A 70.0-kg person throws a 0.0430-kg snowball forward with a ground speed of 32.0 m/s. A second person, with a mass of 58.5 kg, catches the snowball. Both people are on skates. The first person is initially moving forward with a speed of 3.30 m/s, and the second person is initially at rest. What are the velocities of the two people after the snowball is exchanged

Answers

Answer 1

Answer:

The velocities of the skaters are [tex]v_{1} = 3.280\,\frac{m}{s}[/tex] and [tex]v_{2} = 0.024\,\frac{m}{s}[/tex], respectively.

Explanation:

Each skater is not under the influence of external forces during process, so that Principle of Momentum Conservation can be used on each skater:

First skater

[tex]m_{1} \cdot v_{1, o} = m_{1} \cdot v_{1} + m_{b}\cdot v_{b}[/tex] (1)

Second skater

[tex]m_{b}\cdot v_{b} = (m_{2}+m_{b})\cdot v_{2}[/tex] (2)

Where:

[tex]m_{1}[/tex] - Mass of the first skater, in kilograms.

[tex]m_{2}[/tex] - Mass of the second skater, in kilograms.

[tex]v_{1,o}[/tex] - Initial velocity of the first skater, in meters per second.

[tex]v_{1}[/tex] - Final velocity of the first skater, in meters per second.

[tex]v_{b}[/tex] - Launch velocity of the meter, in meters per second.

[tex]v_{2}[/tex] - Final velocity of the second skater, in meters per second.

If we know that [tex]m_{1} = 70\,kg[/tex], [tex]m_{b} = 0.043\,kg[/tex], [tex]v_{b} = 32\,\frac{m}{s}[/tex], [tex]m_{2} = 58.5\,kg[/tex] and [tex]v_{1,o} = 3.30\,\frac{m}{s}[/tex], then the velocities of the two people after the snowball is exchanged is:

By (1):

[tex]m_{1} \cdot v_{1, o} = m_{1} \cdot v_{1} + m_{b}\cdot v_{b}[/tex]

[tex]m_{1}\cdot v_{1,o} - m_{b}\cdot v_{b} = m_{1}\cdot v_{1}[/tex]

[tex]v_{1} = v_{1,o} - \left(\frac{m_{b}}{m_{1}} \right)\cdot v_{b}[/tex]

[tex]v_{1} = 3.30\,\frac{m}{s} - \left(\frac{0.043\,kg}{70\,kg}\right)\cdot \left(32\,\frac{m}{s} \right)[/tex]

[tex]v_{1} = 3.280\,\frac{m}{s}[/tex]

By (2):

[tex]m_{b}\cdot v_{b} = (m_{2}+m_{b})\cdot v_{2}[/tex]

[tex]v_{2} = \frac{m_{b}\cdot v_{b}}{m_{2}+m_{b}}[/tex]

[tex]v_{2} = \frac{(0.043\,kg)\cdot \left(32\,\frac{m}{s} \right)}{58.5\,kg + 0.043\,kg}[/tex]

[tex]v_{2} = 0.024\,\frac{m}{s}[/tex]


Related Questions

A 1.40-kg block is on a frictionless, 30 ∘ inclined plane. The block is attached to a spring (k = 40.0 N/m ) that is fixed to a wall at the bottom of the incline. A light string attached to the block runs over a frictionless pulley to a 60.0-g suspended mass. The suspended mass is given an initial downward speed of 1.60 m/s .
How far does it drop before coming to rest? (Assume the spring is unlimited in how far it can stretch.)
Express your answer using two significant figures.

Answers

Answer:

0.5

Explanation:

because the block is attached to the pulley of the string

Help me with my physics, please

Answers

The right answer would be

-20t+ 80

how do you calculate voltage drop

Answers

Answer:

Multiply current in amperes by the length of the circuit in feet to get ampere-feet. Circuit length is the distance from the point of origin to the load end of the circuit.

Divide by 100.

Multiply by proper voltage drop value in tables. The result is voltage drop.

