A 7.5-kg rock and a 8.9 × 10-4-kg pebble are held near the surface of the earth. (a) Determine the magnitude of the gravitational force exerted on each by the earth. (b) Calculate the magnitude of the acceleration of each object when released.

Answers

Answer 1

Answer:

F' = 73.7 N

F = 8.749×10⁻³ N

a' = a =  9.83 m/s²

Explanation:

(a)

For the rock

Applying

F' = Gm'm/r²................... Equation 1

Where F = magnitude of the gravitational force on the rock, G = Gravitational constant, m' = mass of the rock, m = mass of the earth, r = radius of the earth.

From the question,

Given: m' = 7.5 kg

Constant: m = 5.98×10²⁴ kg, G = 6.67×10⁻¹¹ Nm²/kg², r = 6.37×10⁶ m

Substitute these values into equation 1

F' = 6.67×10⁻¹¹ (7.5)(5.98×10²⁴)/(6.37×10⁶)²

F' = 7.37×10¹ N

F' = 73.7 N

Also, For the pebble,

F = GMm/r².............. Equation 2

Where M = mass of the pebble, F = Gravitational force exerted on the pebble by the earth

Given: M = 8.9×10⁻⁴ kg,

Substitute into equation 2

F = 6.67×10⁻¹¹(8.9×10⁻⁴)(5.98×10²⁴)/(6.37×10⁶)²

F = 8.749×10⁻³ N

(b)

For the rock,

a' = F'/m'

Where a' = magnitude of the acceleration of the rock

a' = 73.7/7.5

a' = 9.83 m/s²

For the pebble,

a = F/M

Where a = acceleration of the pebble

a = (8.749×10⁻³)/(8.9×10⁻⁴)

a = 9.83 m/s²


Related Questions

The tub of a washer goes into its spin-dry cycle, starting from rest and reaching an angular speed of 3.0 rev/s in 13.0 s. At this point, the person doing the laundry opens the lid, and a safety switch turns off the washer. The tub slows to rest in 12.0 s. Through how many revolutions does the tub turn during this 25 s interval

Answers

Answer:

The tub turns 37.520 revolutions during the 25-second interval.

Explanation:

The total number of revolutions done by the tub of the washer ([tex]\Delta n[/tex]), in revolutions, is the sum of the number of revolutions done in the acceleration ([tex]\Delta n_{1}[/tex]), in revolutions, and deceleration stages ([tex]\Delta n_{2}[/tex]), in revolutions:

[tex]\Delta n = \Delta n_{1} + \Delta n_{2}[/tex] (1)

Then, we expand the previous expression by kinematic equations for uniform accelerated motion:

[tex]\Delta n = \frac{1}{2}\cdot ( \ddot n_{1}\cdot t_{1}^{2} - \ddot n_{2} \cdot t_{2}^{2})[/tex] (1b)

Where:

[tex]\ddot n_{1}, \ddot n_{2}[/tex] - Angular accelerations for acceleration and deceleration stages, in revolutions per square second.

[tex]t_{1}, t_{2}[/tex] - Acceleration and deceleration times, in seconds.

And each acceleration is determined by the following formulas:

Acceleration

[tex]\ddot n_{1} = \frac{\dot n}{t_{1}}[/tex] (2)

Deceleration

[tex]\ddot n_{2} = -\frac{\dot n}{t_{2} }[/tex] (3)

Where [tex]\dot n[/tex] is the maximum angular velocity of the tub of the washer, in revolutions per second.

If we know that [tex]\dot n = 3\,\frac{rev}{s}[/tex], [tex]t_{1} = 13\,s[/tex] and [tex]t_{2} = 12\,s[/tex], then the quantity of revolutions done by the tub is:

[tex]\ddot n_{1} = \frac{3\,\frac{rev}{s} }{13\,s}[/tex]

[tex]\ddot n_{1} = 0.231\,\frac{rev}{s^{2}}[/tex]

[tex]\ddot n_{2} = -\frac{3\,\frac{rev}{s} }{12\,s}[/tex]

[tex]\ddot n_{2} = -0.25\,\frac{rev}{s^{2}}[/tex]

[tex]\Delta n = \frac{1}{2}\cdot ( \ddot n_{1}\cdot t_{1}^{2} + \ddot n_{2} \cdot t_{2}^{2})[/tex]

[tex]\Delta n = \frac{1}{2}\cdot \left[\left(0.231\,\frac{rev}{s^{2}} \right)\cdot (13\,s)^{2}-\left(-0.25\,\frac{rev}{s^{2}} \right)\cdot (12\,s)^{2}\right][/tex]

[tex]\Delta n = 37.520\,rev[/tex]

The tub turns 37.520 revolutions during the 25-second interval.

