Answer:
966 feet
Step-by-step explanation:
First, we can see that we have the velocity function given, a base value for the height, and need to figure out the change in height. We also know that velocity is the derivative of position/height. Thus, we can find the integral of the velocity to find an equation for the height.
[tex]\int\limits^1_0 {-34t+291} \, dt\\[/tex]
Use the exponent rule to turn -34t into -17t² and 291 into 291t to get our result as
-17t²+291t + C = height (h)
When t=0, we know that our height (h) is 6, so C = 6, making our equation
-17t²+291t + 6
To find the change between 1 second and 8 seconds, we can plug 1 and 8 in for t, and find the difference between those values, which is
(-17(8)²+291(8) + 6) - ( -17(1)²+291(1) + 6 )
= 1246 - 280
= 966
Note that we did final value (t = 8) - initial value (t=1), not the other way around
The change in height, between 1 second and 8 seconds, is therefore 966 feet
Use the diagram to estimate the perimeter, rounding each number to the nearest hundred.
A parallelogram is shown. Two sides are labeled 5,534 feet. The other two sides are labeled 1,566 feet.
14,200 feet
16,000 feet
14,400 feet
14,000 feet
Answer:
14,000 feet.
Step-by-step explanation:
A parallelogram has 4 total sides and the opposite sides are characterized as having the same length. Therefore, If we are provided the lengths of two adjacent sides we can easily calculate the perimeter by multiplying these provided lengths by 2 and then adding them together. Since we are asked to round each number to the nearest hundred, it would be the following...
(5,500 * 2) + (1,500 * 2) = x
11,000 + 3000 = x
14,000 = x
Finally, we can estimate that the perimeter of the parallelogram is 14,000 feet.
76. In the diagram below, lines land mare
parallel. Both are intersected by
transversal t.
What is the value of x?
Which is the graph of an even monomial function?
Answer:
The graph of an even function is symmetric about the y-axis. The graph of an odd function is symmetric about the x-axis. It is possible that the use of these two words originated with the observation that the graph of a polynomial function in which all variables are to an even power is symmetric about the y -axis.
One difference between objects and data types is that it is usually not meaningful to compare the identities of separate instances of data types, but for objects it is valuable to compare separate object identities. Group of answer choices
Answer and explanation:
Question isn't complete but explanation is given below based on what you may be asking.
Answer and Explanation:
First, An object is a data type but is quite different from the usual or primitive data types such as string or integers. An object is based on object oriented programming(OOP) and is a sort of abstract data type which is usually defined by the programmer(some are inbuilt in the language). Objects are usually defined using classes and then become instances of those classes. Objects have identities(e.g- a dog has a name Zeus) and be compared to other objects of same class(other instances) while data types are not as well equipped to have identities, properties or methods that are user defined in order to make comparisons.
write an equation of the line below
Ethan is 1.6 metres tall, Uzma is 154 cm tall.
Work out how much taller Ethan is than Uzma.
Answer:
1.6 metres is 160 centimetres
Ethan is 6 centimetres taller than Uzma
4/8 =?/2 please answer
Answer:
? = 1
Step-by-step explanation:
4/8 = ?/2
Change the ? into a variable so it's easier to calculate:
Variable x = ?
4/8 = x/2
Cross multiply:
4 × 2 = 8 × x
8 = 8x
Divide both sides by 8 to isolate the variable:
1 = x
Check your work:
4/8 = 1/2
4 × 2 = 8 × 1
8 = 8
Correct!
Find the perimeter of the triangle whose vertices are the following specified (0,3), (-10,-4) (-9,-7) points in the plane.
Answer:
The perimeter of the triangle is 28.82
Step-by-step explanation:
Please check the image uploaded for the diagram.
Perimeter = d₁ + d₂ + d₃
[tex]d_1 = \sqrt{(-10-0)^2 + (-4-3)^2} = \sqrt{100+49} =\sqrt{149} = 12.21\\\\d_2 = \sqrt{(-9-0)^2 + (-7-3)^2} = \sqrt{81+100} =\sqrt{181} = 13.45\\\\d_3 = \sqrt{(-10+9)^2 + (-4+7)^2} = \sqrt{1+9} =\sqrt{10} = 3.16\\\\Perimeter = 12.21 + 13.45 + 3.16 = 28.82[/tex]
Maddy has a bag of 36 marbles. The probability of picking green is 1 in 2, the probability of picking red is 1 in 3, and the probability of picking blue is 1 in 9. The only other color in the bag is black. Find the probability of Maddy picking a black marble.