Explanation:

A 31 kg block is initially at rest on a horizontal surface. A horizontal force of 83 N is required to set the block in motion. After it is in motion, a horizontal force of 55 N i required to keep it moving with constant speed. From this information, find the coefficients of static and kinetic friction

Answers

Answer:

The static and kinetic coefficients of friction are 0.273 and 0.181, respectively.

Explanation:

By Newton's Laws of Motion and definition of maximum friction force, we derive the following two formulas for the static and kinetic coefficients of friction:

[tex]\mu_{s} = \frac{f_{s}}{m\cdot g}[/tex] (1)

[tex]\mu_{k} = \frac{f_{k}}{m\cdot g}[/tex] (2)

Where:

[tex]\mu_{s}[/tex] - Static coefficient of friction, no unit.

[tex]\mu_{k}[/tex] - Kinetic coefficient of friction, no unit.

[tex]f_{s}[/tex] - Static friction force, in newtons.

[tex]f_{k}[/tex] - Kinetic friction force, in newtons.

[tex]m[/tex] - Mass, in kilograms.

[tex]g[/tex] - Gravitational constant, in meters per square second.

If we know that [tex]f_{s} = 83\,N[/tex], [tex]f_{k} = 55\,N[/tex], [tex]m = 31\,kg[/tex] and [tex]g = 9.807\,\frac{m}{s^{2}}[/tex], then the coefficients of friction are, respectively:

[tex]\mu_{s} = \frac{83\,N}{(31\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)}[/tex]

[tex]\mu_{s} = 0.273[/tex]

[tex]\mu_{k} = \frac{55\,N}{(31\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)}[/tex]

[tex]\mu_{k} = 0.181[/tex]

The static and kinetic coefficients of friction are 0.273 and 0.181, respectively.

A 6.0-cm-diameter horizontal pipe gradually narrows to 4.0 cm. When water flows through this pipe at a certain rate, the gauge pressure in these two sections is 32.0 kPa and 24.0 kPa, respectively. What is the volume rate of flow?

Answers

Answer:

a n c

Explanation:

Traveling waves propagate with a fixed speed usually denoted as v (but sometimes c). The waves are called __________ if their waveform repeats every time interval T.

a. transverse
b. longitudinal
c. periodic
d. sinusoidal

Answers

Answer:

periodic

Explanation:

A charge Q exerts a 1.2 N force on another charge q. If the distance between the charges is doubled, what is the magnitude of the force exerted on Q by q

Answers

Answer:

0.3 N

Explanation:

Electromagnetic force is F= Kq1q2/r^2, where r is the distance between charges. If r is doubled then the force will be 1/4F which is 0.3 N.

The magnitude of the force exerted on Q by q when the distance between them is doubled is 0.3 N

Coulomb's law equation

F = Kq₁q₂ / r²

Where

F is the force of attraction K is the electrical constant q₁ and q₂ are two point charges r is the distance apart

Data obtained from the question Initial distance apart (r₁) =  rInitial force (F₁) = 1.2 NFinal distance apart (r₂) = 2rFinal force (F₂) =?

How to determine the final force

From Coulomb's law,

F = Kq₁q₂ / r²

Cross multiply

Fr² = Kq₁q₂

Kq₁q₂ = constant

F₁r₁² = F₂r₂²

With the above formula, we can obtain the final force as follow:

F₁r₁² = F₂r₂²

1.2 × r² = F₂ × (2r)²

1.2r² = F₂ × 4r²

Divide both side by 4r²

F₂ = 1.2r² / 4r²

F₂ = 0.3 N

Learn more about Coulomb's law:

https://brainly.com/question/506926

1.- Que distancia recorrió una carga de 2,5x10-6 coul, generando así un campo eléctrico de 55new/coul.​

Answers

Answer:

r = 20.22 m

Explanation:

Given that,

Charge,[tex]q=2.5\times 10^{-6}\ C[/tex]

Electric field, [tex]E=55\ N/C[/tex]

We need to find the distance. We know that, the electric field a distance r is as follows :

[tex]E=\dfrac{kq}{r^2}\\\\r=\sqrt{\dfrac{kq}{E}}\\\\r=\sqrt{\dfrac{9\times 10^9\times 2.5\times 10^{-6}}{55}}\\\\r=20.22\ m[/tex]

So, the required distance is 20.22 m.

