Answer:
i. Has a liver problems?
= 0.08
ii. Is a heavy drinker ?
= 0.066
iii. If a person is found to be a heavy drinker, what is the probability that this person has liver problem?
= 0.303
iv. If a person is found to have liver problems, what is the probability that this person is a heavy drinker?
= 0.25
v. If a person is found to be a non –drinker, what is the probability that this person has liver problems?
= 0.104
Step-by-step explanation:
We have 2 Events in this question
Event A: People with liver problems
Event B : People without liver problems
Event A: People with liver problems
Let us represent people with liver problems as = (L)
a)8% have liver problems. = P(L)
Under liver problems we have:
b) 25% are heavy drinkers = P( L & H)
c) 35% are social drinkers = P( L & S)
d) 40% are non-drinkers. = P( L & N)
Event B( no liver problem)
Let us represent no liver problem as NL
We are not given in the question but Probability of having no liver problem = 100 - Probability of having liver problem
= 100 - 8% = 92 %
P(NL ) = 92%
From the question, For people without liver problems, we have:
a) 5% are heavy drinkers = P(NL & H)
b) 65% are social drinkers = P( NL & S)
c) 30% do not drink at all = P( NL & N)
An adult is chosen at random, what is the probability that this person
i. Has a liver problems?
P(L) = 8% or 0.08
ii. Is a heavy drinker ?
From the question, we have:
Probability of people that have liver problems and are heavy drinkers P(L & H) = 25% = 0.25
Probability of people that have do not have liver problems and are heavy drinkers P(NL & H) = 5% = 0.05
Probability ( Heavy drinker) =
P(L) × P(L & H) + P(NL) × P(NL & H)
= 0.25 × 0.08 + 0.05 × 0.92
= 0.066
iii. If a person is found to be a heavy drinker, what is the probability that this person has liver problem?
Probability (Heavy drinker and has liver problem) = [P(L) × P(L & H)] ÷ [P(L) × P(L & H)] + [P(NL) × P(NL & H) ]
= [0.25 × 0.08] ÷ [0.25 × 0.08] + [0.05 × 0.92]
= 0.303030303
Approximately = 0.303
iv. If a person is found to have liver problems, what is the probability that this person is a heavy drinker?
P(L & H) = 25% = 0.25
v. If a person is found to be a non –drinker, what is the probability that this person has liver problems.?
People with liver problems are non-drinkers. = P( L & N) = 40% = 0.4
People without liver problems and do not drink at all = P( NL & N) = 30% = 0.3
Probability (non drinker and has liver problem) = [P( L & N) × P(L & H)] ÷ [P( L & N) × P(L & H)] + [ P( NL & N) × P(NL & H) ]
= [0.4× 0.08] ÷ [0.4 × 0.08] + [0.3 × 0.92]
= 0.1038961039
Approximately ≈ 0.104
A baking scale measures mass to the tenth of a gram, up to 650 grams. A cup of flour is placed on the scale and results in a measure of 121.8 grams. Which of the following statements is not true?
a.The exact mass of the cup of flour must be between 121.7 and 121.9 grams.
b.The cup of flour has a mass of exactly 121.8 grams.
c.Given the limitations of the scale, the measurement has an appropriate level of accuracy.
d.To the nearest gram, the cup of flour has a mass of 122 grams.
Answer
Is it C I may have done my math wrong lol
Step-by-step explanation:
What type of triangle has side lengths 9, 10, and √130? A. obtuse B. not a triangle C. acute D. right
Answer: Option C.
Step-by-step explanation:
The lengths of our triangle are:
9, 10 and √130.
If the triangle is a triangle rectangle, by the Pitagoream's theorem we have:
A^2 + B^2 = H^2
in this case H is the larger side, this must be √130.
then:
A and B must be 9 and 10.
9^2 + 10^2 = (√130)^2
81 + 100 = 130
This is false, so this is NOT a triangle rectangle, the hypotenuse is shorter than it should be.