A toy car of mass 600g moves through 6m in 2 seconds. The average kinetic energy of the toy car is​

Answers

Answer:

12

Explanation:

I'm a beginner so am not sureeeeee

Newton's law of cooling states that the rate of change of temperature of an object in a surrounding medium is proportional to the difference of the temperature of the medium and the temperature of the object. Suppose a metal bar, initially at temperature 50 degrees Celsius, is placed in a room which is held at the constant temperature of 40 degrees Celsius. One minute later the bar has cooled to 40.18316 degrees . Write the differential equation that models the temperature in the bar (in degrees Celsius) as a function of time (in minutes). Hint: You will need to find the constant of proportionality. Start by calling the constant k and solving the initial value problem to obtain the temperature as a function of k and t . Then use the observed temperature after one minute to solve for k .

Answers

Answer:

Newton's law of cooling says that the temperature of a body changes at a rate proportional to the difference between its temperature and that of the surrounding medium (the ambient temperature); dT/dt = -K(T - Tₐ) where T = the temperature of the body (°C), t = time (min), k = the proportionality constant (per minute),

Explanation:

How can i prove the conservation of mechanical energy?​

Answers

Answer:

We can also prove the conservation of mechanical energy of a freely falling body by the work-energy theorem, which states that change in kinetic energy of a body is equal to work done on it. i.e. W=ΔK. And ΔE=ΔK+ΔU. Hence the mechanical energy of the body is conserved

Explanation:

A horizontal, uniform board of weight 125 N and length 4 m is supported by vertical chains at each end. A person weighing 500 N is sitting on the board. The tension in the right chain is 250 N. How far from the left end of the board is the person sitting

Answers

Answer:

the person  is sitting 1.5 m from the left end of the board

Explanation:

Given the data in the question;

Wb = 125 N

Wm = 500 N

T₂ = 250 N

Now, we know that;

T₁ + T₂ = Wb + Wm

T₁ + 250 = 125 + 500

T₁ = 125 + 500 - 250

T₁ = 375 N

so tension of the left chain is 375 N.

Now, taking torque about the left end

500 × d + 125 × 2 = 250 × 4

500d + 250 = 1000

500d = 1000 - 250

500d = 750

d = 750 / 500

d = 1.5 m

Therefore, the person  is sitting 1.5 m from the left end of the board.

20 pts.
A man forgets that he set his coffee cup on top of his car. He starts to drive and the coffee CUP rolls off the car onto the road. How does this scenario demonstrate the first law of motion? Be specific and use the words from the law in your answer.​

Answers

Answer:

The cup is acted upon by an unbalanced force which is the acceleration of the car, but before it was an object at rest that stayed at rest.

Explanation:

Newton's first law of motion states, "if a body is at rest or moving at a constant speed in a straight line, it will remain at rest or keep moving in a straight line at constant speed unless it is acted upon by a force."

Since the cup is at rest while sitting on top of the car, it stays at rest as the car begins to move. Since the car is accelerating and the cup is not, the cup falls off of the car.

PLEASE HELP MEE THIS IS DUE IN 45 MINS

Answers

Answer:

The distance travelled does not depend on the mass of the vehicle. Therefore, [tex]s = d[/tex]

Explanation:

This deceleration situation can be analyzed by means of Work-Energy Theorem, where change in translational kinetic energy is equal to the work done by friction:

[tex]\frac{1}{2}\cdot m\cdot v^{2}-\mu\cdot m\cdot g \cdot s = 0[/tex] (1)

Where:

[tex]m[/tex] - Mass of the car, in kilogram.

[tex]v[/tex] - Initial velocity, in meters per second.

[tex]\mu[/tex] - Coefficient of friction, no unit.

[tex]s[/tex] - Travelled distance, in meters.

Then we derive an expression for the distance travelled by the vehicle:

[tex]\frac{1}{2}\cdot v^{2} = \mu \cdot g \cdot s[/tex]

[tex]s = \frac{v^{2}}{\mu\cdot g}[/tex]

As we notice, the distance travelled does not depend on the mass of the vehicle. Therefore, [tex]s = d[/tex]

You are using a constant force to speed up a toy car from an initial speed of 6.5 m/s
to a final speed of 22.9 m/s. If the toy car has a mass of 340 g, what is the work
needed to speed this car up?

