A 1.362 g sample of an iron ore that contained Fe3O4 was dissolved in acid with all of the iron being reduced to iron (II). The solution was acidified with sulfuric acid and titrated with 39.42 mL of 0.0281 M KMnO4, which oxidized the iron (II) to iron (III) while reducing the permanganate to manganese (II). Generate the balanced net ionic equation for the reaction. What is the mass percent of iron in this iron ore sample?

Answers

Answer 1

Answer:

a. MnO₄⁻ + 8H⁺ + 5Fe²⁺ → 5Fe³⁺ + Mn²⁺ + 4H₂O

b. 18.17% of Fe in the sample

Explanation:

a. In the reaction, Fe²⁺ is oxidized to Fe³⁺ and permanganate, MnO₄⁺ reduced to Mn²⁺, thus:

Fe²⁺ → Fe³⁺ + 1e⁻

MnO₄⁻ + 5e⁻ + 8H⁺ → Mn²⁺ + 4H₂O

5 times the iron and suming the manganese reaction:

MnO₄⁻ + 5e⁻ + 8H⁺ + 5Fe²⁺ → 5Fe³⁺ + 5e⁻ + Mn²⁺ + 4H₂O

MnO₄⁻ + 8H⁺ + 5Fe²⁺ → 5Fe³⁺ + Mn²⁺ + 4H₂O

b. Moles of permanganate in the titration are:

0.03942L × (0.0281 moles / L) = 1.108x10⁻³ moles of MnO₄⁻

Based on the reaction, 1 mole of permanganate reacts with 5 moles of iron, if 1.108x10⁻³ moles of MnO₄⁻ reacts, moles of iron are:

1.108x10⁻³ moles of MnO₄⁻ × (5 moles Fe²⁺ / 1 mole MnO₄⁻) =

4.431x10⁻³ moles of Fe²⁺. Molar mass of Fe is 55.845g/mol. 4.431x10⁻³ moles of Fe²⁺ are:

4.431x10⁻³ moles of Fe²⁺ ₓ (55.845g / mol) =

0.2474g of Fe you have in your sample.

Percent mass is:

0.2474g Fe / 1.362g sample ₓ 100 =

18.17% of Fe in the sample
Answer 2

The mass percent of iron in the sample is 22.6%.

The net ionic equation of the reaction is;

5Fe^2+(aq) + 8H^+(aq) + MnO4^-   -----> 5Fe^3+(aq) + Mn^2+(aq) + 4H2O(l)

Number of moles of MnO4^-  = 39.42/1000 L × 0.0281 M = 0.0011 moles

If 5 moles of Fe^2+ reacts with 1 mole of MnO4^-

x moles of Fe^2+ reacts with 0.0011 moles

x =  5 moles × 0.0011 moles/1 mole

x = 0.0055 moles

Mass of Fe^2+ =  0.0055 moles × 56 g/mol = 0.308 g

Mass percent of iron = 0.308 g/ 1.362 g × 100/1

= 22.6%

Learn more: https://brainly.com/question/10643807


Related Questions

Write a net ionic equation for the reaction that occurs when aqueous solutions of hydrofluoric acid and sodium hydroxide are combined. (Use the lowest possible coefficients. Use the pull-down boxes to specify states such as (aq) or (s). If a box is not needed, leave it blank. If needed, use H for the hydronium ion.)

Answers

Answer:

The net ionic reaction is : H⁺ (aq) + OH⁻ (aq) ---> H₂O (l)

Explanation:

The reaction between aqueous solutions of hydrofluoric acid and sodium hydroxide is an example of a neutralization reaction.

A neutralization reaction is a reaction between and acid and an abase to produce salt and water only.

Hydrofluoric acid is the acid while sodium hydroxide is the base. during the reaction the hydrofluoric acid will produce hydrogen and fluoride ions, while sodium hydroxide will produce hydroxide and sodium ions. The hydroxide and hydrogen ions will combine to produce water while the sodium and fluoride ions remain in solution as ions.

The equation of the reaction is as follows:

H⁺F⁻ (aq) + Na⁺OH⁻ (aq)  ----> Na⁺F⁻ (aq) + H₂O (l)

Since the sodium and fluoride ions appear on both sides of the equation, they are known as spectator ions and are cancelled out to give the net ionic equation.