PLZ help asap :-/
............................ ​

Answers

Explanation:

[16]

[tex]\underline{\boxed{\large{\bf{Option \; A!! }}}} [/tex]

Here,

[tex]\rm { R_1} [/tex] = 2Ω[tex]\rm { R_2} [/tex] = 2Ω[tex]\rm { R_3} [/tex] = 2Ω[tex]\rm { R_4} [/tex] = 2Ω

We have to find the equivalent resistance of the circuit.

Here, [tex]\rm { R_1} [/tex] and [tex]\rm { R_2} [/tex] are connected in series, so their combined resistance will be given by,

[tex]\longrightarrow \rm { R_{(1,2)} = R_1 + R_2} \\ [/tex]

[tex]\longrightarrow \rm { R_{(1,2)} = (2 + 2) \; Omega} \\ [/tex]

[tex]\longrightarrow \rm { R_{(1,2)} = 4 \; Omega} \\ [/tex]

Now, the combined resistance of [tex]\rm { R_1} [/tex] and [tex]\rm { R_2} [/tex] is connected in parallel combination with [tex]\rm { R_3} [/tex], so their combined resistance will be given by,

[tex]\longrightarrow \rm {\dfrac{1}{ R_{(1,2,3)}} = \dfrac{1}{R_{(1,2)}} + \dfrac{1}{R_3} } \\ [/tex]

[tex]\longrightarrow \rm {\dfrac{1}{ R_{(1,2,3)}} = \Bigg ( \dfrac{1}{4} + \dfrac{1}{2} \Bigg ) \;\Omega} \\ [/tex]

[tex]\longrightarrow \rm {\dfrac{1}{ R_{(1,2,3)}} = \Bigg ( \dfrac{1 + 2}{4} \Bigg ) \;\Omega} \\ [/tex]

[tex]\longrightarrow \rm {\dfrac{1}{ R_{(1,2,3)}} = \Bigg ( \dfrac{3}{4} \Bigg ) \;\Omega} \\ [/tex]

Reciprocating both sides,

[tex]\longrightarrow \rm {R_{(1,2,3)}= \dfrac{4}{3} \;\Omega} \\ [/tex]

Now, the combined resistance of [tex]\rm { R_1} [/tex], [tex]\rm { R_2} [/tex] and [tex]\rm { R_3} [/tex] is connected in series combination with [tex]\rm { R_4} [/tex]. So, equivalent resistance will be given by,

[tex]\longrightarrow \rm {R_{(1,2,3,4)}= R_{(1,2,3)} + R_4} \\ [/tex]

[tex]\longrightarrow \rm {R_{(1,2,3,4)}= \Bigg ( \dfrac{4}{3} + 2 \Bigg ) \; \Omega} \\ [/tex]

[tex]\longrightarrow \rm {R_{(1,2,3,4)}= \Bigg ( \dfrac{4 + 6}{3} \Bigg ) \; \Omega} \\ [/tex]

[tex]\longrightarrow \rm {R_{(1,2,3,4)}= \Bigg ( \dfrac{10}{3} \Bigg ) \; \Omega} \\ [/tex]

[tex]\longrightarrow \bf {R_{(1,2,3,4)}= 3.33 \; \Omega} \\ [/tex]

Henceforth, Option A is correct.

_________________________________

[17]

[tex]\underline{\boxed{\large{\bf{Option \; B!! }}}} [/tex]

Here, we have to find the amount of flow of current in the circuit. By using ohm's law,

[tex] \longrightarrow [/tex] V = IR

[tex] \longrightarrow [/tex] 3 = I × 3.33

[tex] \longrightarrow [/tex] 3 ÷ 3.33 = I

[tex] \longrightarrow [/tex] 0.90 Ampere = I

Henceforth, Option B is correct.