Answer: 1 in 18
This is the same as writing the fraction 1/18
==============================================================
Explanation:
Since she has 36 marbles total, and the probability of picking green is 1 in 2, this means (1/2)*36 = 18 marbles are green.
Then she also has (1/3)*36 = 12 red marbles and (1/9)*36 = 4 blue marbles.
So far, that accounts for 18+12+4 = 34 marbles in all. That leaves 36-4 = 2 marbles left over that must be black, as it's the only color left.
From that, the probability of choosing a black marble is 2/36 = 1/18.
There's a 1 in 18 chance of Maddy picking a black marble.
1/18 = 0.0556 = 5.56% approximately
There are 3 liters of orange juice at a school party. 10 students want to drink all of the orange juice, and they all want to get exactly the same amount. How much orange juice can each get? (enter your answer as a fraction or mixed number)
Answer:
3 1/3 each
Step-by-step explanation:
10/3=3 1/3
Find the area
10
7
12
4
5
5
Answer:
[tex]{ \tt{area = (7 \times 10) + (12 \times 4) + (5 \times 5)}} \\ { \tt{ = 70 + 48 + 25}} \\ { \tt{ = 143 \: {in}^{2} }}[/tex]
Answer: break into 2 rect and 1 sqr the sum areas of each
Step-by-step explanation: square = 5x5
Rectangle 1 = 10x7
Rectangle 2 = 12x4
Sum each shape area = total area
lim x->1+( sin(1-x)-(e^(x-1))+1)/ lnx
We're given the one-sided limit,
[tex]\displaystyle\lim_{x\to1^+}\frac{\sin(1-x)-e^{x-1}+1}{\ln(x)}[/tex]
Evaluating the limand directly at x = 1 gives the indeterminate from
(sin(1 - 1) - exp(1 - 1) + 1) / ln(1) = 0/0
so we can potentially solve the limit by applying L'Hopital's rule. Doing so gives
[tex]\displaystyle\lim_{x\to1^+}\frac{\sin(1-x)-e^{x-1}+1}{\ln(x)}=\lim_{x\to1^+}\frac{-\cos(1-x)-e^{x-1}}{\frac1x}=\frac{-\cos(0)-e^0}{\frac11}=\boxed{-2}[/tex]
Activity IB. FIND ME!
Find the area of each circle. Use = 3.14
3.
1.
2.
om
13cm
19in.
5.
33cm
25cm
yan paki sagot
Triangle D E F is shown. Angle E F D is a right angle. The length of E F is 24 and the length of D F is 7.
Which trigonometric ratios are correct for triangle DEF? Select three options.
sin(D) = StartFraction 24 Over 25 EndFraction
cos(E) = StartFraction 7 Over 25 EndFraction
tan(D) = StartFraction 24 Over 7 EndFraction
sin(E) = StartFraction 7 Over 25 EndFraction
tan(D) = StartFraction 7 Over 24 EndFraction
Answer:
Sin(E) = 7/25
Sin(D) = 24/25
Tan(D)= 24/7
Step-by-step explanation:
Sin=opp/hyp
Tan=opp/adj
Cos=adj/hyp
The trigonometric ratios that are correct for triangle DEF are sin(E) = 7/25, sin(D) = 24/25 and tan(D)= 24/7
How to determine the trigonometric ratios?The given parameters are:
EF = 24
DF = 7
Start by calculating the length DE using:
DE²= EF² + DF²
So, we have:
DE²= 24² + 7²
Take the square root of both sides
DE= 25
The sine of the angles is calculated using:
sin(Ф) = opp/hyp
So, we have:
sin(E) = 7/25
sin(D) = 24/25
The tangent of the angles is calculated using:
tan(Ф) = opp/adj
So, we have:
tan(D)= 24/7
Hence, the trigonometric ratios that are correct for triangle DEF are sin(E) = 7/25, sin(D) = 24/25 and tan(D)= 24/7
Read more about trigonometric ratios at:
https://brainly.com/question/11967894
) A desk organizer sells for $35, which includes a markup rate of 60% based on the selling price.
a. Find the markup.
b. Find the cost.