The net ionic reaction is : H⁺ (aq) + OH⁻ (aq) ---> H₂O (l)

A sample of pure lithium chloride contains 16% lithium by mass. What is the % lithium by mass in a sample of pure lithium carbonate that has twice the mass of the first sample

Answers

Answer:

Percentage lithium by mass in Lithium carbonate sample = 19.0%

Explanation:

Atomic mass of lithium = 7.0 g; atomic mass of Chlorine = 35.5 g; atomic mass of carbon = 12.0 g; atomic mass of oxygen = 16.0 g

Molar mass of lithium chloride, LiCl = 7 + 35.5 = 42.5 g

Percentage by mass of lithium in LiCl = (7/42.5) * 100% = 16.4 % aproximately 16%

Molar mass of lithium carbonate, Li₂CO₃ = 7 * 2 + 12 + 16 * 3 =74.0 g

Percentage by mass of lithium in Li₂CO₃ = (14/74) * 100% = 18.9 % approximately 19%

Mass of Lithium carbonate sample = 2 * 42.5 = 85.0 g

mass of lithium in 85.0 g Li₂CO₃ = 19% * 85.0 g = 16.15 g

Percentage by mass of lithium in 85.0 g Li₂CO₃ = (16.15/85.0) * 100 % = 19.0%

Percentage lithium by mass in Lithium carbonate sample = 19.0%

Account for the change when NO2Cl is added using the reaction quotient Qc. Match the words in the left column to the appropriate blanks in the sentences on the right.
1. decreases
2. loss
3. Increases
4. greater
A. Disturbing the equilibrium by adding NO2Cl______Qc to a value_____than Kc.
B. To reach a new state of equilibrium, Qc therefore______which means that the denominator of the expression for Qc______.
C. To accomplish this, the concentration of reagents______, and the concentration of products_______.

Answers

Answer:

A. Disturbing the equilibrium by adding NO2Cl decreases Qc to a value less than Kc.

B. To reach a new state of equilibrium, Qc therefore increases which means that the denominator of the expression for Qc decreases.

C. To accomplish this, the concentration of reagents decreases, and the concentration of products increases.

Explanation:

Hello,

In this case, for the equilibrium reaction:

[tex]NO_2Cl(g)+NO(g)\rightleftharpoons NOCl(g)+NO_2(g)[/tex]

Whose equilibrium expression is:

[tex]Kc=\frac{[NO_2][NOCl]}{[NO_2Cl][NO]}[/tex]

The proper matching is:

A. Disturbing the equilibrium by adding NO2Cl decreases Qc to a value less than Kc, since the denominator becomes greater, therefore, Qc decreases.

B. To reach a new state of equilibrium, Qc therefore increases which means that the denominator of the expression for Qc decreases, since the lower the denominator, the higher Qc as it has the concentration of reactants.

C. To accomplish this, the concentration of reagents decreases, and the concentration of products increases, since the reactants must be consumed in order to reestablish equilibrium by shifting the reaction towards the products.

Best regards.

If the amount of radioactive iodine-123, used to treat thyroid cancer, in a sample decreases from 3.2 to 0.4 mg in 39.6 h, what is the half-life of iodine-123?

Answers

Answer:

Half life = 13.197 hour

Explanation:

Given:

Old amount (A₀) = 3.2

New amount (A) = 0.4

Radiation decay time (t) = 39.6 hour

Half life = T(1/2)

Find:

Half life = T(1/2) = T

Computation:

A = A₀[tex]e^{-(\frac{0.693t}{T} )}[/tex]

[tex]e^{-(\frac{0.693t}{T} )}[/tex] = 0.4 / 3.2

-[27.4428 / T] = In (0.125)

-[27.4428 / T] = -2.0794

[27.4428 / T] = 2.0794

T = 13.197

Half life = 13.197 hour

In the experiment, you heated a sample of metal in a water bath and quickly removed and dried the sample prior to inserting it into the cold water "system". Why did you need to dry the sample prior to placing it into the cold water "system"


a. The extra water might react with the metal which would ruin the sample.

b. Any residual hot water would have added to the heat transferred from the metal to the cold water "system".

c. The wet metal would not transfer any heat thus causing inaccuracy in you measurements.

d. The metal would oxidize in the presence of water thus ruining the sample

Answers

Answer:

b

Explanation:

Provided the experiment is about the transfer of heat from one medium to another, any residual hot water on the metal would have added to the heat transferred from the metal to the cold water system.

The residual hot water on the metal posses its own heat and when such is transferred along with the metal into the cold water, the heat from the residual hot water will interfere with the measurement of the actual heat transferred to the cold water by the metal. Hence, the accuracy of the result would be impacted.

The correct option is b.

What is the density of a 10 kg mass that occupies 5 liters?
( pls need help)

Answers

Answer: d=2000 g/L

Explanation:

Density is mass/volume. The units are g/L. Since we are given mass and volume, we can divide them to find density. First, we need to convert kg to g.

[tex]10kg*\frac{1000g}{1kg} =10000 g[/tex]

Now that we have grams, we can divide to get density.

[tex]d=\frac{10000g}{5 L}[/tex]

d=2000g/L

How do covalent bonds form? A Sharing valence electrons between atoms. B Donating and receiving valence electrons between atoms. C Opposite slight charges attract each other between compounds. D Scientists are still not sure how they form.

Answers

Answer:

A. Sharing valence electrons between atoms.

Explanation:

This is the definition of a covalent bond. Option B describes ionic bonds, Option C describes intermolecular forces, and Option D is wrong because then there wouldn't be any mention of them in our high school chemistry textbooks :).  