Now, we have some kind of rule:
if A^2 + B^2 = H^2 then we have one angle of 90° and two smaller ones. (triangle rectangle)
if A^2 + B^2 > H^2 then all the angles are smaller than 90°, this is an acute triangle.
if A^2 + B^2 < H^2 then we have one angle larger than 90°, this is an obtuse angle.
(H is always the larger side, A and B are the two shorter ones).
In this case:
81 + 100 > 130
Then this must be an acute angle.
The formula for the distance traveled over time t and at an average speed v. v times t. If Amit ran for 40 minutes at a speed of about 5 kilometers per hour. What calculation will give us the estimated distance Amit ran in kilometers? Can you help me figure out the answer?
Answer:
Thus, Amit ran 3.33 KM
calculation needed:
conversion of time (40 minutes to hour)
multiplying velocity and time (which we got in hours)
Step-by-step explanation:
Given
to calculate the distance: . v times t
that is multiply v with t
where v is average velocity
t is the time
__________________________________
Given
v = 5 km/hour
time = 40 minutes
since speed is in Km per hour and also we have to find distance in km
lets convert time which in 40 minutes to hour
we know
60 minutes = 1 hour
1 minute = 1/60 hour
40 minutes = 40/60 hour = 2/3 hour
distance = v times t
distance = 5*2/3 = 10/3 = 3 1/3 km = 3.33 km
Thus, Amit ran 3.33 KM
calculation needed:
conversion of time (40 minutes to hour)
multiplying velocity and time (which we got in hours)
Answer:
5 • 40/50
Is the correct answer
Given the set of data: 24, 43, 65, 12, 31, 78, 43, 24, 25, 18, 29, 53, 18, 23, 20, 43, 53, 25 a. Find the mode. b. Find the median. c. Find the mean, to the nearest tenth. d. Find the midrange. e. Find the standard deviation, to the nearest hundredth. f. Determine the quartiles.
Answer: a. 43
b. 27
c. 34.8
d. 45
e. 17.72
f. First quartile = 23
Second quartile = 27
Third quartile =43
Step-by-step explanation:
The given set of data: 24, 43, 65, 12, 31, 78, 43, 24, 25, 18, 29, 53, 18, 23, 20, 43, 53, 25
Arrange in Ascending order:
12 ,18,18 , 20 ,23 ,24 , 24 ,25 , 25 , 29, 31, 43, 43 , 43 , 53 , 53, 65 , 78
Total data points: n= 18 ( even)
a. Mode= Most repeated data value = 43
i.e. mode =43
b. Median = [tex]\dfrac{(\frac{n}{2})^{th}\text{term}+(\frac{n}{2}+1)^{th}\text{term}}{2}[/tex]
[tex]=\dfrac{(\frac{18}{2})^{th}\text{term}+(\frac{18}{2}+1)^{th}\text{term}}{2}\\\\=\dfrac{9^{th}\text{term}+10^{th}\text{term}}{2}\\\\=\dfrac{25+29}{2}\\\\=27[/tex]
i.e. median = 27
c. Mean = (sum of data points)÷n
Sum =12+18+18 + 20 +23 +24 + 24 +25 + 25 + 29+ 31+ 43+ 43 + 43 + 53 + 53+ 65 + 78=627
Mean = 627 ÷ 18 ≈34.8
i.e. Mean = 34.8
d. Mid range = [tex]\dfrac{\text{Maximum value +Minimum value}}{2}[/tex]
[tex]=\dfrac{78+12}{2}\\\\=\dfrac{90}{2}\\\\=45[/tex]
e. Standard deviation =[tex]\sqrt{\dfrac{\sum (x-mean)^2}{n}}[/tex][tex]\sum (x-\mean)^2=(12-34.8)^2+(18-34.8)^2+(18 -34.8)^2+( 20 -34.8)^2+(23 -34.8)^2+(24 -34.8)^2+( 24 -34.8)^2+(25 -34.8)^2+2( 25 -34.8)^2+( 29-34.8)^2+( 31-34.8)^2+( 43-34.8)^2+( 43 -34.8)^2+( 43 -34.8)^2+( 53 -34.8)^2+( 53-34.8)^2+( 65 -34.8)^2+( 78-34.8)^2\\\\=5654.56[/tex]
[tex]\sqrt{\dfrac{5654.56}{18}}=\sqrt{314.1422}\approx17.72[/tex]
f. First quartile = Median of first half (12 ,18,18 , 20 ,23 ,24 , 24 ,25 , 25)
= 23 (middle most value)
Second quartile = Median = 27
Third quartile = Median of second half (29, 31, 43, 43 , 43 , 53 , 53, 65 , 78)
= 43 (middle most value)
You meet with the financial aid office to discuss your costs for attending LSU next semester.Tuition is $113.67 per credit hour, and fees are a flat rate of $660. You have a grant of $350 and a scholarship of $400. If you are taking 15 credit hours what amount will you need go pay for your classes next semester?