Answer: a. $21
b. $14
Step-by-step explanation:
Selling price of desk organizer = $35
Markup rate = 60%
a. The markup will be:
= Markup rate × Selling price
= 60% × $35
= 0.6 × $35
= $21
Therefore, the markup is $21
b. The cost will then be:
Cost price = Selling price - Markup
= $35 - $21
= $14
Based on the areas of the squares, determine whether the triangle shown is a right triangle.
The given triangle is not a right-angle triangle as the sides don't form a Pythagorean triplet.
What is the Pythagoras theorem?Pythagorean theorem, the well-known geometric theorem that the sum of the squares on the le right triangle is equal to the square on the hypotenuse (the Pythagoras the right angle)—or, in familiar algebraic notation, a² + b² = c².
Given her: Three squares whose sides form one Pythagoreans of a triangle .
Now a²=58
b²=10
b=√10
c²=64
c=8
Clearly √10<√58<8
Thus c must be the hypotenuse of the triangle.
Using Pythagoras' theorem we get
√10²+√58²=68≠64
Hence, The given triangle is not a right angle triangle as the sides don't form a Pythagorean triplet.
Learn more about the Pythagoras theorem here:
https://brainly.com/question/343682
#SPJ2
m(x) = x2 + 4x
n(x) = x
(mn)(x) =
x2 + 4x(x)
(x2 +4x)(x)
Answer:
Answer:
1. B. (x^2 + 4x)(x)
2. A. (x^3+4x^2)
3. 9
4. 0
5. 1
Step-by-step explanation:
Three rectangular prisms each have a height of 1 cm.
. Prism A has a base that is 1 cm by 11 cm
* Prism B has a base that is 2 cm by 7 cm SA +V
Prism C has a base that is 3 cm by 5 cm.
1. Find the surface area and volume of each prism. Use the dot paper to draw the prisms, if needed.
Answer:
A: SA = 46 cm^2; V = 11 cm^3
B: SA = 46 cm^2; V = 14 cm^3
C: SA = 46 cm^2; V = 15 cm^3
Step-by-step explanation:
SA = 2B + PH = 2LW + PH
where SA = total surface area,
B = area of a base
P = perimeter of the base
H = height of the prism
L = length of the base
W = width of the base
V = LWH
Prism A:
SA = 2(11 cm)(1 cm) + 2(11 cm + 1 cm)(1 cm)
SA = 46 cm^2
V = (11 cm)(1 cm)(1 cm) = 11 cm^3
Prism B:
SA = 2(7 cm)(2 cm) + 2(7 cm + 2 cm)(1 cm)
SA = 46 cm^2
V = (7 cm)(2 cm)(1 cm) = 14 cm^3
Prism C:
SA = 2(5 cm)(3 cm) + 2(5 cm + 3 cm)(1 cm)
SA = 46 cm^2
V = (5 cm)(3 cm)(1 cm) = 15 cm^3
please help step by step, please
9514 1404 393
Answer:
title: 300%payday: 650%check cashing: 214%Step-by-step explanation:
The formula for simple interest is ...
I = Prt
where P is the principal amount loaned, r is the annual rate, and t is the time in years. Solving for interest rate, we get ...
r = I/(Pt)
We assume 12 months or 52 weeks in a year.
__
Car title loan
r = 125/(500×1/12) = 3 × 100% = 300%
The APR is 300%.
__
Payday loan
r = 125/(500×2/52) = 6.5 × 100% = 650%
The APR is 650%.
__
Check cashing
r = 19.66/(478.41×1/52) ≈ 2.1369 × 100% ≈ 214%
The APR is about 214%.
A cereal box is 12 cm tall.the area of a base is 7cm square.what is the volume
The volume = Base × height = 12× 7 = 84 Cm³
Answer:
84
Step-by-step explanation:
How to solve the inequality 8x + 10 ≤ 60
Answer:
x ≤ 6.25
Step-by-step explanation:
8x + 10 ≤ 60
Subtract 10 from both sides
8x ≤ 50
Divide both side by 8
x ≤ 6.25
If my answer is incorrect, pls correct me!
If you like my answer and explanation, mark me as brainliest!