Suppose that 13 mol NO2 and 3 mol H2O combine and react completely. How many moles of the reactant in excess are present after the reaction has completed

Answers

Answer:

The number of moles of excess reagent NO₂ that are present after the reaction has completed is 7 moles.

Explanation:

The balanced reaction is:

3 NO₂ + H₂O → 2 HNO₃ + NO

By stoichiometry of the reaction (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of reactants and products participate in the reaction:

NO₂: 3 molesH₂O: 1 moleHNO₃: 2 molesNO: 1 moles

The limiting reagent is one that is consumed in its entirety first, determining the amount of product in the reaction. When the limiting reagent ends, the chemical reaction will stop.

In other words, the limiting reagent is that reagent that is consumed first in a chemical reaction, determining the amount of products obtained. The reaction depends on the limiting reagent, because the other reagents will not react when one is consumed.

You can apply the following rule of three: if by stoichiometry of the reaction 3 moles of NO₂ react with 1 mole of H₂O, 13 moles of NO₂ react with how many moles of H₂O?

[tex]moles of H_{2}O=\frac{13 moles of NO_{2}*1 mole of H_{2}O }{3 moles of NO_{2}}[/tex]

moles of H₂O= 4.33 moles

But 4.33 moles of H₂O are not available, 3 moles are available. Since you have less moles than you need to react with 13 moles of NO₂, water H₂O will be the limiting reagent.

To determine the number of moles of excess reagent NO2 that are present after the reaction is complete, you can apply the following rule of three: if by stoichiometry of the reaction 1 moles of H₂O react with 3 mole of NO₂, 3 moles of H₂O react with how many moles of NO₂?

[tex]moles of NO_{2}=\frac{3 moles of NO_{2}*3 mole of H_{2}O }{1 mole of H_{2}O}[/tex]

moles of NO₂= 6 moles

If 6 moles of NO₂ react and 13 moles of the compound are present, the amount that remains in excess is calculated as: 13 moles - 6 moles= 7 moles

The number of moles of excess reagent NO₂ that are present after the reaction has completed is 7 moles.

Consider the bond dissociation energies listed below in kcal/mol. CH3-Br 70 CH3CH2-Br 68 (CH3)2CH-Br 68 (CH3)3C-Br 65 These data show that the carbon-bromine bond is weakest when bromine is bound to a __________.

Answers

Answer:

The answer is "Tertiary carbon".

Explanation:

Accent to the results, the carbon-bromine bond is weak, whenever, the bromine is connected to tertiary carbon so, bonding energy is separation for methyl-carbon, which is connected to the bromine = 70 kcal/mol and for the primary energy to the secondary energy is=  68 kcal/mol, and for tertiary CO2 = 65 kcal/mol.

The stronger the energy dissociating connection and the weaker, its power dissociation connection and its weaker bond becomes connecting with a tertiary carbon, that's why "Tertiary carbon" is the correct answer.

How many unit cells share an atom that is located at the center of a cube edge of a unit cell?

Answers

Answer:

zero

Explanation:

In a unit cell, an atom that is located at the center of a cube edge is not involved in sharing unit cells because a central atom of a unit cell belongs to the entire cell and only to that unit cell of the lattice.

Hence, the center atom of a unit cell do not share any unit cell and the correct answer is "Zero".

How many grams of PtBr4 will dissolve in 250.0 mL of water that has 1.00 grams of KBr dissolved in it

Answers

Answer:

[tex]m_{PtBr_4}=0.306gPtBr_4[/tex]

Explanation:

Hello,

In this case, since the solubility product of platinum (IV) bromide is 8.21x10⁻⁹, and the dissociation is:

[tex]PtBr_4(s)\rightleftharpoons Pt^{4+}(aq)+4Br^-(aq)[/tex]

The equilibrium expression is:

[tex]Ksp=[Pt^{4+}][Br^-]^4[/tex]

Thus, since the salt is added to a solution initially containing 1.00 grams of potassium bromide, there is an initial concentration of bromide ions:

[tex][Br^-]_0=\frac{1.00gKBr*\frac{1molKBr}{119gKBr}*\frac{1molBr^-}{1molKBr} }{0.250L}=0.0336M[/tex]

Hence, in terms of the molar solubility [tex]x[/tex], we can write:

[tex]8.21x10^{-9}=(x)(0.0336+4x)^4[/tex]

In such a way, solving for [tex]x[/tex], we obtain:

[tex]x=0.00238M[/tex]

Which is the molar solubility of platinum (IV) bromide. Then, since its molar mass is 514.7 g/mol, we can compute the grams that get dissolved in the 250.0-mL solution:

[tex]m_{PtBr_4}=0.00238\frac{molPtBr_4}{1L}*0.250L *\frac{514.7gPtBr_4}{1molPtBr_4} \\\\m_{PtBr_4}=0.306gPtBr_4[/tex]

Best regards.

