The time becomes infinity, i(t) will become constant, i.e., lim t→[infinity] i(t) = 0.
The current of the given LR-series circuit can be determined using the formula I = (E/R) * (1 - e^-Rt/L).The current i(t) if i(0) = 0 in the LR-series circuit is given by i(t) = 0.125A. The current as t → [infinity] is given by lim t→[infinity] i(t) = 0.How to solve this?The formula for the current in the LR-series circuit is given by:Where E is the electromotive force, R is the resistance, L is the inductance, t is time and I is the current.I = (E/R) * (1 - e^-Rt/L)Given E = 20V, R = 40Ω, L = 0.1H, and i(0) = 0Substitute these values in the above formula.I = (20/40) * (1 - e^-40t/0.1)I = 0.5(1 - e^-400t)I = 0.5 - 0.5e^-400tSo the current is i(t) = 0.5 - 0.5e^-400t.Limit of t as t → [infinity] means that when the time is allowed to run infinitely, then the current will become constant. Hence, when the time becomes infinity, i(t) will become constant, i.e., lim t→[infinity] i(t) = 0. Answer: The current is i(t) = 0.5 - 0.5e^-400t. Limit of t as t → [infinity] means that when the time is allowed to run infinitely, then the current will become constant. Hence, when the time becomes infinity, i(t) will become constant, i.e., lim t→[infinity] i(t) = 0.
Learn more about Infinity
brainly.com/question/16887086
#SPJ11
How do you do this I need help please
Answer:
30,000 grams
Step-by-step explanation:
multiply the 30KG by 1,000 (that is the conversion) and you get 30,000g
Answer:
hi I'm really sorry I can't help
The tires on Mavis’ car will have to be replaced when they each have 160 000 km of wear on them. If new tires cost $140.00 each, what is the total cost of the wear on Mavis’ tires for a year in which she drives 25 000 km?
Answer:
If the tires on Mavis’ car have to be replaced when they each have 160 000 km of wear, then the total distance Mavis can drive on a set of tires is:
4 tires * 160,000 km = 640,000 km
If Mavis drives 25,000 km in a year, she will need to replace her tires after:
640,000 km ÷ 25,000 km/year = 25.6 years
Since Mavis will need to replace her tires once every 25.6 years, the cost of the wear on her tires for a single year is:
$140.00/tire * 4 tires = $560.00
So the total cost of the wear on Mavis’ tires for a year in which she drives 25,000 km is $560.00.
Step-by-step explanation:
source: trust me bro
in how many ways can a class of 40 students select a committee from the class that consists of a president, a vice president, a treasurer and a secretary g
The total number of ways of selecting the committee is, therefore,40 x 39 x 38 x 37= 7,903,040
A class of 40 students select a committee from the class that consists of a president, a vice president, a treasurer, and a secretary in the following way:Step-by-step explanation:The number of ways that a class of 40 students can choose a committee consisting of a president, vice president, treasurer, and a secretary can be found by using the permutation formula.If we assume that the positions of the committee members are different, the number of ways can be calculated as follows:The number of ways of selecting the president from 40 students is 40.The number of ways of selecting the vice president from the remaining 39 students is 39.The number of ways of selecting the treasurer from the remaining 38 students is 38.The number of ways of selecting the secretary from the remaining 37 students is 37.The total number of ways of selecting the committee is, therefore,40 x 39 x 38 x 37= 7,903,040Thus, secretary.
Learn more about Committee
brainly.com/question/11621970
#SPJ11
an inner city revitalization zone is a rectangle that is twice as long as it is wide. the width of the region is growing at a rate of 32 m per year at a time when the region is 220 m wide. how fast is the area changing at that point in time?
The area is changing at a rate of 28,160 m²/year at that point in time.
The area of the rectangular region is given by:
A = lw
Where l is the length of the rectangular region and w is the width of the rectangular region.
The width of the rectangular region is given to be 220 m. Therefore, we have the width w = 220 m. The length l of the rectangular region can be found knowing that it is twice as long as it is wide. Therefore, the length of the rectangular region is given by:
l = 2w
l = 2 x 220
l = 440
Therefore, the length l of the rectangular region is 440 m.