-Chetan K
My rule is: y = 1/3x + 11/15
Find y, if x=1
Find y, if x=6
how do you write .00057 1/2 in words
Answer:
Step-by-step explanation:
visit the following;
https://sciencing.com/write-fractions-words-4443134.html
4
)
5 + 15x
42x + 4
A) -2
C) -10
B) 3
D) -8
Answer:
D
Step-by-step explanation:
D
Workplace accidents are categorized in three groups: minor, moderate, and severe. The probability that a given accident is minor is 0.5, that it is moderate is 0.4, and that it is severe is 0.1. Two accidents occur independently in one month. Calculate the probability that neither accident is severe and at most one is moderate.
Answer: The probability when neither of the accidents is severe and at most one is moderate is 0.65
Step-by-step explanation:
Given values:
Probability when the accident is minor = 0.5
Probability when the accident is moderate = 0.4
Probability when the accident is severe = 0.1
As two accidents are occurring independently and we need to calculate the probability of an event that neither accident is severe and at most one is moderate.
So, the equation for the probability becomes:
[tex]=\text{P[moderate, minor]}+\text{P[minor, moderate]}+\text{P[minor, minor]}\\\\= (\text{P[moderate]}\times \text{P[minor]}) + (\text{P[minor]}\times \text{P[moderate]}) + (\text{P[minor]}\times \text{P[minor]})[/tex]
Putting values in above equation, we get:
[tex]=[(0.40)\times (0.5)] + [(0.5)\times (0.4)] +[((0.5)\times (0.5)]\\\\= 0.65[/tex]
Hence, the probability when neither of the accidents is severe and at most one is moderate is 0.65
Two and three fifths plus one and three fifths
Answer:
2 3 + 1 3 = 3/5 + 3/5 = 1 1/5 + 2+1 = 3 + 1 !/5 = 4 1/5
5 5
Step-by-step explanation: The Slashes mean The number bellow
Please make this answer Brainlist...
In the context of communication, which of the following statements is true of people from high-context cultures? a) They prefer the use of the direct, get-down-to-business conversation style.
b) They focus on the use of precisely written legal contracts.
c) They give importance to the position, age, and seniority of parties in a conversation.
d) They focus on the actual spoken and written word.
Find the missing coordinates.
Answer:
1) (2, 1)
2) (2, -2)
3) (-1, -1)
4) (-5, -5)
Answer:
1. Pairs A(2, 5), B(6, 5), and C(6, 1)
missing coordinate is (2,1)
2. Pairs A(2, 3), B(7, 3), and C(7, -2)
missing coordinate is (2,-2)
3. Pairs A(-5, -1), B(1, -1), and C(1, -5)
missing coordinate is (-5,-5)
4. Pairs A(-1, 4), B(7, 4), and C(7, -1)
missing coordinate is (-1,-1)
Hope this is correct!! Have a nice day!!<3
if a student is selected at random, find the probability that the student is 14 year old
Answer:
If the student is selected at random the answer is if you put 14 years apart of the student selected at random means the answer are not apart.
Step-by-step explanation:
14 years selected the problem is that 14-9 is more then 9 and u add that up to get the right equation for the 14 years apart
According to a government study, among adults in the 25- to 34-year age group, the mean amount spent per year on reading and entertainment is $2,020. Assume that the distribution of the amounts spent follows the normal distribution with a standard deviation of $456. Use Appendix B.3. (Round your z-score computation to 2 decimal places and final answers to 2 decimal places.) What percent of the adults spend more than $2,600 per year on reading and entertainment
Answer:
z = x-u/s
z = 2600 - 2020/456
z = 1.27
= .897
1-.898 = .102
z > 1.27 = 10.2%
The percentage of adults spending more than $2,600 per year on reading and entertainment is 10.2%.
What is the z-score?The standard score in statistics is the number of standard deviations that a raw score deviates from or exceeds the mean of the phenomenon being observed or assessed. Standard scores are positive for raw scores above the mean and negative for raw scores below the mean.
Given that according to a government study, among adults in the 25- to 34-year age group, the mean amount spent per year on reading and entertainment is $2,020. Assume that the distribution of the amounts spent follows the normal distribution with a standard deviation of $456.
The percentage will be calculated as,
z = x-u/s
z = 2600 - (2020/456)
z = 1.27
The value of z=1.27 in the table is 0.897. The percentage will be calculated as,
P = 1-.898 = .102
z > 1.27 = 10.2%
Therefore, the percentage of adults spending more than $2,600 per year on reading and entertainment is 10.2%.
To know more about z-score follow
https://brainly.com/question/25638875
#SPJ5