1500 L has how many significants figures

Answers

Answer:

It has 2

Explanation:

The significant figures are 1 and 5!

Hope this helps:)

What is the pH of 10.0 mL solution of 0.75 M acetate after adding 5.0 mL of 0.10 M HCl (assume a Ka of acetic acid of 1.78x10-5)

Answers

Answer:

5.90

Explanation:

Initial moles of CH3COO- = 10.0/1000 x 0.75 = 0.0075 mol

Moles of HCl added = 5.0/1000 x 0.10 = 0.0005 mol

CH3COO- + HCl => CH3COOH + Cl-

Moles of CH3COO- left = 0.0075 - 0.0005 = 0.007 mol

Moles of CH3COOH formed = moles of HCl added = 0.0005 mol

pH = pKa + log([CH3COO-]/[CH3COOH])

= -log Ka + log(moles of CH3COO-/moles of CH3COOH)

= -log(1.78 x 10^(-5)) + log(0.007/0.0005)

= 5.90

Answer:

The correct answer is 5.895.

Explanation:

The reaction will be,

CHCOO⁻ + H+ ⇔ CH₃COOH

Both the HCl and the acetate are having one n factor.

The millimoles of CH₃COO⁻ is,

= Volume in ml × molarity = 10 × 0.75 = 7.5

The millimoles of HCl = Volume in ml × molarity = 5 × 0.1 = 0.5

Therefore, 0.5 will be the millimoles of CH₃COOH formed, now the millimoles of the CH₃COO⁻ left will be, 7.5-0.5 = 7.0

The volume of the solution is, 10+5 = 15 ml

The molarity of CH₃COO⁻ is, millimoles / volume in ml = 7/15

The molarity of CH₃COOH is 0.5/15

pH = pKa + log[CH₃COO⁻]/[CH₃COOH]

= 4.74957 + 1.146

= 5.895

Without doing any calculations, determine the sign of ΔSsys for each of the following chemical reactions. Drag the appropriate items to their respective bins.
1. 2H30' (aq) + CO23- (aq) - CO2(g) +3H2O(1)
2. CH4(g) + 202,(g) - CO2(g) + 2H2O(l)
3. Mg (s) + Cl2(g) - MgCǐ2(s)
4. SO3(g) + H2O(I) - H2SO4(I)
A. ΔSsys greater than
B. ΔSsys smaller than

Answers

Answer:

Answers are in the explanation.

Explanation:

In a chemical reaction we can determine the sign of ΔSsys based on the states of products and reactants knowing that:

Entropy of gases >>> entropy of liquid > entropy of solids.

The entropy of solids is lower than entropy of liquids that is lower than entropy of gases.

In the reactions:

1. 2H₃O⁺(aq) + CO₃²⁻(aq) → CO₂(g) +3H₂O(l)

As 1 gas is produced, entropy of products is higher than entropy of reactants. That means  ΔSsys > 0 (That because ΔSsys is ΔSProducts - ΔSReactants)

2. CH₄(g) + 2O₂(g) → CO₂(g) + 2H₂O(l)

3 moles of gas are converted in 1 mole of gas in products. Entropy of reactants is higher than entropy of products, ΔSsys < 0.

3. Mg(s) + Cl₂(g) → MgCǐ₂(s)

You have 1 mole of gas in reactants and 1 mole of solid in products. ΔSProducts <<< ΔSReactants. ΔSsys < 0.

4. SO₃(g) + H₂O(I) → H₂SO₄(I)

1 mole of gas in reactants, a liquid in products. ΔSProducts <<< ΔSReactants. ΔSsys < 0.

Determining the sign of ΔSsys for each given chemical reaction, the following can be obtained without calculations:

1. ΔSsys > 0.

2. ΔSsys < 0

3. ΔSsys < 0

4. ΔSsys < 0

Recall:

The states of the reactants and the products in a chemical reaction determines the sign of ΔSsys of the reaction.The entropy of gasses is greater than the entropy of liquid and solids.The entropy of solids is less than the entropy of liquid and gasses.Gasses have the highest entropy, while solids have the least.

Thus:

In the first chemical reaction, 1 mole of gas is produced, therefore: ΔSsys > 0.

In the second chemical reaction, 3 moles of gasses gives a products of 1 mole of gas, therefore: ΔSsys < 0.

In the third chemical reaction, 1 mole of gas gives 1 mole of solid as product, therefore: ΔSsys < 0.

In the fourth chemical reaction, 1 mole of gas gives 1 mole of liquid as product, therefore: ΔSsys < 0.

Learn more here:

https://brainly.com/question/1218700

A student mixed 50 ml of 1.0 M HCl and 50 ml of 1.0 M NaOH in a coffee cup calorimeter and calculate the molar enthalpy change of the acid-base neutralization reaction to be –54 kJ/mol. He next tried the same experiment with 100 ml of 1.0 M HCl and 100 ml of 1.0 M NaOH. The calculated molar enthalpy change of reaction for his second trial was:

Answers

Answer: The calculated molar enthalpy change of reaction for his second trial was -108 kJ.