Answers

By the work-energy theorem, the total work done on the car is equal to the change in its kinetic energy:

W = ∆K

W = 1/2 (0.34 kg) (22.9 m/s)² - 1/2 (0.34 kg) (6.5 m/s)²

W82 J

How can a wire become magnetic?
add a resistor


point it north


heat it up


run a current through it

Answers

Answer:

Moving electrons always create a magnetic field. Electrons moving along a wire make a magnetic field that goes in circles around the wire. When you bend the wire into a coil, the magnetic fields around each loop of the coil add up to make a long , thin magnet with north at one end and south at the other.

Explanation:

how can the starch be removed from the leaves of potted plants​

Answers

Answer:

Explanation:

There are two main ways to de-starch leaves of a plant - the 'Light Exclusion' Method and the 'Carbon Dioxide Deprivation' Method. The 'Light Exclusion' method is a simpler procedure and is used often. Leaves can be destarched by depriving them of light for an extended period of time, usually 24-48 hours.

A wave has a frequency of 87.00 Hz and has a wavelength of 74.62 m. What is its
velocity?

Answers

Answer:

v = 6491.94 m/s

Explanation:

We are given;

Frequency; f = 87 Hz

Wavelength;λ = 74.62 m

Formula for velocity(v) of waves from the wave equation is;

v = fλ

Thus;

v = 87 × 74.62

v = 6491.94 m/s

galileo was a contemporary of

Answers

Brahe & Kepler

Answer from Quizlet

You want to calculate how long it takes a ball to fall to the ground from a
height of 20 m. Which equation can you use to calculate the time? (Assume
no air resistance.)
O A. vz? = v? +2aAd
B. a =
V₂-vi
At
O c. At=V1
4
a
O D. At=
2Ad
a

Answers

If a person wants to calculate the length of time it takes for a ball to fall from a height of 20m, the correct equation that they should use is:

D. Δt= √2Δd/a

What is the equation for finding the length of time for a free fall?

The free fall formula should be used to obtain the length of time that it takes for a ball to fall from a given height. This formula also factors the height or distance from which the fall occurred and this is denoted by the letter d. The small letter 'a' is denotative of acceleration due to gravity and this is a constant pegged at -9.98 m/s².

So, the change in height is obtained and multiplied by two. This is further divided by the acceleration and the square root of the derived answer translates to the time taken for the ball to fall from the height of 20m. Of all the options listed, option D represents the correct equation.

Learn more about free fall here:

https://brainly.com/question/12167131

#SPJ1

The equation of damped oscillations is given in the form x=0.05e^-0.25sin½πt (m). Find the velocity of an oscillating point at the moments of time: 0, T, 2T, 3T and 4T.​

Answers

Explanation:

The logarithmic damping decrement of a mathematical pendulum is DeltaT=0.5. How will the amplitude of oscillations decrease during one full oscillation of the pendulum

Need an answer in hurry u can make the pic big

Answers

answer: C

hope this helps! please give me brainliest :)

The diagram shows the molecular structure of ethane. What is the chemical
formula for ethane?
Ethane
H H
H-C-C-H
| |
H H

Answers

D
The C comes first and as there r 2 it would like like C2.
Then count how many h’s there r=6
So the overall formula should be C2H6

A plane has a mass of 360,000 kg takes-off at a speed of 300 km/hr. i) What should be the minimum acceleration to take off if the length of the runway is 2.00 km.ii) At this acceleration, how much time would the plane need from starting to takeoff. iii) What force must the engines exert to attain this acceleration

Answers

Answer:

i) the minimum acceleration to take off is 22500 km/h²

ii) the required time needed by the plane from starting to takeoff is 0.0133 hrs

iii) required force that the engine must exert to attain acceleration is 625 kN

Explanation:

Given the data in the question;

mass of plane m = 360,000 kg

take of speed v = 300 km/hr = 83.33 m/s

i)

What should be the minimum acceleration to take off if the length of the runway is 2.00 km

from Newton's equation of motion;

v² = u² + 2as

we know that a plane starts from rest, so; u = 0

given that distance S = 2 km

we substitute

(300)² = 0² + ( 2 × a × 2 )

90000 = 4 × a

a = 90000 / 4

a = 22500 km/h²

Therefore,  the minimum acceleration to take off is 22500 km/h²

ii) At this acceleration, how much time would the plane need from starting to takeoff.