____________________________

[tex] \tt \purple{Hope \; it \; helps \; you, Army! \heartsuit } \\ [/tex]

prove mathematically :
1. v = u + at
2. s = ut+1*2 at ​

Answers

Answer:

a.v=u+v/2

a.v=s/t

combining two equation we get,

u+v/2=s/t

(u+v)t/2=s

(u+v)t/2=s

{u+(u+at)}t/2=s

(u+u+at)t/2=s

(2u+at)t/2=s

2ut+at^2/2=s

2ut/2+at^2/2=s

UT +1/2at^2=s

proved

a=v-u/t

at=v-u

u+at=v

No esporte coletivo, um dos principais fatores desenvolvidos é o desenvolvimento social. Qual desses não faz parte das virtudes ensinadas no esporte?

Companheirismo
Humildade
Ser justo (Fair Play)
Vencer independente do que precise ser feito

Answers

Answer:

fair palybtgshsisuehdh

An electron in a hydrogen atom is in a p state. Which of the following statements is true?


a.
The electron’s wavefunction has at least one node (i.e., at least one place in space where it goes to zero).



b.
The electron has an energy of -13.6 eV.


c.
The electron has a total angular momentum of ħ.


d.
The electron has a z-component of angular momentum equal to sqrt(2)* ħ.

Answers

Answer:

The electron’s wavefunction has at least one node (i.e., at least one place in space where it goes to zero).

Explanation:

We know that the p-orbitals have nodes. A node is a region where the probability of finding an electron goes down to zero.

P orbitals are oriented along the x,y,z Cartesian axes and are known to have angular nodes along the axes.

Hence, if an electron in a hydrogen atom is in a p state, the electron’s wavefunction has at least one node

A wheel rotates about a fixed axis with an initial angular velocity of 13 rad/s. During a 8-s interval the angular velocity increases to 57 rad/s. Assume that the angular acceleration was constant during this time interval. How many revolutions does the wheel turn through during this time interval

Answers

Answer:

The number of revolutions is 44.6.

Explanation:

We can find the revolutions of the wheel with the following equation:

[tex]\theta = \omega_{0}t + \frac{1}{2}\alpha t^{2}[/tex]

Where:

[tex]\omega_{0}[/tex]: is the initial angular velocity = 13 rad/s              

t: is the time = 8 s

α: is the angular acceleration

We can find the angular acceleration with the initial and final angular velocities:

[tex] \omega_{f} = \omega_{0} + \alpha t [/tex]

Where:

[tex] \omega_{f} [/tex]: is the final angular velocity = 57 rad/s

[tex] \alpha = \frac{\omega_{f} - \omega_{0}}{t} = \frac{57 rad/s - 13 rad/s}{8 s} = 5.5 rad/s^{2} [/tex]

Hence, the number of revolutions is:

[tex] \theta = \omega_{0}t + \frac{1}{2}\alpha t^{2} = 13 rad/s*8 s + \frac{1}{2}*5.5 rad/s^{2}*(8 s)^{2} = 280 rad*\frac{1 rev}{2\pi rad} = 44.6 rev [/tex]

Therefore, the number of revolutions is 44.6.

       

I hope it helps you!

A 100-W light bulb is left on for 20.0 hours. Over this period of time, how much energy did the bulb use?

Answers

Answer:

Power = Energy/time

Energy = Power xtime.

Time= 20hrs

Power = 100Watt =0.1Kw

Energy = 0.1 x 20 = 2Kwhr.

This Answer is in Kilowatt-hour ...

If the one given to you is in Joules

You'd have to Change your time to seconds

Then Multiply it by the power of 100Watts.

The outer surface of a spacecraft in space has an emissivity of 0.44 and a solar absorptivity of 0.3. If solar radiation is incident on the spacecraft at a rate of 950 W/m2, determine the surface temperature of the spacecraft when the radiation emitted equals the solar energy absorbed.