Explanation:-

Molarity of a solution is defined as the number of moles of solute dissolved per Liter of the solution.

[tex]\text{no of moles}={\text{Molarity}\times {\text{Volume in L}}[/tex]

Thus [tex]\text{no of moles}of HCl={1.0M}\times {0.05L}=0.05moles[/tex]

Thus [tex]\text{no of moles}of NaOH={1.0M}\times {0.05L}=0.05moles[/tex]

[tex]HCl(aq)+NaOH(aq)\rightarrow NaCl(aq)+H_2O(l)[/tex]

Given for second trial:

[tex]\text{no of moles}of HCl={1.0M}\times {0.1L}=0.1moles[/tex]

[tex]\text{no of moles}of NaOH={1.0M}\times {0.1L}=0.1moles[/tex]

0.05 moles of [tex]HCl[/tex] reacts with 0.05 moles of [tex]NaOH[/tex] to release  heat = 54 kJ

0.1 moles of [tex]HCl[/tex] reacts with 0.05 moles of [tex]NaOH[/tex] to release  heat  =[tex]\frac{54}{0.05}\times 0.1=108kJ[/tex]

Thus calculated molar enthalpy change of reaction for his second trial was -108 kJ.

I think I'm typing it into my calculator wrong. I will give brainliest to whoever gets it right.

Answers

Answer:

36.7 mg

Explanation:

The following data were obtained from the question.

Original amount (A₀) = 65.1 mg

Rate constant (K) = 2.47×10¯² years¯¹

Time (t) = 23.2 years

Amount of substance remaining (A) =?

Thus, we can obtain the amount of substance remaining after 23.2 years as follow

ln A = lnA₀ – Kt

lnA = ln(65.1) – (2.47×10¯² × 23.2)

lnA = 4.1759 – 0.57304

lnA = 3.60286

Take the inverse of ln

A = e^3.60286

A = 36.7 mg

Therefore, the amount remaining after 23.2 years is 36.7 mg.

A rock has a mass of 15.8 g and causes the water level in a graduated cylinder to raise from 22.3 mL to 32.5 mL. What is the density of the rock in Kg/mL?​

Answers

Answer:

Explanation:

mass -  15.8 g = 0.0158 kg

volume = 32.5 - 22.5 = 10.2 ml

density = mass / volume

= 0.0158 / 10.2

= 0.00154 kg/ml

hope this helps

plz mark as brainliest!!!!!!!

What's the concentration of hydronium ions if a water-base solution has a temperature of 25°C (Kw = 1.0×10–14), with a concentration of hydroxide ions of 2.21×10–6 M? answer options: A) 2.8×10–8 M B) 4.52 ×10–9 M C) 1.6×10–9 M D) 3.1×10–6 M

Answers

Answer:

ITS NOT D. ITS B. 4.52x10^-9 M

Explanation:

Answer:

4.52 ×10–9 M

Explanation:

Use the standard half-cell potentials listed below to calculate the standard cell potential for the following reaction occurring in an electrochemical cell at 25°C. (The equation is balanced.) 3 Cl2(g) + 2 Fe(s) → 6 Cl-(aq) + 2 Fe3+(aq) Cl2(g) + 2 e- → 2 Cl-(aq) E° = +1.36 V Fe3+(aq) + 3 e- → Fe(s) E° = -0.04 V

Answers

The cell potential for the electrochemical cell has been 1.40 V.

The standard reaction for the cell will be:

[tex]\rm 3\;Cl_2\;+\;2\;Fe\;\rightarrow\;6\;Cl^-\;+\;2\;Fe^3^+[/tex]

The half-reaction of the cells has been:

[tex]\rm Fe^3^+\;+\;3\;e^-\;\rightarrow\;Fe[/tex]

The potential for this reduction has been -0.04 V.

[tex]\rm Cl_2\;+\;2\;e^-\;\rightarrow\;2\;Cl^-[/tex]

The potential for the reduction has been 1.36 V.

The cell potential has been: Potential of reduction - Potential of oxidation

Cell potential = 1.36 - (-0.04) V

Cell potential = 1.40 V.

The cell potential for the electrochemical cell has been 1.40 V.

For more information about the electrochemical cell, refer to the link:

https://brainly.com/question/22550969

If a substance has a half-life of 55.6 s, and if 230.0 g of the substance are present initially, how many grams will remain after 10.0 minutes?