At the given point in time, the width of the rectangular region is growing at a rate of 32 m per year. Therefore, we have the rate of change of the width dw/dt to be 32 m per year. We need to find how fast the area of the rectangular region is changing at that point in time. Therefore, we need to find the rate of change of the area of the rectangular region dA/dt.
A = lw
dA/dt = w dl/dt + l dw/dt
dA/dt = 220 d/dt(2w) + 440 dw/dt
dA/dt = 220 x 2 dw/dt + 440 dw/dt
dA/dt = 880 dw/dt
Substitute the value of dw/dt to get:
dA/dt = 880 x 32
dA/dt = 28,160 m²/year
Therefore, the area of the rectangular region has a rate of change of 28,160 m² per year at that point in time.
Learn more about rate of change here: https://brainly.com/question/29504549
#SPJ11
6. 4 The point Q (3, -1) has been translated from P by the vector (3) What are the coordinates of the point P?
The coordinates of the point P is (-1,2) .
What is translation?
In mathematics, a translation is a geometric transformation that moves every point of a figure or a space by the same amount in a given direction. The amount and direction of the movement can be described using a vector, which is a mathematical object that has both magnitude and direction.
Finding the coordinates of the point P :
The coordinates of point P can be found by subtracting the vector from point Q.
To find the coordinates of point P, we need to subtract the vector [tex]\begin{pmatrix}4\\-3\end{pmatrix}[/tex] from the coordinates of point Q, which are (3, -1).
Subtracting the x-coordinate of the vector from the x-coordinate of point Q gives us:
3 - 4 = -1
Similarly, subtracting the y-coordinate of the vector from the y-coordinate of point Q gives us:
-1 - (-3) = 2
Therefore, the coordinates of point P are (-1, 2).
So, the correct answer is (C) (-1, 2).
To know more about coordinates visit :
brainly.com/question/16634867
#SPJ1
which part of this graph shows a non-linear relationship
Answer:
A.
Step-by-step explanation:
Consider a square whose side-length is one unit. Select any five points from inside this square. Prove that at least two of these points are within squareroot 2/2 units of each other.
The given square with a side length of one unit is known to contain five points. One must prove that at least two of these points are within square root 2/2 units of each other.
According to the Pigeonhole principle, "if n items are put into m containers, with n > m, then at least one container must contain more than one item."In this context, the square is the container, and the points inside it are the objects. If more than four points are picked, the theorem is true, and two points are nearer to each other than the square root of 2/2 units.
Let's place four points on the square's four corners. The distance between any two of these points is the square root of two units since the square's side length is 1.
Let's add another point to the mix. That point is either inside the square or outside it. Without loss of generality, let us assume that the point is inside the square. It must then be within the perimeter outlined by joining the square's corners to the point that was not a corner already.
The perimeter of the square described above is a square with a side length of square root 2 units.
Since we have five points in the square, at least two of them must be in the same smaller square, due to the pigeonhole principle. Without loss of generality, let's assume that two of the points are in the upper-left square. As a result, any points within this square are within the square root 2 units of any of the other four points. Hence, at least two points of the five selected are within the square root of 2/2 units of each other.
To know more about the "pigeonhole principle": https://brainly.com/question/13982786
#SPJ11
Let n be a positive integer. If a == (3^{2n}+4)^-1 mod(9), what is the remainder when a is divided by 9?
Let n be a positive integer. We can use the properties of modular arithmetic to calculate this remainder. Let's start with a = (32n + 4)-1 mod 9. We can rewrite this as a = 9 - (32n + 4)-1 because 9 = 0 mod 9.
We can use Fermat's Little Theorem to calculate (32n + 4)-1. This theorem states that (32n + 4)-1 mod 9 = (32n + 4)8 mod 9.
Using the identity (a + b)n mod m = ((a mod m) + (b mod m))n mod m, we can simplify the equation to (32n mod 9 + 4 mod 9)8 mod 9.
32n mod 9 = 0, so (32n mod 9 + 4 mod 9)8 mod 9 = 48 mod 9 = 1.
Finally, a = 9 - 1 = 8 mod 9, so the remainder when a is divided by 9 is 8.
Learn more about positive integer:
https://brainly.com/question/16952898
#SPJ11
ABCD is a quadrilateral in which BD = 15 cm., perpendiculars from A and Con BD are 6 cm and 8 cm respectively. Calculate the area of the quadrilaterals
The area of the quadrilateral is 161.24 cm².