Show you work
Answer:
$1615.05Step-by-step explanation:
Scholarship and grants are money given to the candidates to support his financial needs in school. It will serves as the means of revenue for the student.
Revenue generated = Grant + Scholarship amount
Revenue generated = $350 + $400
Revenue generated= $750
Total money needed to be spent in school = Tuition + fees
If tuition is $113.67 per credit hour and I used 15 credit hours, total amount of tuition paid = 15* $113.67 = $1705.05
Total fees = $660
Total money needed to be spent in school = $1705.05 + $660
Total money needed to be spent in school = $2365.05
Amount I will need to pay for classes next semester = Total money that will be spent - (grant+scholarship)
= $2365.05 - $750
= $1615.05
Hence, the amount I will need to pay for classes next semester is $1615.05
Determine whether the statement (p∧(p⟶q))⟶q is a tautology one time by using truth table and the other time without using truth table
It is.........................................................
One way to prove this without a truth table is to use a conditional proof. We assume the portion p ^ (p --> q). If that's true, then so is p and p-->q
Using p and p-->q, the modus ponens rule allows us to derive q. It says that if p is true and p --> q, then q must be true as well.
Since we arrive at q, we have found the conclusion we're after. The assumption (p ^ (p-->q)) leads to q, and therefore the entire statement (p ^ (p-->q)) --> q is true for any combination of p,q.
A machine that produces ball bearings has initially been set so that the true average diameter of the bearings it produces is 0.500 in. A bearing is acceptable if its diameter is within 0.004 in. of this target value. Suppose, however, that the setting has changed during the course of production, so that the bearings have normally distributed diameters with a mean 0.499 in. and standard deviation 0.002 in. What percentage of bearings will now not be acceptable
Answer:
the percentage of bearings that will not be acceptable = 7.3%
Step-by-step explanation:
Given that:
Mean = 0.499
standard deviation = 0.002
if the true average diameter of the bearings it produces is 0.500 in and bearing is acceptable if its diameter is within 0.004 in.
Then the ball bearing acceptable range = (0.500 - 0.004, 0.500 + 0.004 )
= ( 0.496 , 0.504)
If x represents the diameter of the bearing , then the probability for the z value for the random variable x with a mean and standard deviation can be computed as follows:
[tex]P(0.496\leq X \leq 0.504) = (\dfrac{0.496 - \mu}{\sigma} \leq \dfrac{X -\mu}{\sigma} \leq \dfrac{0.504 - \mu}{\sigma})[/tex]
[tex]P(0.496\leq X \leq 0.504) = (\dfrac{0.496 - 0.499}{0.002} \leq \dfrac{X -0.499}{0.002} \leq \dfrac{0.504 - 0.499}{0.002})[/tex]
[tex]P(0.496\leq X \leq 0.504) = (\dfrac{-0.003}{0.002} \leq Z \leq \dfrac{0.005}{0.002})[/tex]
[tex]P(0.496\leq X \leq 0.504) = (-1.5 \leq Z \leq 2.5)[/tex]
[tex]P(0.496\leq X \leq 0.504) = P (-1.5 \leq Z \leq 2.5)[/tex]
[tex]P(0.496\leq X \leq 0.504) = P(Z \leq 2.5) - P(Z \leq -1.5)[/tex]
From the standard normal tables
[tex]P(0.496\leq X \leq 0.504) = 0.9938-0.0668[/tex]
[tex]P(0.496\leq X \leq 0.504) = 0.927[/tex]
By applying the concept of probability of a complement , the percentage of bearings will now not be acceptable
P(not be acceptable) = 1 - P(acceptable)
P(not be acceptable) = 1 - 0.927
P(not be acceptable) = 0.073
Thus, the percentage of bearings that will not be acceptable = 7.3%
Policeman A and Policeman B hand out 70 speeding tickets in a month.