Answers

Answer:

[tex]T=326.928K[/tex]

Explanation:

From the question we are told that:

Emissivity [tex]e=0.44[/tex]

Absorptivity [tex]\alpha =0.3[/tex]

Rate of solar Radiation [tex]R=0.3[/tex]

Generally the equation for Surface absorbed energy is mathematically given by

 [tex]E=\alpha R[/tex]

 [tex]E=0.3*950[/tex]

 [tex]E=285W/m^2[/tex]

Generally the equation for Emitted Radiation is mathematically given by

 [tex]\mu=e(\sigmaT^4)[/tex]

Where

T=Temperature

 [tex]\sigma=5.67*10^8Wm^{-2}K_{-4}[/tex]

Therefore

 [tex]\alpha*E=e \sigma T^4[/tex]

 [tex]0.3*(950)=0.44(5.67*10^-8)T^4[/tex]

 [tex]T=326.928K[/tex]

A wave moves in a rope with a certain wavelength. A second wave is made to move in the same rope with twice the wavelength of the first wave. The frequency of the second wave is _______________ the frequency of the first wave.

Answers

Answer:

The frequency of the second wave is half of the frequency of first one.

Explanation:

The wavelength of the second wave is double is the first wave.

As we know that the frequency is inversely proportional to the wavelength of the velocity is same.

velocity = frequency x wavelength

So, the ratio of frequency of second wave to the first wave is

[tex]\frac{f_2}{f_1} =\frac{\lambda _1}{\lambda _2}\\\\\frac{f_2}{f_1} =\frac{\lambda _1}{2\lambda _1}\\\\\frac{f_2}{f_1} =\frac{1}{2}\\\\[/tex]

The frequency of the second wave is half of the frequency of first one.

uppose that 3 J of work is needed to stretch a spring from its natural length of 32 cm to a length of 49 cm. (a) How much work (in J) is needed to stretch the spring from 37 cm to 45 cm

Answers

Answer:

0.113 J

Explanation:

Applying,

w = ke²/2................. Equation 1

Where w = workdone in stretching the spring, k = spring constant, e = extension

make k the subject of the equation

k = 2w/e²................ Equation 2

From the question,

Given: w = 3 J, e = 49-32 = 17 cm = 0.17 m

Substitute these values into equation 2

k = (2×3)/0.17²

k = 6/0.17

k = 35.29 N/m

(a) if the spring from 37 cm to 45 cm,

Then,

w = ke²/2

Given: e = 45-37 = 8 cm = 0.08

w = 35.29(0.08²)/2

w = 0.113 J

a girl is moving with a uniform velocity of 1.5 m/s then mathematically find her acceleration​

Answers

Answer:

0

Explanation:

a = dv/dt

if v is constant than the slope of the v graph will be 0, so dv/dt is 0

a= 0

During a practice shot put throw, the 7.9-kg shot left world champion C. J. Hunter's hand at speed 16 m/s. While making the throw, his hand pushed the shot a distance of 1.4 m. Assume the acceleration was constant during the throw.

Required:
a. Determine the acceleration of the shot.
b. Determine the time it takes to accelerate the shot.
c, Determine the horizontal component of the force exerted on the shot by hand.

Answers

Answer:

a)   a = 91.4 m / s²,  b)    t = 0.175 s, c)  

Explanation:

a) This is a kinematics exercise

           v² = vox ² + 2a (x-xo)

           a = v² - 0/2 (x-0)

           

let's calculate

          a = 16² / 2 1.4

          a = 91.4 m / s²

b) the shooting time

          v = vox + a t

          t = v-vox / a

          t = 16 / 91.4

          t = 0.175 s

c) let's use Newton's second law

          F = ma

          F = 7.9 91.4

          F = 733 N

It takes 130 J of work to compress a certain spring 0.10m. (a) What is the force constant of this spring? (b) To compress the spring an additional 0.10 m, does it take 130 J, more than 130 J or less than 130 J? Verify your answer with a calculation.