Answers

Answer:

[tex]m=0.127g[/tex]

Explanation:

Hello,

In this case, for a first-order reaction, we can firstly compute the rate constant from the given half-life:

[tex]k=\frac{ln(2)}{t_{1/2}} =\frac{ln(2)}{55.6s}=0.0125s^{-1}[/tex]

In such a way, the integrated first-order law, allows us to compute the final mass of the substance once 10.0 minutes (600 seconds) have passed:

[tex]m=m_0*exp(-kt)=230.0g*exp(-0.0125s^{-1}*600s)\\\\m=0.127g[/tex]

Best regards.

A student is performing a Benedict’s test on an unknown substance. He adds the reagent (the chemical required to make a color change), and nothing happens. What can he conclude? A- The substance is glucose-based. B- The substance is not glucose-based. C- The test was inconclusive because he needed to also test with iodine or vinegar. D- The test was inconclusive because he forgot to add heat.

Answers

Answer:

The correct answer is : option D. The test was inconclusive because he forgot to add heat.

Explanation:

Benedict's test is a test that is used to confirm the presence of the simple carbohydrates (mono saccharides and some disaccharides). It is a reagent made by mixture of solution of CuSO4 with sodium citrate and Na2CO3.

Benedict's reagent is added to the substance to test and then heated if it turns yellow to orange or red the presence of simple sugar is confirmed.

Thus, the correct answer is : option D. The test was inconclusive because he forgot to add heat.

Answer:

The test was inconclusive because the student forgot to add heat.

Explanation:

If the test revealed it was not glucose, then the student could run these tests. The student, however, does not need these substances to run the glucose test properly.

If 100-mL of 1.0 M Sr(OH)2 is added to 100 mL of 1.0 M HCl, the pH of the mixture would be _____. Group of answer choices

Answers

Answer:

pH = 13.7

Explanation:

A strong acid (HCl) reacts with a strong base Sr(OH)₂ producing water and a salt, thus:

2HCl + Sr(OH)₂ → 2H₂O + SrCl₂

To solve this problem, we need to find initial moles of both reactants and, with the chemical equation find limiting reactant and moles in excess to find pH as follows:

The initial moles of HCl and Sr(OH)₂ are:

100mL = 0.1L ₓ (1.0mol / L) = 0.100 moles of both HCl and Sr(OH)₂

As 2 moles of HCl reacts per mole of Sr(OH)₂, moles of Sr(OH)₂ that reacts with 0.100 moles of HCl are:

0.100 moles HCl ₓ (1 mol Sr(OH)₂ / 2 mol HCl) = 0.050 moles Sr(OH)₂

That means HCl is limiting reactant and after reaction will remain in solution:

0.100 mol - 0.050mol =

0.050 moles of Sr(OH)₂

Find pH:

1 mole of Sr(OH)₂ contains 2 moles of OH⁻, 0.050 moles contains 0.050×2 = 0.100 moles of OH⁻. In 200mL = 0.2L:, molar concentration of OH⁻ is:

0.100 moles / 0.2L =

[OH⁻] = 0.5M

As pOH of a solution is -log[OH⁻],

pOH = -log 0.5M

pOH = 0.301

And knowing:

pH = 14 - pOH

pH = 14 - 0.301

pH = 13.7

Determine the oxidation state for each of the elements below. The oxidation state of ... silver ... in ... silver oxide Ag2O ... is ... ___ . The oxidation state of sulfur in sulfur dioxide SO2 is ___ . The oxidation state of iron in iron(

Answers

Answer:

The oxidation state of silver in [tex]\rm Ag_2O[/tex] is [tex]+1[/tex].

The oxidation state of sulfur in [tex]\rm SO_2[/tex] is [tex]+4[/tex].

Explanation:

The oxidation states of atoms in a compound should add up to zero.

Ag₂O

There are two silver [tex]\rm Ag[/tex] atoms and one oxygen [tex]\rm O[/tex] atom in one formula unit of [tex]\rm Ag_2O[/tex]. Therefore:

[tex]\begin{aligned}&\rm 2 \times \text{Oxidation state of $\rm Ag$}+ \rm 1 \times \text{Oxidation state of $\rm O$} = 0\end{aligned}[/tex].

The oxidation state of oxygen in most compounds (with the exception of peroxides and fluorides) is [tex]-2[/tex]. Silver oxide [tex]\rm Ag_2O[/tex] isn't an exception. Therefore:

[tex]\begin{aligned}&\rm 2 \times \text{Oxidation state of $\rm Ag$}+ \rm 1 \times \text{Oxidation state of $\rm O$} = 0\\ &\rm 2 \times \text{Oxidation state of $\rm Ag$}+ \rm 1 \times (-2) = 0\end{aligned}[/tex].

Solve this equation for the (average) oxidation state of [tex]\rm Ag[/tex]:

[tex]\text{Oxidation state of $\rm Ag$} = 1[/tex].

SO₂

Similarly, because there are one sulfur [tex]\rm S[/tex] atom and two oxygen [tex]\rm O[/tex] atoms in each [tex]\rm SO_2[/tex] molecules:

[tex]\begin{aligned}&\rm 1\times \text{Oxidation state of $\rm S$}+ \rm 2 \times \text{Oxidation state of $\rm O$} = 0\end{aligned}[/tex].