Policeman A hands out 4 times as many speeding tickets as Policeman B.
Policeman A handed out ? Speeding tickets.
Answer:
Policeman A = 56 tickets
Step-by-step explanation:
Policemen A + B = 70
If Policeman B hands out x no of tickets...
Then Policeman A hands out 4x no of tickets
meaning...
x + 4x = 70
5x = 70
x = 70/5
x = 14
Therefore Policeman A hands out..
4x = 4 × 14 = 56 tickets
Find the most general antiderivative of the function. (Use C for the constant of the antiderivative).
f(x) = 6x5 − 7x4 − 9x2
F(x) = ?
Answer:
[tex]x^6 - \frac{7x^5}{5} - 3x^3 + C[/tex]
Q1) Two balls are randomly selected without replacement from a box containing three black balls numbered 1, 2, 3 and two white balls numbered 4 and 5. Assuming that all outcomes are equally likely. Find out the probabilities of following events. a) Probability that the color of second ball is white. b) Probability that the color of second ball is black. c) Probability that both balls are black. d) Probability that both balls are white.
[tex]|\Omega|=5\cdot4=20[/tex]
a)
[tex]|A|=3\cdot2+2\cdot1=8\\\\P(A)=\dfrac{8}{20}=\dfrac{2}{5}[/tex]
b)
[tex]|A|=3\cdot2+2\cdot3=12\\\\P(A)=\dfrac{12}{20}=\dfrac{3}{5}[/tex]
c)
[tex]|A|=3\cdot2=6\\\\P(A)=\dfrac{6}{20}=\dfrac{3}{10}[/tex]
d)
[tex]|A|=2\cdot1=2\\\\P(A)=\dfrac{2}{20}=\dfrac{1}{10}[/tex]
Find the solution set of the inequality and what is the number? 16x − 7 ≤ − 71 A. C. ≤ D. ≥ E. =
x ≤ − 4
Step-by-step explanation:
Answer:
x ≤ -4
Step-by-step explanation:
16x − 7 ≤ − 71
Add 7 to both sides.
16x ≤ -64
Divide both sides by 16.
x ≤ -4
The value of y varies jointly with x and z. If y = 7 when z = 196 and x = 2, find the value of y when x = 3 and z = 336. I will rate you brainliest
Answer:
18
Step-by-step explanation:
Given that:
y∞ xz
y=kxz. Where k is constant
When z=196 and x= 2 then y= 7
7=(196)(2)k
7=392k
k=1/56
There fore y=(1/56)xz
When x=3 and z =336
y=(1/56)xz
y=(1/56)(336)(3)
y=18
if value of y varies jointly with x and z. If y = 7 when z = 196 and x = 2 then the value of y when x = 3 and z = 336 is 18.
What is Ratio?A ratio is an ordered pair of numbers a and b, written a / b where b does not equal 0.
Value of y varies jointly with x and z.
y ∞ xz
y=kxz.
Where k is constant
When z=196 and x= 2 then y= 7
Let us find the value of k
7=(196)(2)k
7=392k
Divide both sides by 7
k=1/56
y=(1/56)xz
When x=3 and z =336
y=(1/56)xz
y=(1/56)(336)(3)
y=18
Hence, the value of y when x = 3 and z = 336 is 18.