How to deal with quadrilateral?We can see that we can divide the quadrilateral into two triangles: ABD and CBD. We know that the height of ABD is 6 cm and the height of CBD is 8 cm. We also know that BD is 15 cm. To find the area of each triangle, we need to find the base of each triangle. We can do this using the Pythagorean theorem.
For triangle ABD:
AB² = AD² + BD²
AB² = (6 cm)² + (15 cm)²
AB² = 261 cm²
AB = [tex]\sqrt(261) cm[/tex]
For triangle CBD:
BC² = CD² + BD²
BC² = (8 cm)² + (15 cm)²
BC² = 289 cm²
BC = 17 cm
Now we can find the areas of the triangles:
Area of ABD =[tex]\frac{1}{2}[/tex] * AB * 6 cm
Area of ABD = [tex]\frac{1}{2}[/tex] * [tex]\sqrt(261) cm[/tex] * 6 cm
Area of ABD = 93.24 cm^2
Area of CBD = [tex]\frac{1}{2}[/tex] * BC * 8 cm
Area of CBD = [tex]\frac{1}{2}[/tex] * 17 cm * 8 cm
Area of CBD = 68 cm²
Finally, we can find the area of the quadrilateral by adding the areas of the triangles:
Area of ABCD = Area of ABD + Area of CBD
Area of ABCD = 93.24 cm² + 68 cm²
Area of ABCD = 161.24 cm²
Therefore, the area of the quadrilateral is 161.24 cm².
To know more about quadrilateral visit:
brainly.com/question/7720055
#SPJ1
a parachutist rate during a free fall reaches 132 feet per second. what is this rate in meters per second? at this rate, how many meters will the parachutist fall during 10 seconds of free fall. in your computations, assume that 1 meter is equal to 3.3 feet. (do not round your answer)
Parachutist's rate during free fall is 40 meters per second and will fall approximately 490 meters during 10 seconds of free fall.
How to convert feet to meters?First, we need to convert 132 feet per second to meters per second. We know that 1 meter is equal to 3.3 feet, so we can use the following conversion factor:
[tex]$\frac{3meter}{3.3 feet}[/tex]
To convert feet per second to meters per second, we can multiply by the conversion factor:
[tex]132 (\frac{1}{3.3} ) = 40 meters/second[/tex]
Therefore, the parachutist's rate during free fall is 40 meters per second.
Next, we can use the following formula to find the distance the parachutist falls during 10 seconds of free fall:
distance =[tex]\frac{1}{2}[/tex] * acceleration * time²
where acceleration due to gravity is approximately 9.8 meters/second^2.
Substituting the given values, we get:
distance = [tex]\frac{1}{2}[/tex] * 9.8 meters/second² * (10 seconds)²
distance = 490 meters
Therefore, the parachutist will fall approximately 490 meters during 10 seconds of free fall.
To know more about Foot visit:
brainly.com/question/14230645
#SPJ1
Weight: 20kg Order: 10 mg q6 hours Therapeutic range : 2-3 mg/kg/day. What is daily dose? Is it safe? Is it therapeutic?
The daily dose is 40mg, this dose per kilogram per day is within the therapeutic range of 2-3mg/kg/day, which means that the medication is within the safe and effective range for this patient's weight.
The weight of the patient is 20kg, and the prescribed dosage is 10mg every 6 hours. To calculate the daily dose, we need to multiply the prescribed dosage by the number of doses per day. Since the medication is prescribed every 6 hours, this means that the patient will take it 4 times a day.
=> (10mg x 4 doses) = 40 mg
The therapeutic range is the range of doses at which the medication is most effective and safe. In this case, the therapeutic range is 2-3mg/kg/day. To determine if the daily dose is within the therapeutic range, we need to divide the daily dose (40mg) by the patient's weight (20kg) to get the dose per kilogram per day, which is 2mg/kg/day.
However, it's important to note that the therapeutic range is a general guideline and may vary depending on the patient's individual circumstances and medical history.
To know more about therapeutic here
https://brainly.com/question/14598348
#SPJ4
how to calculate the product of two random variable that follows normal distribution with mean 0 and variance 1
The product of two random variables that follows the normal distribution with mean 0 and variance 1 is expected 0.