Answers

Explanation:

Given that,

Work done to stretch the spring, W = 130 J

Distance, x = 0.1 m

(a) We know that work done in stretching the spring is as follows :

[tex]W=\dfrac{1}{2}kx^2\\\\k=\dfrac{2W}{x^2}\\\\k=\dfrac{2\times 130}{(0.1)^2}\\\\k=26000\ N/m[/tex]

(b) If additional distance is 0.1 m i.e. x = 0.1 + 0.1 = 0.2 m

So,

[tex]W=\dfrac{1}{2}kx^2\\\\W=\dfrac{1}{2}\times 26000\times 0.2^2\\\\W=520\ J[/tex]

So, the new work is more than 130 J.

Assume that I = E/(R + r), prove that 1/1 = R/E + r/E​

Answers

[tex]\implies {\blue {\boxed {\boxed {\purple {\sf { \frac{1}{I} = \frac{R}{E} + \frac{r}{E} }}}}}}[/tex]

[tex]\large\mathfrak{{\pmb{\underline{\orange{Step-by-step\:explanation}}{\orange{:}}}}}[/tex]

[tex]I = \frac{ E}{ R + r} \\[/tex]

[tex] ➺\:\frac{I}{1} = \frac{E}{R + r} \\[/tex]

Since [tex]\frac{a}{b} = \frac{c}{d} [/tex] can be written as [tex]ad = bc[/tex], we have

[tex]➺ \: I \: (R + r) = E \times 1[/tex]

[tex]➺ \: \frac{1}{I} = \frac{R + r}{E} \\ [/tex]

[tex]➺ \: \frac{1}{I} = \frac{R}{E} + \frac{r}{E} \\ [/tex]

[tex]\boxed{ Hence\:proved. }[/tex]

[tex]\red{\large\qquad \qquad \underline{ \pmb{{ \mathbb{ \maltese \: \: Mystique35ヅ}}}}}[/tex]

d. On the afternoon of January 15, 1919, an unusually warm day in Boston, a 17.7-m-high, 27.4-m-diameter cylindrical metal tank used for storing molasses ruptured. Molasses flooded into the streets in a 5-m-deep stream, killing pedestrians and horses and knocking down buildings. The molasses had a density of 1600 kg>m3 . If the tank was full before the accident, what was the total outward force the molasses exerted on its sides

Answers

Answer:

F = 1.638 x 10⁸ N = 163.8 MN

Explanation:

The total force exerted by the molasses is given as:

F = PA

where,

F = Force exerted by the molasses = ?

P = Pressure = ρgh

ρ = density of molasses = 1600 kg/m³

g = acceleration due to gravity = 9.81 m/s²

h = height of tank = 17.7 m

A = cross-sectional area of tank = πr²

r = radius of tank = 27.4 m/2 = 13.7 m

Therefore,

[tex]F = \rho ghA = \rho gh(\pi r^2)\\\\F = (1600\ kg/m^3)(9.81\ m/s^2)(17.7\ m)(\pi)(13.7\ m)^2[/tex]

F = 1.638 x 10⁸ N = 163.8 MN

two identical eggs are dropped from the same height. The first eggs lands on a dish and breaks, while the second lands on a pillow and does not break. Which quantities are the same in both situations

Answers

Answer:

The height is the same

Explanation:

Because they were at the same height but they fell at different velocities

ACCORDING TO NEWTON'S THIRD LAW EVERY ACTION HAS EQUAL AND OPPOSITE REACTION BUT THEN WHY DON'T WE FLY WHEN WE FART??​

Answers

Answer:

Your fart only has so much force, not nearly enough to launch you into oblivion. Your fart and you still exert a force onto each other, so I guess, hypothetically, you could fly if you really, really try hard enough. Just make sure you don't try too hard and prolapse as a result :)

a vessel with mass 10kg intially moving withthe velocicity 12m s along the x axis explodes into three exactly identical pieces Just after the explosion one piece moves with speed 10 m s along the x axis and asecond piece moves with speed 10 m s along the y axis What iis the magnitude of the component of velocity of the third piece along the y axiss

Answers

Answer:

Explanation:

Apply law of conservation of momentum along y-axis.

Initially there was no momentum along y-axis. So there will be nil momentum along y-axis again finally.

Let the mass of each piece after breaking be m .

Momentum of piece moving along positive y-axis

= m x 10 = 10m .