To learn more on Ratios click:
https://brainly.com/question/13419413
#SPJ2
The entire graph of the function h is shown below write the domain and range of h using interval notation.
you can only see values of [tex] x[/tex] Ranging from $-3$ to $3$ and they're included, so domain is $[-3,3]$
and $y$ values ranging from $-2$ to $4$ but $-2$ is not included so range is $(-2,4]$
is this a function {(-2, 6), (-3, 7), (-4, 8), (-3, 10)}
No, that is not a function.
To be a function, each different input (x) needs a different output (y)
In the given function there are two -3’s as inputs and they have different y values, so it can’t be a function.
Answer: no
Step-by-step explanation: To determine if a relation is a function, take a look at the x–coordinate of each ordered pair. If the x–coordinate is different in each ordered pair, then the relation is a function.
Note that the only exception to this would be that if the x-coordinate pairs up with the same y-coordinate in a relation more than once, it's still classified ad a function.
Ask yourself, do any of the ordered pairs
in this relation have the same x-coordinate?
Well by looking at this relation, we can see that two
of the ordered pairs have the same x-coordinate.
In this case, the x-coordinate of 3 appears twice.
So no, this relation is not a function.
Find the surface area of the triangular prism.
Answer:
169 [tex]cm^{2}[/tex]
Step-by-step explanation:
Surface area (SA) = 2B + PH
SA = 2 ([tex]\frac{1}{2}[/tex] x 9 x 6) + (7+7+9) 5
= 2 (27) + (23) 5
= 54 + 115
SA = 169 [tex]cm^{2}[/tex]
1) At AJ Welding Company they employ 253 people, 108 employees receive 2 weeks of paid 1) _______ vacation each year. Find the ratio of those who receive 2 weeks of paid vacation to those whose paid vacation is not 2 weeks.
Answer:
108 : 145
Step-by-step explanation:
253 - 108 = 145
Ratio of those who receive 2 weeks of paid vacation is 108
Ratio of those paid vacation is not 2 weeks is 145
108 : 145
Type the correct answer in each box. Use numerals instead of words,
The domain of this function is {-12, -6, 3, 15).
y = -32 +7
Complete the table based on the given domain.
y
6
0
5
15
15
Reset
Next
Answer:
x = -6,3,15,-12; y = 11,5,-3,15
Step-by-step explanation:
Domain is the x value, so plugged in the x values into the equation and got the y values or range.
Answer:
x: y:
-6 11
3 5
15 -3
-12 15
Help please, i really need the answer asap.
The larger metallic object is initially at rest, so the velocity is 0 when t = 0. The speed changes after t = 3 seconds.
Answer:
It would be the last one.
Step-by-step explanation:
It says the object is initially at rest, so you look for a table with 0 m/s and you find the last table had been at rest for 0 -2 seconds. The small rocky object initially had a speed of 90 m/s and then decreased to 36 m/s as its energy transferred to the metallic object. The metallic object's speed from time 4-6s with the small rocky object equals the small rocky initial speed.
Rocky Object initial speed = 90 m/s
Rocky Object new speed = 36 m/s
Large metallic object speed after collision = 64 m/s.
64 m/s + 36 m/s = 90 m/s
Large metallic object speed after collision + Rocky Object new speed
= Rocky Object initial speed
You can also test this for kinetic energy.
Angela took a general aptitude test and scored in the 90th percentile for aptitude in accounting. (a) What percentage of the scores were at or below her score? % (b) What percentage were above?
Answer:
Step-by-step explanation:
From the given information;
Angela took a general aptitude test and scored in the 90th percentile for aptitude in accounting.
What percentage of the scores were at or below her score?
The percentage of scores that were at or below her score is
Percentage P = 90%
This benchmark is more than average, so we can typically say more of the scores were at or below her score
What percentage were above?
Since The percentage of scores that were at or below her score is
Percentage P = 90%
Then the percentage of the scores that were above will be : (100 -90)%
= 10 %
We can see here that less percentage of score were above Angela's Score.