To compute the product of two random variables that are normal distributed with a mean of 0 and a variance of 1, the following procedure can be employed:
Since the mean of the normal distribution is 0 and the variance is 1, we can assume that the standard deviation is also 1.Thus, we can write the probability density function of the normal distribution as:
f(x) = (1/√2π) * e^(-x^2/2)
Using the definition of expected value, we can write the expected value of a random variable X as:E[X] = ∫x * f(x) dx, where the integral is taken over the entire range of X.
Similarly, we can write the expected value of a random variable Y as:E[Y] = ∫y * f(y) dy, where the integral is taken over the entire range of Y.
Since the two random variables are independent, the expected value of their product is the product of their expected values. Thus, we can write:E[XY] = E[X] * E[Y]
Substituting the probability density function of the normal distribution into the expected value formula, we can write:E[X] = ∫x * f(x) dx = ∫x * (1/√2π) * e^(-x^2/2) dx = 0
E[Y] = ∫y * f(y) dy = ∫y * (1/√2π) * e^(-y^2/2) dy = 0
Thus, the expected value of the product of two random variables that follow a normal distribution with mean 0 and variance 1 is:E[XY] = E[X] * E[Y]
= 0 * 0 ⇒ 0
Therefore, the product of two random variables that follow a normal distribution with mean 0 and variance 1 has an expected value of 0.
To know more about the "normal distribution": https://brainly.com/question/4079902
#SPJ11
A space probe near Neptune communicates with Earth using bit strings. Suppose that in its transmissions it sends a 1 one-third of the time and a 0 two-thirds of the time. When a 0 is sent, the probability that it is received correctly is 0.8 and the probability that it is received incorrectly (as a 1) is 0.2. When a 1 is sent the probability that it is received correctly is 0.8 and the probability that it is received incorrectly (as a 0) is 0.2.
Find the probability that a 0 is received. (Enter the value of the probability in decimal format and round the final answer to one decimal place.)
P(0 received correctly) = P(0 sent) × P(0 received correctly | 0 sent)= [tex](2/3) × 0.8= 0.5333[/tex] (rounded to 1 decimal place)Thus, the probability that a 0 is received is 0.5333 (rounded to 1 decimal place).
0.5333
A space probe near Neptune communicates with Earth using bit strings. Suppose that in its transmissions it sends a 1 one-third of the time and a 0 two-thirds of the time. When a 0 is sent, the probability that it is received correctly is 0.8 and the probability that it is received incorrectly (as a 1) is 0.2. When a 1 is sent the probability that it is received correctly is 0.8 and the probability that it is received incorrectly (as a 0) is 0.2.The probability that a 0 is received correctly is given in the problem as 0.8, and the probability that a 0 is sent is 2/3. Therefore, the probability that a 0 is received correctly
for such more questions on probability
https://brainly.com/question/13604758
#SPJ11
Qual o resultado do problema 3528÷98?
Answer:
36
Step-by-step explanation:
1 0 6
0 1 1
0 0 0
Find the solution(s) to the system, if it exists. State the solution as a point (be sure to use parentheses), use parameter(s) s and t if needed. If the system is inconsistent, then state no solution.
The system has infinitely many solutions, which can be written as (x, y, z) = (1 - 60s, -10 + 600s, s) where s is a parameter.
To solve the system of equations:
1x + 0y + 60z = 1
1x + 10y + 0z = 0
0x + 0y + 0z = 0
The third equation is an identity, implying that it does not give us any new information. The first two equations can be used to solve for x, y, and z:
From the first equation, we get x = 1 - 60z
From the second equation, we get y = 0 - 10x = -10(1 - 60z) = -10 + 600z
Therefore, the solution to the system can be written as a point in terms of z as:
(x, y, z) = (1 - 60z, -10 + 600z, z)
Since z can take on any value, there are infinitely many solutions to the system, which can be parameterized as:
(x, y, z) = (1 - 60s, -10 + 600s, s) where s is a parameter.
he system has infinitely many solutions, which can be written as (x, y, z) = (1 - 60s, -10 + 600s, s) where s is a parameter.