from Newton's equation of motion;

v = u + at

we substitute

300 = 0 + 22500 × t

t = 300 / 22500

t = 0.0133 hrs

Therefore, the required time needed by the plane from starting to takeoff is 0.0133 hrs

iii) What force must the engines exert to attain this acceleration

we know that;

F = ma

acceleration a = 22500 km/hr² = 1.736 m/s²

so we substitute

F = 360,000 kg × 1.736 m/s²

F =  624960 N

F = 625 kN

Therefore, required force that the engine must exert to attain acceleration is 625 kN

At the start of a basketball game, a referee tosses a basketball straight into the air by giving it some initial speed. After being given that speed, the ball reaches a maximum height of 4.35 m above where it started. Using conservation of energy, find the height of the ball when it has a speed of 2.5 m/s.

Answers

Answer:

0.32 m.

Explanation:

To solve this problem, we must recognise that:

1. At the maximum height, the velocity of the ball is zero.

2. When the velocity of the ball is 2.5 m/s above the ground, it is assumed that the potential energy and kinetic energy of the ball are the same.

With the above information in mind, we shall determine the height of the ball when it has a speed of 2.5 m/s. This can be obtained as follow:

Mass (m) = constant

Acceleration due to gravity (g) = 9.8 m/s²

Velocity (v) = 2.5 m/s

Height (h) =?

PE = KE

Recall:

PE = mgh

KE = ½mv²

Thus,

PE = KE

mgh = ½mv²

Cancel m from both side

gh = ½v²

9.8 × h = ½ × 2.5²

9.8 × h = ½ × 6.25

9.8 × h = 3.125

Divide both side by 9.8

h = 3.125 / 9.8

h = 0.32 m

Thus, the height of the ball when it has a speed of 2.5 m/s is 0.32 m.

Water with a volume flow rate of 0.001 m3/s, flows inside a horizontal pipe with diameter of 1.2 m. If the pipe length is 10m and we assume fully developed internal flow, find the pressure drop across this pipe length.

Answers

Answer:

[tex]\triangle P=1.95*10^{-4}[/tex]

Explanation:

Mass [tex]m=0.001[/tex]

Diameter [tex]d=1.2m[/tex]

Length [tex]l=10m[/tex]

Generally the equation for Volume flow rate is mathematically given by

 [tex]Q=AV[/tex]

 [tex]V=\frac{Q}{\pi/4D^2}[/tex]

 [tex]V=\frac{0.001}{\pi/4(1.2)^2}[/tex]

 [tex]V=8.84*10^{-4}[/tex]

Generally the equation for Friction factor is mathematically given by

 [tex]F=\frac{64}{Re}[/tex]

Where Re

Re=Reynolds Number

 [tex]Re=\frac{pVD}{\mu}[/tex]

 [tex]Re=\frac{1000*8.84*10^{-4}*1.2}{1.002*10^{-3}}[/tex]

 [tex]Re=1040[/tex]

Therefore

 [tex]F=\frac{64}{Re}[/tex]

 [tex]F=\frac{64}{1040}[/tex]

 [tex]F=0.06[/tex]

Generally the equation for Friction factor is mathematically given by

 [tex]Head loss=\frac{fLv^2}{2dg}[/tex]

 [tex]H=\frac{0.06*10*(8.9*10^-4)^2}{2*1.2*9.81}[/tex]

 [tex]H=19.9*10^{-9}[/tex]

Where

[tex]H=\frac{\triangle P}{\rho g}[/tex]

[tex]\triangle P=\frac{19.9*10^{-9}}{10^3*(9.81)}[/tex]

[tex]\triangle P=H*\rho g[/tex]

[tex]\triangle P=1.95*10^{-4}[/tex]

 

From 2 King 6:1-6, one of the disciples of Elisha was cutting a tree and the ax head fell into the water. While we do not know how high the ax head was when it fell into the water, we will work through a physics example of the ax head's vertical motion as if it were dropped into the water. ( Due date 09/07)
Write your name and date. The due date of this assignment is the height the ax head falls from in meters into the water. For example, if the due date is July 15, then the ax head fell 15 meters to the water.
Write Newton’s 2nd Law in Equation Form.
Write the quantity and units of average gravitational acceleration on the surface of Earth.
Given the ax head mentioned in the opening portion with the height being equal in numerical value of the due day of this assignment. How long does it take for the ax to fall to the river surface?
Compute the final speed of the ax when it hits the water.

Answers

Answer:

time of fall is 1.75 s and the velocity with which it strikes the water is 17.15 m/s.