Evaluate a + b for a = 12 and b = 6.
Answer:
Here,
a= 12
b = 6
Then,
a+b
= 12 + 6
= 18
.°. 18 is the solution
Answer:
[tex] \boxed{ \bold{ \boxed{ \sf{18}}}}[/tex]
Step-by-step explanation:
If the values of variables of algebraic expressions are given, the value of the term or expression can easily obtained by replacing the variables with numbers.
Given, a = 12 and b = 6
[tex] \sf{a + b}[/tex]
plug the values
⇒[tex] \sf{12 + 6}[/tex]
Add the numbers
⇒[tex] \sf{18}[/tex]
Hope I helped!
Best regards!!
A chemical company makes two brands
of antifreeze. The first brand is 30% pure
antifreeze, and the second brand i$ 80% pure
antifreeze. In order to obtain 80 gallons of a
mixture that contains 70o£ pure antifreeze, hov
mabry gallons of each band ot antifneze must
bo used?
Answer:
16 bags for the first(30% pure) and 64 bags of the second(80% pure)
Step-by-step explanation:
If they are mixed in a ratio of x bags to y bags
(0.3x+0.8y)/(x+y) = 0.7
0.3x + 0.8y = 0.7(x+y)
Multiply both sides with 10
3x + 8y = 7(x+y)
4x = y ——(1)
x + y = 80 ——(2)
Solve simultaneously
x + 4x = 80
5x = 80
x = 16 bags
y = 4x = 64 bags
What is the diameter of the base of the cone below, to the nearest foot, if the volume is 314 cubic feet? Use π = 3.14.
This question is incomplete because it lacks the required diagram. Please find attached the diagram required to answer the question.
Answer:
14 feet
Step-by-step explanation:
The volume of a cone = 1/3 πr²h
In the above question, we are given the volume = 314 cubic feet
the height is given in the attached diagram = 6ft
Step 1
We find the radius.
From the formula for the volume of a cone, we can derive the formula for radius of the cone.
Radius of the cone = √(3 × V/π × h
π = 3.14
Radius of the cone = √( 3 × 314 /3.14 × 6
Radius of the cone = √942/3.14× 6
Radius = √50
= 7.0710678119feet
Step 2
Diameter of the cone = Radius of the cone × 2
= 7.0710678119 × 2
= 14.142135624 feet
Approximately to the nearest foot = 14 feet
Therefore, the diameter of the cone to the nearest foot = 14 feet.
Compute the flux of the vector field LaTeX: \vec{F}=F → =< y + z , x + z , x + y > though the unit cubed centered at origin.
Assuming the cube is closed, you can use the divergence theorem:
[tex]\displaystyle\iint_S\vec F\cdot\mathrm dS=\iiint_T\mathrm{div}\vec F\,\mathrm dV[/tex]
where [tex]S[/tex] is the surface of the cube and [tex]T[/tex] is the region bounded by [tex]S[/tex].
We have
[tex]\mathrm{div}\vec F=\dfrac{\partial(y+z)}{\partial x}+\dfrac{\partial(x+z)}{\partial y}+\dfrac{\partial(x+y)}{\partial z}=0[/tex]
so the flux is 0.
Which of the following is the correct notation of the complex number?
Answer:
-84 + 10i
Step-by-step explanation:
Standard Complex Form: a + bi
Step 1: Evaluate
√-100 = √-1 x √100 = i x 10 = 10i
-84 = -84
Step 2: Combine
10i - 84
Step 3: Rearrange
-84 + 10i
Answer:
Last Option
Step-by-step explanation:
√-100 - 84
(√(100×-1)) - 84
(√100)(√-1)-84
√-1 = i
10i - 84 or -84 + 10i
Find all values of x on the graph of f(x) = 2x3 + 6x2 + 7 at which there is a horizontal tangent line.
Answer:
the equation is not correct, u have to write like
ax'3+bx'2+cx+d
Answer:
x=-2 and x=0
Step-by-step explanation:
So I know it isn't x=-3 and x=0. So my guess is that it is x=0 and x=-2 and heres why.