For more questions like Equation click the link below:
https://brainly.com/question/29657983
#SPJ11
Help please & thanks
The function f(t)=−5t^2+20t models the approximate height of an object t seconds after it is launched. Which of the following equations correctly shows the quadratic formula being used to determine the number of seconds it will take for the objects to be at a height of 18 feet after launch?
The equatiοn is [tex]t = (-20 \± \sqrt{(400 - 4(-5)(-18))}) / 2(-5)[/tex] tο sοlve fοr the time it takes fοr the οbject tο be at a height οf 18 feet.
What is trigοnοmetric equatiοns ?Trigοnοmetric equatiοns are equatiοns that invοlve trigοnοmetric functiοns such as sine, cοsine, tangent, etc. These equatiοns usually invοlve finding values οf the unknοwn angle(s) that satisfy the given equatiοn. They can be sοlved using algebraic techniques οr by using the prοperties οf trigοnοmetric functiοns.
Accοrding tο the given infοrmatiοn:
The given functiοn is [tex]f(t) = -5t^2 + 20t[/tex], which mοdels the height οf an οbject in feet as a functiοn οf time in secοnds.
Tο find the number οf secοnds it will take fοr the οbject tο be at a height οf 18 feet after launch, we need tο sοlve the equatiοn [tex]-5t^2 + 20t = 18[/tex].
Tο sοlve this quadratic equatiοn using the quadratic fοrmula, we first identify the values οf a, b, and c frοm the general fοrm οf a quadratic equatiοn, [tex]ax^2 + bx + c = 0[/tex].
In this case, a = -5, b = 20, and c = -18. Substituting these values intο the quadratic fοrmula, we get:
[tex]t = (-b\± \sqrt{(b^2 - 4ac)}) / 2a[/tex]
Plugging in the values οf a, b, and c, we get:
[tex]t = (-20 \± \sqrt{+(20^2 - 4(-5)(-18)})) / 2(-5)[/tex]
Simplifying this expressiοn, we get:
[tex]t = (-20 \± \sqrt{(400 - 360))} / (-10)[/tex]
[tex]t = (-20\± \sqrt{(40)}) / (-10)[/tex]
[tex]t = (-20 \± 2\sqrt{(10)}) / (-10)[/tex]
[tex]t = 2 \± 0.632[/tex]
Therefοre, the twο pοssible values οf t are:
t = 2 + 0.632 = 2.632 secοnds
t = 2 - 0.632 = 1.368 secοnds
Therefοre, the equatiοn that cοrrectly shοws the quadratic fοrmula being used tο determine the number οf secοnds it will take fοr the οbject tο be at a height οf 18 feet after launch is:
[tex]t = (-b\± \sqrt{(b^2 - 4ac)}) / 2a[/tex]
[tex]t = (-20 \± \sqrt{(20^2 - 4(-5)(-18))}) / 2(-5)[/tex]
[tex]t = (-20\± \sqrt{(40)}) / (-10)[/tex]
[tex]t = (-20 \± 2\sqrt{(10)}) / (-10)[/tex]
t = 2 ± 0.632
Therefοre, the equatiοn is [tex]t = (-20 \± \sqrt{(400 - 4(-5)(-18))}) / 2(-5)[/tex] tο sοlve fοr the time it takes fοr the οbject tο be at a height οf 18 feet.
To know more about trigonometric equations visit :
brainly.com/question/30710281
#SPJ1
Each morning, Sleepwell Hotel offers its guests a free continental breakfast with pastries and orange juice. The hotel served 180 gallons of orange juice last year. This year, the hotel served 70% more orange juice than it did the previous year. How much was served this year?
The hotel served 306 gallons of orange juice this year.
To find the amount of orange juice served this year, we need to add 70% more of the amount served last year to the amount served last year. Let's denote the amount served last year as "x". Then we can set up the equation:
Amount served this year = x + 0.7xSimplifying this equation gives us:
Amount served this year = 1.7xWe know from the problem that the amount served last year was 180 gallons. Plugging this into our equation, we get:
Amount served this year = 1.7(180)Simplifying this equation gives us:
Amount served this year = 306Therefore, the hotel served 306 gallons of orange juice this year.
In summary, we used the information given in the problem to set up an equation and solve for the amount of orange juice served this year. We first found the amount served last year, and then added 70% more of that amount to get the total amount served this year.