The oxidation state of [tex]\rm O[/tex] in [tex]\rm SO_2[/tex] is also [tex]-2[/tex], not an exception, either.

Therefore:

[tex]\begin{aligned}&\rm 1 \times \text{Oxidation state of $\rm S$}+ \rm 2 \times \text{Oxidation state of $\rm O$} = 0\\ &\rm 1 \times \text{Oxidation state of $\rm S$}+ \rm 2 \times (-2) = 0\end{aligned}[/tex].

Solve this equation for the oxidation state of [tex]\rm S[/tex] here:

[tex]\text{Oxidation state of $\rm S$} = 4[/tex].

Calculate the silver ion concentration in a saturated solution of silver(I) sulfate (K sp = 1.4 × 10 –5). 1.5 × 10–2 M 1.4 × 10–5 M 3.0 × 10–2 M 2.4 × 10–2 M None of the above.

Answers

Answer:

3.0x10⁻²M

Explanation:

Silver sulfate, Ag₂SO₄, has a product constant solubility equilbrium of:

Ag₂SO₄(s) ⇄ 2Ag⁺ + SO₄²⁻

When an excess of silver sulfate is added, some Ag₂SO₄ will react producing Ag⁺ and SO₄²⁻ until reach the equilbrium determined for the formula:

ksp = 1.4x10⁻⁵ = [Ag⁺]² [SO₄²⁻]

Assuming the Ag₂SO₄ that react until reach equilibrium is X, we can replace in Ksp expression:

1.4x10⁻⁵ = [Ag⁺]² [SO₄²⁻]

1.4x10⁻⁵ = [2X]² [X]

1.4x10⁻⁵ = 4X³

3.5x10⁻⁶ = X³

0.015 = X

As [Ag⁺] is 2X:

[Ag⁺] = 0.030 = 3.0x10⁻²M

The answer is:

3.0x10⁻²M

15. How many moles of carbon tetrachloride (CCI) is represented by 543.2 g of carbon tetrachloride? The atomic weight of carbon is 12.01
and the atomic weight of chlorine is 35.45.
O A. 11.4 moles
O B.3.53 moles
C. 5.42 moles
D. 8.35x10 moles

Answers

Answer:

well, first off. the formula for carbon tetrachloride is CCl4

We need to find the molar mass of carbon tetrachloride

1(Mass of C) + 4(mass of chlorine)

1(12) + 4(35.5)

12 + 142

154 g/mol

Number of moles of CCl3 in 543.2g CCl3

n = given mass / molar mass

n = 543.2/153

n = 3.53 moles

always remember to brainly the questions you find helpful

Answer:

3.53 moles

Explanation:

What will be formed when 2,2,3-trimethylcyclohexanone reacts with hydroxylamine?

Answers

Answer:

Following are the solution to this equation:

Explanation:

In the given-question, an attachment file of the choices was missing, which can be attached in the question and its solution can be defined as follows:

In the given question "Option (iii)" is correct, which is defined in the attachment file.

When 2,2,3-trimethylcyclohexanone reacts with hydroxylamine it will produce the 2,2,3-trimethylcyclohexanoxime.

When the following molecular equation is balanced using the smallest possible integer coefficients, the values of these coefficients are:

________hydrochloric acid (aq) + ___________oxygen (g) → _________water (l) + ________chlorine (g)

Answers

Answer:

The coefficients are; 4, 0, 2, 2

Explanation:

The equation is given as;

HCl + O2 --> H2O + Cl2

Upon balancing the equation, we have;

4HCl + O2 --> 2H2O + 2Cl2

at 89 ∘C∘C , where [Fe2+]=[Fe2+]= 3.60 MM and [Mg2+]=[Mg2+]= 0.310 MM . Part A What is the value for the reaction quotient, QQQ, for the cell?

Answers

Answer:

8.6×10^-2

Explanation:

The reaction is;

Mg(s) + Fe^2+(aq) -----> Mg^2+(aq) + Fe(s)

This implies that;

Q = [Mg^2+]/[Fe^2+]

But;

[Fe2+]= 3.60 M

[Mg2+]= 0.310 M

Q= [0.310 M]/[3.60 M]

Q= 0.086

Q= 8.6×10^-2

At a given temperature the vapor pressures of benzene and toluene are 183 mm Hg and 59.2 mm Hg, respectively. Calculate the total vapor pressure over a solution of benzene and toluene with X Benzene

Answers

CHECK COMPLETE QUESTION BELOW

At a given temperature the vapor pressures of benzene and toluene are 183 mm Hg and 59.2 mm Hg, respectively. Calculate the total vapor pressure over a solution of benzene and toluene with Xbenzene = 0.580.