First, I find the derivative of f(x)=2x^3+6x^2+7 which is 6x^2+12x
Then, I plugged in all the values of x's I had and I found out that you get 0 for -2 and 0 when you plug them in
So, in conclusion I believe the answer to be x=-2 and x=0
What is the solution to 5x - 15 = 5(-4x - 3) ? Group of answer choices -12 6 0 -16
Answer:
x = 0Step-by-step explanation:
5x - 15 = 5(-4x - 3)
Multiply the terms in the bracket
5x - 15 = - 20x - 15
Group like terms
Send the constants to the right side of the line and those with variables to the left side
That's
5x + 20x = - 15 + 15
Simplify
25x = 0
Divide both sides by 25
We have the final answer as
x = 0Hope this helps you
Answer:
x=0
Step-by-step explanation:
5x - 15 = 5(-4x - 3)
To find the solution to this equation, we have to get x by itself on one side of the equation.
First, distribute the 5 on the right side. Multiply each term by 5.
5x - 15= (5*-4x) + (5*-3)
5x-15 = -20x + (5*-3)
5x-15= -20x -15
Next, add 20x to both sides of the equation.
(5x+20x) -15 = (-20x+20x) -15
(5+20x) -15 = -15
25x -15=-15
Next, add 15 to both sides of the equation.
25x -15 +15 = -15+15
25x= -15+15
25x=0
Finally, divide both sides of the equation by 25.
25x/25=0/25
x= 0/25
x= 0
The solution to this equation is x=0
A chicken soup recipe calls for 13 cups of chicken stock how much is this in quarts
Answer:
3.25 US Quarts
Step-by-step explanation:
The Bookstall Inc. is a specialty bookstore concentrating on used books sold via the Internet. Paperbacks are $1.35 each, and hardcover books are $3.50. Of the 60 books sold last Tuesday morning, 55 were paperback and the rest were hardcover. What was the weighted mean price of a book? (Round your answer to 2 decimal places.)
Answer:
dddddd okaksy ogvurn
Step-by-step explanation:
d
A sports club was formed in the month of May last year. The function below, M(t), models the number of club members for the first 10 months, where t represents the number of months since the club was formed in May. m(t)=t^2-6t+28 What was the minimum number of members during the first 10 months the club was open? A. 19 B. 28 C. 25 D. 30
Answer:
A: 19
Step-by-step explanation:
For this, we can complete the square. We first look at the first 2 terms,
t^2 and -6t.
We know that [tex](t-3)^2[/tex] will include terms.
[tex](t-3)^2 = t^2 - 6t + 9[/tex]
But [tex](t-3)^2[/tex] will also add 9, so we can subtract 9. Putting this into the equation, we get:
[tex]m(t) = (t-3)^2 - 9 +28[/tex]
[tex]m(t) = (t-3)^2 +19[/tex]
Using the trivial inequality, which states that a square of a real number must be positive, we can say that in order to have the minimum number of members, we need to make (t-3) = 0. Luckily, 3 months is in our domain, which means that the minimum amount of members is 19.
Suppose you have a bag with the following in it: 5 one dollar bills, 4 fives, 3 tens, 5 twenties, and 3 fifties. Assuming the experiment requires drawing one bill from the bag at random, complete the probability distribution for this experiment.
Required:
What is the probability of drawing 9 dollars or less in a single draw?
Answer:
(a) Probility Distribution
Outcome probability
$1 5/15 = 1/3
$5 4/15
$10 3/15 = 1/5
$20 5/15 = 1/3
(b) P($9 or less) = 3/5
Step-by-step explanation:
(a) Probility Distribution
Outcome probability
$1 5/15 = 1/3
$5 4/15
$10 3/15 = 1/5
$20 5/15 = 1/3
Any other denomination
0
(b)
ways to draw $9 or less in a single draw
P($1) = 1/3
P($5) = 4/15
P($9 or less) = P($1) + P($5) = 1/3 + 4/15 = 9/15 = 3/5