Learn more about Advanced Maths:
https://brainly.com/question/25263701
#SPJ4
the dog eats 8 ounces of dog food each day his owner bought 28 pound bag at the 8 ounces cost $3.50 so how much did the owner spend for 28 bag
Answer:
$196
Step-by-step explanation:
1 lb = 16oz
28 lbs x 16 = 448 ozs (in 28 lb bag)
448/8 = 56 (8 oz portions)
56 x $3.50= $196
evaluate the diagram below, and find the measures of the missing angles
Answer:
A=100
B= 80
C=80
D=100
E=80
F=80
G=100
Step-by-step explanation:
Can anyone please help with this math problem? Thanks!
Answer: Yes Sofia will have enough money
=======================================================
Explanation:
Refer to the drawing below. I've split the hexagon into two pieces. The bottom is a rectangle and the top is a trapezoid.
The area of the rectangle is 16*7 = 112 square meters.
The trapezoid has 16 as one of the parallel sides. The other side is x meters. We'll use the perimeter 54 to determine what x must be
sum of the exterior sides = perimeter
6+7+16+7+6+x = 54
42+x = 54
x = 54-42
x = 12
The top most side is 12 meters. This is the missing side of the trapezoid. The hexagon has a height of 12.66 meters, so the trapezoid's height must be 12.66-7 = 5.66 meters. Refer to the blue segment I marked in the drawing below.
area of the trapezoid = 0.5*height*(base1+base2)
area = 0.5*5.66*(16+12)
area = 79.24 square meters
----------------
Recap so far
area of the rectangle at the bottom = 112 square metersarea of the trapezoid up top = 79.24 square metersThe total area of the entire hexagon is therefore 112+79.24 = 191.24 square meters.
Let's convert that to square decimeters.
Recall that 1 decimeter = 10 centimeters
Multiply both sides by 10
1 decimeter = 10 centimeters
10*(1 decimeter) = 10*(10 centimeters)
10 decimeters = 100 centimeters
10 decimeters = 1 meter
Then,
[tex]191.24 \text{ sq m}= 191.24 \text{ sq m} * \frac{10 \text{ dm}}{1 \text{ m}} * \frac{10 \text{ dm}}{1 \text{ m}}\\\\= \frac{191.24*10*10}{1*1} \text{ sq dm}\\\\= 19124 \text{ sq dm}\\\\[/tex]
The entire lawn is 19124 square decimeters.
----------------
We have one final block of calculations to determine the total price.
x = number of rolls
1 roll covers 90 square decimeters
x rolls cover 90x square decimeters
90x = 19124
x = 19124/90
x = 212.489 approximately
Round up to the nearest integer to get x = 213. It doesn't matter that 212.489 is closer to 212. We round up to clear the hurdle. It means we'll have leftover grass that isn't used (perhaps it could be handy to have some back up grass just in case mistakes are made, and some patches need to be redone).
In short, Sofia needs 213 rolls.
1 roll costs $4.50
213 rolls will cost 213*4.50 = 958.50 dollars.
This is under the $1000 threshold (with 1000-958.50 = 41.50 dollars to spare).
Sofia will have enough money to pay for all of the grass.
Question
Find the value of y
for the given value of x
.
y=x+5;x=3
Answer: y is equal to 8
Step-by-step explanation:
by substituting the x for its vale of three we can add the two values to get 8 or y=8
Suppose that the insurance companies did do a survey. They randomly surveyed 400 drivers and found that 320 claimed they always buckle up. We are interested in the population proportion of drivers who claim they always buckle up.a.i. x = __________ii. n = __________iii. p′ = __________b. Define the random variables X and P′, in words.c. Which distribution should you use for this problem? Explain your choice.d. Construct a 95% confidence interval for the population proportion who claim they always buckle up.i. State the confidence interval.ii. Sketch the graph.iii. Calculate the error bound.e. If this survey were done by telephone, list three difficulties the companies might have in obtaining random results.