Explanation:

Height, h =  15 m

Newton's second law

Force = mass x acceleration

The unit of gravitational force is Newton and the value is m x g.

where, m is the mas and g is the acceleration due to gravity.  

Let the time of fall is t.

Use second equation of motion

[tex]s= u t +0.5 at^2\\\\15 = 0 +0.5\times 9.8\times t^{2}\\\\t = 1.75 s[/tex]

Let the final speed is v.

Use third equation of motion

[tex]v^2 = u^2 + 2 a s\\\\v^2 = 0 + 2 \times 9.8\times 15\\\\v =17.15 m/s[/tex]

Study the position-time graph for a bicycle. Which statement is supported by the graph? Position vs Time O The bicycle has speed but not velocity. O The bicycle is moving at a constant velocity. O The bicycle has a displacement of 3 m. O The bicycle is not in motion. 3 Position (m) 0 1 2 3 4 5 Time (s) Next Submit Save and Exit Mark this and return tViewers/AssessmentViewer/Activit. 0 M M​

Answers

Answer:

D) The bicycle is not in motion.

Explanation:

Study the position-time graph for a bicycle.

Which statement is supported by the graph?

A) The bicycle has speed but not velocity.

B) The bicycle is moving at a constant velocity.

C) The bicycle has a displacement of 3 m.

D) The bicycle is not in motion.

Solution:

Velocity is the time rate of change of displacement. It is the ratio of displacement to time taken.

Speed is the time rate of change of distance. It is the ratio of distance to time taken.

From the position-time graph, we can see that the bicycle has a constant positon of 3 m for the whole of the time. That is the position remains 3 m even as the time changes. Therefore, we can conclude that the bicycle is not in motion.

From the position-time data provided, it can concluded that the bicycle is not in motion.

Motion

Motion of a body involves a change in the position of that body with time.

A body in motion is constantly changing position or orientation as time passes.

The body may move with constant velocity/speed or changes in its velocity.

A position-time graph provides information about the motion of a body.

From the data provided:

At time 0, the bicycle is at position 3At time 1, the bicycle is at position 3At time 2, the bicycle is at position 3At time 3, the bicycle is at position 3At time 4, the bicycle is at position 3At time 5, the bicycle is at position 3

The position of the bicycle remains the same for all time intervals.

Therefore, from the position-time data provided, it can concluded that the bicycle is not in motion.

Learn more about motion and position-time graph at: https://brainly.com/question/2356782

3. Four charges having charge q are placed at the corners of a square with sides of length L. What is the magnitude of the force acting on any of the charges

Answers

Answer:

Fr = 1.91 * 9*10⁹*q²/L²

Explanation:

Let´s say that the corners of the square are  A B C and D

We are going to find out the force on the charge placed on B  ( the charge placed in the upper right corner.

As all the charges are positive (the same sign), then all the three forces on the charge in B are of rejection.

Force due to charge placed in A

module   Fₓ =  K* q² / L²   in the direction of x

Force due to charge placed in C

module  Fy = K* q²/L²   in the direction of y

Force due to  the charge placed in D

That force will have the direction of the diagonal of the square, and the distance between charges placed in D and A is the length of the diagonal.

d²  =  L²  +  L²  =  2*L²

d  =  √2 * L

The module of the force due to charge place in D

F₄₅ = K*q²/ 2*L²

To get the force we need to add first  Fₓ  and  Fy  

Fx + Fy  =  F₁

module of  F₁ = √ Fx² + Fy²    the direction will be the same as the diagonal of the square then:

F₁   =   √  ( K* q²/L² )²  +   ( K* q²/L² )²

F₁  =  √ 2  *  K*q²/L²

And now we add forces F₁   and F₄₅   to get the net force Fr on charge in point B.

The direction of Fr is the direction of the diagonal and is of rejection

the module is

Fr  =  F₁  *  F₄₅

Fr  =  √ 2  *  K*q²/L²  +   K*q²/ 2*L²

Fr  = ( √ 2 + 0,5 ) * K*q² /L²

K  =  9*10⁹  Nm²C²

Fr = 1.91 * 9*10⁹*q²/L²

We don´t know units of L and q

The two most prominent wavelengths in the light emitted by a hydrogen discharge lamp are 656 nm (red) and 486 nm (blue). Light from a hydrogen lamp illuminates a diffraction grating with 550 lines/mm , and the light is observed on a screen 1.7 m behind the grating.
What is the distance between the first-order red and blue fringes?
Express your answer to two significant figures and include the appropriate units.