Let the component of velocity of third piece along y-axis be v .

Its momentum along the same direction = m v .

Total momentum along y -axis = 10 m + m v

According to law of conservation of momentum

10 m + mv = 0

v = - 10 m/s .

Component of velocity of the third piece along y-axis will be - 10 m/s .

In other words it will be along negative y-axis with speed of 10 m/s.

Define relative density.​

Answers

Relative density is the ratio of the density of a substance to the density of a given material.

A charge of 0.20uC is 30cm from a point charge of 3.0uC in vacuum. what work is required to bring the 0.2uC charge 18cm closer to the 3.0uC charge?​

Answers

Answer:

The correct answer is "[tex]4.49\times 10^{10} \ joules[/tex]".

Explanation:

According to the question,

The work will be:

⇒ [tex]Work=-\frac{kQq}{R}[/tex]

              [tex]=-\frac{1}{4 \pi \varepsilon \times (18-30)\times 3\times 0.2}[/tex]

              [tex]=-\frac{1}{4 \pi \varepsilon \times (-12)\times 3\times 0.2}[/tex]

              [tex]=\frac{0.3978}{\varepsilon }[/tex]

              [tex]=4.49\times 10^{10} \ joules[/tex]

Thus the above is the correct answer.    

We have that the workdone  is mathematically given as

W=4.49*10e10 J

From the question we are told

A charge of 0.20uC is 30cm from a point charge of 3.0uC in vacuum. what work is required to bring the 0.2uC charge 18cm closer to the 3.0uC charge?​

Workdone

Generally the equation for the workdone   is mathematically given as

W=-kQq/R

Therefore

0.3978/ε0 =-1/(4πε0*(18-30)*3*0.2

Hence

W=4.49*10e10 J

For more information on Charge visit

https://brainly.com/question/9383604

The relation of mass m, angular velocity o and radius of the circular path r of an object with the centripetal force is-
a. F = m²wr
b. F = mwr²
c. F = mw²r
d. F = mwr. ​

Answers

Answer:

Correct option not indicated

Explanation:

There are few mistakes in the question. The angular velocity ought to have been denoted with "ω" and not "o" (as also suggested in the options).

The formula to calculate a centripetal force (F) is

F = mv²/r

Where m is mass, v is velocity and r is radius

where

While the formula to calculate a centrifugal force (F) is

F = mω²r

where m is mass, ω is angular velocity and r is radius of the circular path.

From the above, it can be denoted that the relationship been referred to in the question is that of a centrifugal force and not centripetal force, thus the correct option should be C.

NOTE: Centripetal force is the force required to keep an object moving in a circular path/motion and acts inward towards the centre of rotation while centrifugal force is the force felt by an object in circular motion which acts outward away from the centre of rotation.

Two spheres are rolling without slipping on a horizontal floor. They are made of different materials, but each has mass 5.00 kg and radius 0.120 m. For each the translational speed of the center of mass is 4.00 m/s. Sphere A is a uniform solid sphere and sphere B is a thin-walled, hollow sphere. Part B How much work, in joules, must be done on the solid sphere to bring it to rest? Express your answer in joules. VO AE4D ? J WA Request Answer Submit Part C How much work, in joules, must be done on the hollow sphere to bring it to rest? Express your answer in joules. Wa Request

Answers

Answer:

Explanation:

Moment of inertia of solid sphere = 2/5 m R²

m is mass and R is radius of sphere.

Putting the values

Moment of inertia of solid sphere I₁

Moment of inertia of hollow  sphere I₂

Kinetic energy of solid sphere ( both linear and rotational )

= 1/2 ( m v² + I₁ ω²)                [ ω is angular velocity of rotation ]

= 1/2 ( m v² + 2/5 m R² ω²)

= 1/2 ( m v² + 2/5 m v²)

=1/2 x 7 / 5 m v²

= 0.7 x 5 x 4² = 56 J .

This will be equal to work to be done to stop it.