We are interested in the population proportion of drivers who claim they always buckle upa.i. x = 320 ii. n = 400 iii. p′ = 0.8
b. The random variable X represents the number of drivers out of the sample of 400 who claim they always buckle up, while P′ represents the sample proportion of drivers who claim they always buckle up.
c. The distribution to use for this problem is the normal distribution because the sample size is large enough (n=400) and the population proportion is not known.
d. i. The 95% confidence interval for the population proportion who claim they always buckle up is (0.7709, 0.8291).
ii. The graph is a normal distribution curve with mean p′ = 0.8 and standard deviation σ = sqrt[p′(1-p′)/n].
iii. The error bound is 0.0291.
e. Three difficulties the insurance companies might have in obtaining random results from a telephone survey are:
Selection bias: The survey might not be truly random if the telephone numbers selected are not representative of the population of interest.
Nonresponse bias: People may choose not to participate in the survey or may not be reached, which could bias the results.
Social desirability bias: Respondents may give socially desirable answers rather than their true opinions, which could also bias the results.
For more questions like Variable click the link below:
https://brainly.com/question/17344045
#SPJ11
Charles is 10 years old what is the best estimate of the length of his shoe
Answer:
Size 3 ♀️
Step-by-step explanation:
In the US, the average shoe size for 10-Year-Old is USA Size 3.
-Jul 12, 2020
In a 7-sided figure, three of the angles are equal
and each of the other four angles is 150 greater
than each of the first three. Find the angles.
The sum of the angles of an N-sided convex figure is (n-2)*180 - a simple proof of which is just to decompose the figure into triangles, each of which has all of its vertices the same as three of the vertices of the original figure. (Cut a quadrilateral into two triangles along a diagonal, for instance).
So, a 7-sided figure has angles totaling 5*180 = 900. Now set up a simple equation:
3x + 4(x+15) = 900
7x + 60 = 900
7x = 840
x = 120
The figure has three angles of 120 degrees, and four angles of 135 degrees.
Smoothie Activity
6. Using the relative frequency table, create a segmented bar graph by employee type using technology or by hand. If using Excel technology the columns may need to be switched after inserting the chart. Click on the chart and the "Chart Design" ribbon will pop up. Then select "Switch Row/Column." (10 points)
By answering the presented question, we may conclude that I used the following procedures to produce this graph.
What is graphs?Mathematicians use graphs to visually display or chart facts or values in order to express them coherently. A graph point usually represents a connection between two or more items. A graph, a non-linear data structure, is made up of nodes (or vertices) and edges. Glue the nodes, also known as vertices, together. This graph contains vertices V=1, 2, 3, 5, and edges E=1, 2, 1, 3, 2, 4, and (2.5), (3.5). (4.5). Statistical graphs (bar graphs, pie graphs, line graphs, and so on) are graphical representations of exponential development. a logarithmic graph shaped like a triangle.
I used the following procedures to produce this graph:
I classified the personnel as full-time, part-time, and temporary.
I estimated the proportion of employees who assessed the company's work-life balance as "very good" or "excellent" for each employee category, as well as the percentage who rated it as "good" or "fair/poor."
I used the following procedures to produce this graph:
I classified the personnel as full-time, part-time, and temporary.
I estimated the proportion of employees who assessed the company's work-life balance as "very good" or "excellent" for each employee category, as well as the percentage who rated it as "good" or "fair/poor."
I made the segmented bar graph using these percentages.
The graph was made using Excel technology. You may make a similar graph with Excel or any other software that supports segmented bar graphs.
To know more about graphs visit:
https://brainly.com/question/11950136
#SPJ1
Use the following function to find d(0)
d(x)=-x+-3
d(0)=
When the function d(x) = -x +(-3), then the value of d(0) is -3
In mathematics, a function is a relationship between two sets of numbers, called the domain and range. A function assigns each element of the domain to exactly one element of the range.
In the given problem, we are given a function d(x)=-x-3. The notation d(0) represents the value of the function d(x) when x = 0.
To find d(0), we need to substitute x = 0 in the function d(x)=-x-3, which gives:
d(0) = -(0) - 3
The first term -(0) is equal to zero, and the second term -3 is a constant value that remains the same regardless of the value of x. Therefore, we can simplify the expression as
d(0) = -3
Learn more about function here
brainly.com/question/12431044
#SPJ4
Find the value of the expression x+|x| if x=7, 10, 0, -3, -8. write the expression without the absolute value symbol for these values of x: x≤0
The expression's value is when x 0, and since |x| = -x when x 0, x + |x| simplifies to 0. In this case, x + |x| = x + (-x) = 0 for x 0.