Answers

Answer:

Δd = 7.22 10⁻² m

Explanation:

For this exercise we must use the dispersion relationship of a diffraction grating

           d sin θ = m λ

let's use trigonometry

           tan θ = y / L

     

how the angles are small

           tant θ = sinθ  /cos θ = sin θ

we substitute  

           sin θ = y / L

          d y / L = m λ

          y = m λ L / d

let's use direct ruler rule to find the distance between two slits

           

If there are 500 lines in 1 me, what distance is there between two lines

         d = 2/500

        d = 0.004 me = 4 10⁻⁶ m

diffraction gratings are built so that most of the energy is in the first order of diffraction m = 1

let's calculate for each wavelength

λ = 656 nm = 656 10⁻⁹ m

         d₁ = 1 656 10⁻⁹ 1.7 / 4 10⁻⁶

         d₁ = 2.788 10⁻¹ m

λ = 486 nm = 486 10⁻⁹ m

         d₂ = 1 486 10⁻⁹ 1.7 / 4 10⁻⁶

         d₂ = 2.066 10⁻¹ m

the distance between the two lines is

         Δd = d1 -d2

         Δd = (2,788 - 2,066) 10⁻¹

         Δd = 7.22 10⁻² m

A certain microscope is provided with objectives that have focal lengths of 20 mm , 4 mm , and 1.4 mm and with eyepieces that have angular magnifications of 5.00 × and 15.0 × . Each objective forms an image 120 mm beyond its second focal point.

Answers

Answer:

Explanation:

Given that:

Focal length for the objective lens = 20 mm, 4 mm, 1.4 mm

For objective lens of focal length f₁ = 20 mm

s₁' = 120 mm + 20 mm = 140 mm

Magnification [tex]m_1 = \dfrac{s'_1}{f_1}[/tex]

[tex]m_1 = \dfrac{140}{20}[/tex]

[tex]m_1 = 7 \ m[/tex]

For objective lens of focal length f₁ = 4 mm

s₁' = 120 mm + 4 mm = 124 mm

[tex]m_1 = \dfrac{s'_1}{f_1}[/tex]

[tex]m_1 = \dfrac{124}{4}[/tex]

[tex]m_1 = 31 \ m[/tex]

For objective lens of focal length f₁ = 1.4 mm

s₁' = 120 mm + 1.4 mm = 121.4 mm

[tex]m_1 = \dfrac{s'_1}{f_1}[/tex]

[tex]m_1 = \dfrac{121.4}{1.4}[/tex]

[tex]m_1 = 86.71 \ m[/tex]

The magnification of the eyepiece is given as:

[tex]m_e = 5X \ and \ m_e = 15X[/tex]

Thus, the largest angular magnification when  [tex]m_1 \ and \ m_e \ are \ large \ is:[/tex]

[tex]M_{large}= (m_1)_{large} \times (m_e)_{large}[/tex]

= 86.71 × 15

= 1300.65

The smallest angular magnification derived when [tex]m_1 \ and \ m_e \ are \ small \ is:[/tex]

[tex]M_{small}= (m_1)_{small} \times (m_e)_{small}[/tex]

= 7 × 5

= 35

The largest magnification will be 1300.65 and the smallest magnification will be 35.

What is magnification?

Magnification is defined as the ratio of the size of the image of an object to the actual size of the object.

Now for objective lens and eyepieces, it is defined as the ratio of the focal length of the objective lens to the focal length of the eyepiece.

It is given in the question:

Focal lengths for the objective lens is = 20 mm, 4 mm, 1.4 mm

now we will calculate the magnification for all three focal lengths of the objective lens.

Also, each objective forms an image 120 mm beyond its second focal point.

(1) For an objective lens of focal length   [tex]f_1=20 \ mm[/tex]

[tex]s_1'=120\ mm +20 \ mm =140\ mm[/tex]

Magnification will be calculated as

[tex]m_1=\dfrac{s_1'}{f_1} =\dfrac{140}{20} =7[/tex]

(2) For an objective lens of focal length [tex]f_1= \ 4 \ mm[/tex]

s₁' = 120 mm + 4 mm = 124 mm

[tex]m_1=\dfrac{s_1'}{f_1} =\dfrac{124}{4} =31[/tex]

(3) For an objective lens of focal length [tex]f_1=1.4\ mm[/tex]

s₁' = 120 mm + 1.4 mm = 121.4 mm

[tex]m_1=\dfrac{s_1'}{f_1} =\dfrac{121.4}{1.4} =86.71[/tex]

