1651.6 ×0.1134) ] [ ( 34.95 / 0.03154)e^( -2.58 × 10⁻⁶ / 144.9 ) ]
I = [ 2.198319 × 10⁻⁶ / 187.29144 ] [ 1108.116677 × e^( -1.7805 × 10⁻⁸ )
I = [ 1.17374 × 10⁻⁸ ] × [ 1108.116677 × 0.99999998 ]
I = [ 1.17374 × 10⁻⁸ ] × [ 1108.11665 ]
I = 1.3 × 10⁻⁵ A
Therefore, the current flows through the outer loop is 1.3 × 10⁻⁵ A
Answer:
1.28 *10^-5 A
Explanation:
Same work as above answer. Needs to be more precise
A car is traveling at 118 km/h when the driver sees an accident 85 m ahead and slams on the brakes. What minimum constant deceleration is required to stop the car in time to avoid a pileup
Answer:
The constant minimum deceleration required to stop the car in time to avoid pileup is 6.32 m/s²
Explanation:
From the question, the car is traveling at 118 km/h, that is the initial velocity, u = 118km/h
The distance between the car and the accident at the moment when the driver sees the accident is 85 m, that is s = 85 ,
Since the driver slams on the brakes and the car will come to a stop, then the final velocity, v = 0 km/h = 0 m/s
First, convert 118 km/h to m/s
118 km/h = (118 × 1000) /3600 = 32.7778 m/s
∴ u = 32.7778 m/s
Now, to determine the deceleration, a, required to stop,
From one of the equations of motion for linear motion,
v² = u² + 2as
Then
0² = (32.7778)² + 2×a×85
0 = 1074.3841 + 170a
∴ 170a = - 1074.3841
a = - 1074.3841 / 170
a = - 6.3199
a ≅ - 6.32 m/s²
Hence, the constant minimum deceleration required to stop the car in time to avoid pileup is 6.32 m/s²
A car accelerates from 0 m/s to 25 m/s in 5 seconds. What is the average acceleration of the car.
Answer:
5 m/s I hope it will help you
Explanation:
mark me as a brainlist answer
A sinewave has a period (duration of one cycle) of 645 μs (microseconds). What is the corresponding frequency of this sinewave, in kHz
The corresponding frequency of this sinewave, in kHz, expressed to 3 significant figures is: 155 kHz.
Given the following data:
Period = 645 μsNote: μs represents microseconds.
Conversion:
1 μs = [tex]1[/tex] × [tex]10^-6[/tex] seconds
645 μs = [tex]645[/tex] × [tex]10^-6[/tex] seconds
To find corresponding frequency of this sinewave, in kHz;
Mathematically, the frequency of a waveform is calculated by using the formula;
[tex]Frequency = \frac{1}{Period}[/tex]
Substituting the value into the formula, we have;
[tex]Frequency = \frac{1}{645 * 10^-6}[/tex]
Frequency = 1550.39 Hz
Next, we would convert the value of frequency in hertz (Hz) to Kilohertz (kHz);
Conversion:
1 hertz = 0.001 kilohertz
1550.39 hertz = X kilohertz
Cross-multiplying, we have;
X = [tex]0.001[/tex] × [tex]1550.39[/tex]
X = 155039 kHz
To 3 significant figures;
Frequency = 155 kHz
Therefore, the corresponding frequency of this sinewave, in kHz is 155.
Find more information: brainly.com/question/23460034
which characteristic of nuclear fission makes it hazardous?
Answer:The radioactive waste
Explanation:Fission is the splitting of a heavy unstable nucleus into two Lighter nuclei
A regulation soccer field for international play is a rectangle with a length between 100 m and a width between 64 m and 75 m. What are the smallest and largest areas that the field could be?
Answer:
The smallest and largest areas could be 6400 m and 7500 m, respectively.
Explanation:
The area of a rectangle is given by:
[tex] A = l*w [/tex]
Where:
l: is the length = 100 m
w: is the width
We can calculate the smallest area with the lower value of the width.
[tex] A_{s} = 100 m*64 m = 6400 m^{2} [/tex]
And the largest area is:
[tex] A_{l} = 100 m*75 m = 7500 m^{2} [/tex]
Therefore, the smallest and largest areas could be 6400 m and 7500 m, respectively.
I hope it helps you!
Answer:
the largest areas that the field could be is [tex]A_l[/tex]=7587.75 m
the smallest areas that the field could be is [tex]A_s[/tex]=6318.25 m
Explanation:
to the find the largest and the smallest area of the field measurement error is to be considered.
we have to find the greatest possible error, since the measurement was made nearest whole mile, the greatest possible error is half of 1 mile and that is 0.5m.
therefore to find the largest possible area we add the error in the mix of the formular for finding the perimeter with the largest width as shown below:
[tex]A_l[/tex]= (L+0.5)(W+0.5)
(100+0.5)(75+0.5) = (100.5)(75.5) = 7587.75 m
To find the smallest length we will have to subtract instead of adding the error factor value of 0.5 as shown below:
[tex]A_s[/tex]= (L-0.5)(W-0.5)
(100-0.5)(64-0.5) = (99.5)(63.5) = 6318.25 m
Steel railway tracks are laid at 8oC. What size of expansion gap are needed 10m long rail sections if the ambient temperature varies from -10oC to 50oC? [Linear expansivity of steel = 12 x]
Answer:
Gap left = Change in length on heating
Gap=Initial length×Coefficient of linear expansion×change in temperature
Gap=10×0.000012×15m
⟹Gap=0.0018 m
this is an example u have to put your equation in it
a bullet is dropped from the same height when another bullet is fired horizontally they will hit the ground
Answer:
simultaneously
Time taken to reach the ground depends on the vertical component of velocity, not horizontal component of velocity.
What is not one of the main uses of springs?
A. Car suspension
B. Bike suspension
C. The seasons
D. Clock making
Convert 385k to temperature of
Answer:
233.33°F
Explanation:
(385K - 273.15) * 9/5 + 32 = 233.33°F
A ball is launched from the ground with a horizontal speed of 30 m/s and a vertical speed of 30 m/s. How far horizontally will it travel in 2 seconds?
A. 30 m
B. 90 m
C. 45 m
D. 60 m
Answer:
It will travel Vx * t = 30 m/s * 2 s = 60 m
I need help with this please!!!!
Answer:
1.84 hours
I hope it's helps you