What does the expression mean?When the variables and constants in a mathematical expression are given values, the outcome of the computation it describes is the expression's value. The value of a function, given the value(s) assigned to its argument, is the sum that the function assumes for these input values (s).
For x =7,x+|x| =7+|7| =14
For x =10,x+|x|= 10+|10| =20
For x = 0,x+|x| =0+|0| =0
For x = -3, x + |x| = -3 + |-3| = 0
For x = -8, x + |x| = -8 + |-8| = 0
The expression's value is when x 0, and since |x| = -x when x 0, x + |x| simplifies to 0. In this case, x + |x| = x + (-x) = 0 for x 0.
To know more about expression's visit:-
https://brainly.com/question/15068305
#SPJ1
After heating up in a teapot, a cup of hot water is poured at a temperature of
201°F. The cup sits to cool in a room at a temperature of 73° F. Newton's Law
of Cooling explains that the temperature of the cup of water will decrease
proportionally to the difference between the temperature of the water and the
temperature of the room, as given by the formula below:
T = Ta + (To-Ta)e-kt
Ta
the temperature surrounding the object
To the initial temperature of the object
t = the time in minutes
=
T =
the temperature of the object after t minutes
k = decay constant
The cup of water reaches the temperature of 189°F after 3 minutes. Using
this information, find the value of k, to the nearest thousandth. Use the
resulting equation to determine the Fahrenheit temperature of the cup of
water, to the nearest degree, after 6 minutes.
The temperature of the cup of water is approximately 180°F after 6 minutes.
How to find temperature and time?Using the given formula, we can write:
T = Ta + (To - Ta) * e^(-kt)
where Ta = 73°F (the temperature of the room), To = 201°F (the initial temperature of the water), and T = 189°F (the temperature of the water after 3 minutes).
We can solve for the decay constant k as follows:
(T - Ta) / (To - Ta) = e^(-kt)
ln[(T - Ta) / (To - Ta)] = -kt
k = -ln[(T - Ta) / (To - Ta)] / t
Substituting the given values, we get:
k = -ln[(189°F - 73°F) / (201°F - 73°F)] / 3 minutes
k = -ln[116 / 128] / 3 minutes
k ≈ 0.0434 minutes^-1 (rounded to the nearest thousandth)
Now we can use this value of k to find the temperature of the water after 6 minutes:
T = Ta + (To - Ta) * e^(-kt)
T = 73°F + (201°F - 73°F) * e^(-0.0434 minutes^-1 * 6 minutes)
T ≈ 180°F (rounded to the nearest degree)
Therefore, the temperature of the cup of water is approximately 180°F after 6 minutes.
To know more about temperature visit:
brainly.com/question/29768169
#SPJ1
If Jacob spent 45$ on dinner and wanted to top the waitress 15%, which of the following would be a good estimate for the tip?
Answer: 6.75
Step-by-step explanation:
45 x 0.15= 6.75
Ñamandu es un genio dibujó un cuadrado de x cm cada lado en la parte superior del cuadrado partió en tres partes iguales quedando el corte expresado de esta manera x bajo 3 unió el primer punto de corte con el vértice del lado paralelo trazando un segmento a lo que llamó y Descubre que figuras se forman y entra el perímetro de cada figura formado
The figures created are a square and a right triangle, and the perimeter of the entire figure is (13x/3) + x × sqrt(10).
When Namandu divides the top side of the square into three equal parts, he creates two segments of length x/3 each. By connecting the first point of division with the vertex of the parallel side, he creates a right triangle with legs of length x/3 and x, and hypotenuse of length y.
Using the Pythagorean theorem, we can solve for y:
y^2 = (x/3)^2 + x^2
y^2 = x^2/9 + x^2
y^2 = (10x^2)/9
y = x×sqrt(10)/3
Now we can find the perimeter of each figure that is created
Perimeter of the original square = 4x
Perimeter of the right triangle = x + x/3 + y = x + x/3 + xsqrt(10)/3
Perimeter of the entire figure = 4x + x + x/3 + xsqrt(10)/3 = (13x/3) + x×sqrt(10)
Learn more about Pythagorean theorem here
brainly.com/question/14930619
#SPJ4