Now the magnification of the eyepiece is given as:

[tex]m_e=5x\ \ \ & \ \ m_e=15x[/tex]

Thus, the largest angular magnification when  

[tex]m_1 = 86.17\ \ \ \ m_e=15x[/tex]

[tex]m_{large}= (m_1)_{large}\times (m_e)_{large}[/tex]

[tex]m_{large}=86.71\times 15=1300.65[/tex]

The smallest angular magnification derived when

[tex]m_1=7\ \ \ \ m_e=5[/tex]

[tex]m_{small}=(m_1)_{small}\times (m_e)_{small}[/tex]

[tex]m_{small}=7\times 5=35[/tex]

Thus the largest magnification will be 1300.65 and the smallest magnification will be 35.

To know more about magnification follow

https://brainly.com/question/1599771

Give the number of protons and the number of neutrons in the nucleus of each of the following isotopes Aluminum 25 :13 protons and 12 neutrons

Answers

Answer:

No of proton is 13 and nucleus is 13

A small object with mass 0.200 kg moves with constant speed in a vertical circle of radius 0.500 m. It takes the object 0.500 s to complete one revolution. (a) What is the translational speed of the object

Answers

Answer:

6.28 m/s.

Explanation:

Given that,

The mass of the object, m = 0.2 kg

The radius of the circle, r = 0.5 m

It takes the object 0.500 s to complete one revolution.

We need to find the translational speed of the object. Let it is v. We know that,

[tex]v=\dfrac{2\pi r}{t}\\\\v=\dfrac{2\pi \times 0.5}{0.5}\\\\v=6.28\ m/s[/tex]

So, the transalational speed of the object is 6.28 m/s.

A hockey puck is sliding across the ice with an initial velocity of 25 m/s. If the coefficient of friction between the hockey puck and the ice is 0.08, how much time (in seconds) will it take before the hockey puck slides to a stop

Answers

Answer: 31.89seconds

Explanation:

Based on the information given, we are meant to calculate deceleration which will be:

t = V/a

where, a = mg

Therefore, t = V/mg

t = 25/0.08 × 9.8

t = 25/0.784

t = 31.89seconds

Therefore, the time that it will take before the hockey puck slides to a stop is 31.89seconds.

In the Biomedical and Physical Sciences building at MSU there are 135 steps from the ground floor to the sixth floor. Each step is 16.6 cm tall. It takes 5 minutes and 30 seconds for a person with a mass of 73.5 kg to walk all the way up. How much work did the person do?

Answers

Answer:

W = 16.4 kJ

Explanation:

Given that,

There are 135 steps from the ground floor to the sixth floor.

Each step is 16.6 cm tall.

The mass of a person, m = 73.5 kg

We need to find the work done by the person. We know that,

Work done = Fd

Where

d is the displacement, d = 135 × 0.166 = 22.41

So,

W = 73.5 × 10 × 22.41

= 16471.35  J

or

W = 16.4 kJ

So, 16.4 kJ is the work done by the person.

The peak value of the electric field component of an electromagnetic wave is E. At a particular instant, the intensity of the wave is of 0.020 W/m2. If the electric field were increased to 5E, what would be the intensity of the wave?

Answers

Answer:

[tex]I_2=0.50 w/m^2[/tex]

Explanation:

From the question we are told that:

initial Intensity [tex]I_1=0.020 w/m^2[/tex]

Final Electric field [tex]E_2=5E[/tex]

Generally the equation for Relation ship between intensity and Electric field is mathematically given by

 [tex]\frac{I_1}{I_2}= \frac{E_1^2}{E_2^2}[/tex]

Therefore

 [tex]I_2=\frac{I_1}{ \frac{E_1^2}{E_2^2}}[/tex]

 [tex]I_2=\frac{0.020}{ \frac{E^2}{5E^2}}[/tex]

 [tex]I_2=0.50 w/m^2[/tex]

An electric drill starts from rest and rotates with a constant angular acceleration. After the drill has rotated through a certain angle, the magnitude of the centripetal acceleration of a point on the drill is 8.2 times the magnitude of the tangential acceleration. What is the angle?

Answers

Answer:

The angle is 4.1 rad.