Answer:

The total vapor pressure is [tex]81.3 mmHg[/tex]

Explanation:

We will be making use of Dalton and Raoults equation in order to calculate the total pressure,

Which is [tex]PT= (PA × XA) +(PB ×XB)[/tex]

PT= total vapor pressure

From the question

Benene's Mole fraction = 0.580

then to get Mole fraction of toluene we will substract the one of benzene from 1. because total mole fraction is always 1.

= (1 - 0.580) = 0.420

Vapor pressure of benzene given = 183 mmHg

Vapor pressure of toluene given= 59.2 mmHg

If we substitute those value into above equation, we have

PT=(183×0.580)+(59.2×0.420)

=81.3mmHg

Therefore,, the total vapor pressure of the solution is 81.3 mmHg

I need to name an ionic compound containing a transition metal cation and a halogen anion. Below are the rules I should follow to write the correct name for such compound, but one of the options is incorrect: identify and select it.
a. Identify the metal and write its name first
b. Use the periodic table to work out the charge (oxidation number) on the transition metal according to the group in the periodic table
c. From the charge of the anion work out the charge of cation as Roman number in parenthesis: specify this charge in the name as a Roman number in parenthesis.
d. Write the number of the anion after the name of the metal

Answers

Answer:

b. Use the periodic table to work out the charge (oxidation number) on the transition metal according to the group in the periodic table

Explanation:

The keyword in this problem us "transition metal". Transition metals are found between the group 2 and group 3 elements. They have the d sub shells and also exhibit variable oxidation numbers (valency).

Among the options, the incorrect option is option B.

This is because transition metals d not have  a fixed oxidation number and they cannot be obtained by looking up the group in the periodic table.

The iconic compounds obtain a transition of metal caution and a halon anon. As per the rules the correct name of the compounds should be written as to identify the incorrect one.

Option B use the ability to check and to work out the charges (oxidation number) of the transition metal as per the group given in the table. The problem with the keyword is transition metal.

Learn more about the ionic compound containing a transition metal.

brainly.com/question/21578354.

Other Questions
in which type of government is political power distributed among the widest group of people? A 5.2 cm diameter circular loop of wire is in a 1.35 T magnetic field. The loop is removed from the field in 0.29 sec. Assume that the loop is perpendicular to the magnetic field. What is the average induced emf? Lines a and b are parallel. If the slope of line a is , what is the slope of line b? A.-B.4C.D.-4 In the Cash Now lottery game there are 8 finalists who submitted entry tickets on time. From these 8 tickets, three grand prize winners will be drawn. The first prize is one million dollars, the second prize is one hundred thousand dollars, and the third prize is ten thousand dollars. Determine the total number of different ways in which the winners can be drawn. (Assume that the tickets are not replaced after they are drawn.) plz answer fast i beg uWhich are not particles that enable electrical conductivity?Select one:a. delocalised electronsb. moleculesc. mobile ions A business client is looking for ways to decrease its monthly premiums. To get down to the premium level sought after by the company, the agent realizes they have to go to a high deductible health plan. As part of your advice to the business, what should you include in your discussion? If BH = 66, find DE. Round your answer to two decimal places if necessary. Internal rate of return method The internal rate of return method is used by Testerman Construction Co. in analyzing a capital expenditure proposal that involves an investment of $149,630 and annual net cash flows of $45,000 for each of the six years of its useful life. This information has been collected in the Microsoft Excel Online file. Open the spreadsheet, perform the required analysis, and input your answers in the question below. Open spreadsheet Determine the internal rate of return for the proposal. PLEASE help me solve this question! No nonsense answers please! S lo que ped Think of the reading and choose the correct response.Cmo pidi Julio el biftec?Question 18 options:Lo pidi a trmino medio.Lo pidi casi crudo.Lo pidi con arroz. Why does anaerobic respiration produce less energy than aerobic respiration?A. Glucose is only partially broken down.B. The process takes a lot of energy, and uses most of what it releases from Glucose.C. Glucose can't be broken down without oxygen, so the body's other energy source,lipids are used.D. Glucose can't be used, so there is only ATP. what's the difference between force of gravity and the earth's magnetic field? The practice of changing prices for products in real time in response to supply and demand conditions is referred to as An increase in the money supply will: Group of answer choices increase interest rates and increase the equilibrium GDP. lower interest rates and increase the equilibrium GDP. increase interest rates and lower the equilibrium GDP. lower interest rates and lower the equilibrium GDP. Who do you feel were important in the development of medicine? Explain why. An organization wants to reduce the possibility of outages when changes are implemented on the network. What should the organization use Time(minutes)Water(gallons)116.501.524.75 233find the constant of proportionality for the second and third row How many solutions does the system have? Let f (x) = |2). Write a function g whose graph is a vertical shrink by a factor offollowed by a translation 2 units up of the graph of f. In a velocity selector having electric field E and magnetic field B, the velocity selected for positively charged particles is v= E/B. The formula is the same for a negatively charged particles.a. Trueb. False