Kinetic energy of hollow sphere ( both linear and rotational )

= 1/2 ( m v² + I₂ ω²)  [ ω is angular velocity of rotation ]

= 1/2 ( m v² + 2/3 m R² ω²)

= 1/2 ( m v² + 2/3 m v²)

=1/2 x 5 / 3 m v²

= 0.833 x 5 x 4² = 66.64 J .

This will be equal to work to be done to stop it.

Assuming the atmospheric pressure is 1 atm at sea level, determine the atmospheric pressure at Badwater (in Death Valley, California) where the elevation is 86.0 m below sea level.

Answers

Answer:

Atmospheric pressure at Badwater is 1.01022 atm

Explanation:

Data given:

1 atmospheric pressure (Pi) = 1.01 * 10[tex]^{5}[/tex] Pa

Elevation (h) = 86m

gravity (g) = 9.8 m/s2

Density of air P = 1.225 kg/m3

Therefore pressure at bad water Pb = Pi + Pgh

Pb = (1.01 * 10[tex]^{5}[/tex]) + (1.225 * 9.8 * 86)

Pb = (1.01 * 10[tex]^{5}[/tex]) + 1032.43 = 102032 Pa

hence:

Pb = 102032 /1.01 * 10[tex]^{5}[/tex] = 1.01022 atm

Other Questions
What does the poet describe in the second stanza? The amount of people at the bay The number of daffodils The popular new dance move The types of stars in the sky As a main sequence star exhausts hydrogen in its core, its surface becomes ___ and its energy output per second (luminosity) becomes ____. With most hotel executives having recognized that the demand for green hotels has reached a tipping point, the supply of green hotels is likely to grow rapidly in the upcoming years (Stewart, 2012). - plagiarized; not correctly acknowledging direct quotations For this problem what I did was add all the measurements and I got 48 m. However, it is wrong. How do I go about solving the perimeter then? How were men and women culturally similar in the Chickasaw and Choctaw tribes Why did the people in the prehistoric period live in a community I tried figuring it out but its kinda hard not knowing what to make as an equation? I WILL MARK BRAINLIEST PLEASE HELP! This graph represents f(x), and g(x) = -7x + 8.Which statement about these functions is true?A. Function f(x) is increasing, and g(x) is decreasing.B. Function f(x) is decreasing, and g(x) is increasing.C. Functions f(x) and g(x) are both decreasing.D. Functions f(x) and g(x) are both increasing. x + 2y when x = 1 and y = 4 The frontal lobe helps the body cope with stress and promotes muscle development ? A sequence has a common ratio of Three-halves and f(5) = 81. Which explicit formula represents the sequence? An FI purchases at par value a $100,000 Treasury bond paying 10 percent interest with a 7.5 year duration. If interest rates rise by 4 percent, calculate the bond's new value. Recall that Treasury bonds pay interest semiannually. Use the modified duration valuation equation. A retail department store is approximately square, 35 meters (100 feet) on each side. Each wall has two entrances equally spaced apart. Located at each entrance is a point-of-sale cash register. Suggest a local area network solution that interconnects all eight cash registers. Draw a diagram showing the room, the location of all cash registers, the wiring, the switches, and the server. What type of wiring would you suggest? autobiographical meaning Find the perimeter of a football field which measures 90m by 60m in the ____ paragraph you request action, such as an appointment, an interview, or some other definite action B.Fill in the blanka with the correct word given inside the box.clay. water. sticky. loamoxygen. sand. plants. particles7.________ is made up of particles that are tightly packed together.Very fine 8._________ of rocks can hold much water and become 9._________when wet.While 10.________ is a mixture of sand and clay,this contains the right mixture of particles of silt,sand and clay. Unit Test Unit Test Active 1 2 3 4 5 6 7 CO Given fix) = 17- x2, what is the average rate of change in f(x) over the interval [1, 5]? -6, -1/2, 1/4, 1 Can someone help me please.. Zero Calories Company has 16,000 shares of cumulative preferred 1% stock, $40 par and 80,000 shares of $150 par common stock. The following amounts were distributed as dividends: Year 1 $21,600 Year 2 4,000 Year 3 100,800 Determine the dividends per share for preferred and common stock for each year.