         

Explanation:

The centripetal acceleration (α) is given by:

[tex] \alpha = \omega^{2} r [/tex]    (1)                  

Where:

ω: is the angular velocity  

r: is the radius

And the tangential acceleration (a) is:                      

[tex] a = \alpha r [/tex]      (2)

Since the magnitude of "α" is 8.2 times the magnitude of "a" (equating (2) and (1)) we have:

[tex] \omega^{2} r = 8.2\alpha r   [/tex]

[tex] \omega^{2} = 8.2\alpha [/tex]    (3)      

Now, we can find the angle with the following equation:

[tex] \omega_{f}^{2} = \omega_{0}^{2} + 2\alpha \Delta \theta [/tex]

Where:

[tex] \omega_{f}[/tex]: is the final angular velocity                                                                              [tex] \omega_{0}[/tex]: is the initial angular velocity = 0 (it starts from rest)

[tex]\Delta \theta[/tex]: is the angle

[tex] \omega^{2} = 2\alpha \Delta \theta [/tex]     (4)    

By entering equation (3) into (4) we can calculate the angle:

[tex] 8.2\alpha = 2\alpha \Delta \theta [/tex]

[tex] \Delta \theta = 4.1 rad [/tex]

Therefore, the angle is 4.1 rad.

I hope it helps you!                  

Other Questions
Use the distributive property to find a equivalent expression for 6(x+4) The radius of a circle is 2 meters. What is the area of a sector bounded by a 135 degree arc? Give the exact answer in simplest form Which statement about the mass and the weight of an object is correct?A They are both affected by changes in the acceleration of free fall.B They are both forces.C They have different units.D Weight is calculated by dividing mass by the acceleration of free fall. Interrupted or restricted breathing associated with breathing-related sleep disorders can also cause disrupted sleep and daytime sleepiness. Extreme cases involve short periods in which a person may stop breathing altogether, referred to as sleep apnea. If the cessation of breathing is due to a complete lack of respiratory activity, a person is experiencing?A. Mixed Sleep ApneaB. Obstructive Sleep ApneaC. Central Sleep Apnea Which of the following is a fifth degree binomial? Fill in the table of values so that this is a proportional relationship with k=3/2 X. Y. *blank*. 0 2. *blank*. *blank*. 6. -2. *blank* Brainliest goes to whoever answers correctly and explains also if you want extra points answer my other questions 2x/7-3=2What is the value of x Jackson is making brownies. He uses the following ingredients.Ingredients Amount for 1 Batch of BrowniesFlour 3 cupsSugar 2 cupsButter 1/3 cupCocoa Powder 1/4 cup Jackson has 1 cup of butter. If he wants to use all the butter, how many batches of brownies can he make?Part AWhich equation can you use to solve the problem? A. 1 3 = 3 B. 1 13 = 3 C. 1 13 = 13 D. 1 + 13 = 13Part BJackson used all the butter to make the brownies.If each brownie is 1/9 of a batch, how many brownies did he make?Enter your answer in the box. Mitosis makes.....A. cell phonesB. identical body cellsC. sperm and egg cells Suppose a publishing company estimates that its monthly cost isC(x) = 600x2 + 300x and its monthly revenue isR(x) = -0.423 + 700x2 600x + 500, where x is in thousands ofbooks sold. The profit is the difference between the revenue and the cost.What is the profit function, P(x)?. why does reflexive property exist HELPPPPPP don't troll ima report Please answer this your award will be 20 points for the first answer and brainliest You are missing a layer of the epidermis on your palms and soles of your feet. However, you do have a clear layer called the _________________. As part of legislation enacted for the stated purpose of improving science skills of schoolchildren, Congress appropriated funds to permit public school teachers who had been certified by state school districts as science lab instructors to provide supplemental science instruction to any students in either public or private schools who did not have access to science lab resources. To help ensure content neutrality, the statute required the instructors coming to the private schools to use portable science labs supplied by the public school districts, which contained the equipment and experiments that the instructors used for the same purpose in the public schools. A citizens' group filed suit in federal district court to challenge the constitutionality of funding the science teachers for private schools, alleging that most of the private schools covered by the statute were religiously affiliated schools. No members of the group have any children in either public schools or private schools affected by the statute. How is the court likely to rule What is the missing number that will complete the factorization? Write the nuclear equation for the beta decayof calcium-45. Luka, who owns a small breakfast and salad bar, has a reputation in the community as a tough manager. Many customers have heard Luka yell at his employees because he feels that workers today are lazy, lack ambition, and hate to work. Luka is a(n) ________ manager. Group of answer choices Theory Z participative contingency Theory X Theory Y What do you notice about the volcanoes vs the tectonic plates?SEE THE PHOTO PLS!.