A box is dragged across 20 meters with a force of 60 Newtons, which are kg*m/s^2

Answers

Answer 1

Answer:

Mass= 6kg

Acceleration= 10 ms^-2

Work done = 1200Nm

Step-by-step explanation:

kg*m/s^2 represent the force.

The kg represent the mass

The m/s^2 represent the acceleration

The acceleration here will be due to gravity force= 10 ms^-2

Then the mass= 60/10

Mass= 6 kg

The force = 60 Newton

Distance covered in the direction of the the force= 20 Meters

The work done in the direction of the force= force* distance

The work done in the direction of the force=60*20

The work done in the direction of the force=1200 Nm

Answer 2

Answer: 20 • 60

Step-by-step explanation:


Related Questions

Find the Correlation of the following two variables X: 2, 3, 5, 6 Y: 1, 2, 4, 5

Answers

Answer:

The correlation of X and Y is 1.006

Step-by-step explanation:

Given

X: 2, 3, 5, 6

Y: 1, 2, 4, 5

n = 4

Required

Determine the correlation of x and y

Start by calculating the mean of x and y

For x

[tex]M_x = \frac{\sum x}{n}[/tex]

[tex]M_x = \frac{2 + 3+5+6}{4}[/tex]

[tex]M_x = \frac{16}{4}[/tex]

[tex]M_x = 4[/tex]

For y

[tex]M_y = \frac{\sum y}{n}[/tex]

[tex]M_y = \frac{1+2+4+5}{4}[/tex]

[tex]M_y = \frac{12}{4}[/tex]

[tex]M_y = 3[/tex]

Next, we determine the standard deviation of both

[tex]S = \sqrt{\frac{\sum (x - Mean)^2}{n - 1}}[/tex]

For x

[tex]S_x = \sqrt{\frac{\sum (x_i - Mx)^2}{n -1}}[/tex]

[tex]S_x = \sqrt{\frac{(2-4)^2 + (3-4)^2 + (5-4)^2 + (6-4)^2}{4 - 1}}[/tex]

[tex]S_x = \sqrt{\frac{-2^2 + (-1^2) + 1^2 + 2^2}{3}}[/tex]

[tex]S_x = \sqrt{\frac{4 + 1 + 1 + 4}{3}}[/tex]

[tex]S_x = \sqrt{\frac{10}{3}}[/tex]

[tex]S_x = \sqrt{3.33}[/tex]

[tex]S_x = 1.82[/tex]

For y

[tex]S_y = \sqrt{\frac{\sum (y_i - My)^2}{n - 1}}[/tex]

[tex]S_y = \sqrt{\frac{(1-3)^2 + (2-3)^2 + (4-3)^2 + (5-3)^2}{4 - 1}}[/tex]

[tex]S_y = \sqrt{\frac{-2^2 + (-1^2) + 1^2 + 2^2}{3}}[/tex]

[tex]S_y = \sqrt{\frac{4 + 1 + 1 + 4}{3}}[/tex]

[tex]S_y = \sqrt{\frac{10}{3}}[/tex]

[tex]S_y = \sqrt{3.33}[/tex]

[tex]S_y = 1.82[/tex]

Find the N pairs as [tex](x-M_x)*(y-M_y)[/tex]

[tex](2 - 4)(1 - 3) = (-2)(-2) = 4[/tex]

[tex](3 - 4)(2 - 3) = (-1)(-1) = 1[/tex]

[tex](5 - 4)(4 - 3) = (1)(1) = 1[/tex]

[tex](6-4)(5-3) = (2)(2) = 4[/tex]

Add up these results;

[tex]N = 4 + 1 + 1 + 4[/tex]

[tex]N = 10[/tex]

Next; Evaluate the following

[tex]\frac{N}{S_x * S_y} * \frac{1}{n-1}[/tex]

[tex]\frac{10}{1.82* 1.82} * \frac{1}{4-1}[/tex]

[tex]\frac{10}{3.3124} * \frac{1}{3}[/tex]

[tex]\frac{10}{9.9372}[/tex]

[tex]1.006[/tex]

Hence, The correlation of X and Y is 1.006


A box of chocolates contains five milk chocolates, three dark chocolates, and four white chocolates. You randomly select and eat three chocolates. The first piece is milk
chocolate, the second is white chocolate, and the third is milk chocolate. Find the probability of this occuring.

Answers

Answer:

60/220

Step-by-step explanation:

we use combination,

[tex] (\frac{5}{1} ) \times ( \frac{4}{1} ) \times ( \frac{3}{1} )[/tex]

[tex]5 \times 4 \times 3 = 60[/tex]

then, all divided by,

[tex] (\frac{12}{3}) = 220 [/tex]

[tex]60 \div 220[/tex]

The probability of the first piece being milk chocolate, the second being white chocolate, and the third being milk chocolate is 0.06.

What is Probability?

The probability helps us to know the chances of an event occurring.

[tex]\rm Probability=\dfrac{Desired\ Outcomes}{Total\ Number\ of\ outcomes\ possible}[/tex]

The sample contains five milk chocolates, three dark chocolates, and four white chocolates. Therefore, the probability that the first piece is milk chocolate is

[tex]\rm Probability=\dfrac{\text{Number of Milk choclates}}{\text{Total number of choclates}}[/tex]

[tex]\rm Probability=\dfrac{5}{12}[/tex]

Now, since the chocolate is been eaten the sample size will reduce from 12 chocolates in total to 11 chocolates in total (four milk chocolates, three dark chocolates, and four white chocolates). Therefore, the probability of the second piece being white chocolate is

[tex]\rm Probability=\dfrac{\text{Number of White choclates}}{\text{Total number of choclates}}[/tex]

[tex]\rm Probability=\dfrac{4}{11}[/tex]

Now, as the chocolate is been eaten the sample size will reduce from 11 chocolates in total to 10 chocolates in total (four milk chocolates, three dark chocolates, and three white chocolates). Therefore, the probability of the third piece being milk chocolate is

[tex]\rm Probability=\dfrac{\text{Number of Milk choclates}}{\text{Total number of choclates}}[/tex]

[tex]\rm Probability=\dfrac{4}{10}[/tex]

Thus, the probability of the first piece being milk chocolate, the second being white chocolate, and the third being milk chocolate is

[tex]\rm Probability=\dfrac{5}{12}\times \dfrac{4}{11} \times \dfrac{4}{10} = \dfrac{80}{1320} = 0.06[/tex]

Hence, the probability of the first piece being milk chocolate, the second being white chocolate, and the third being milk chocolate is 0.06.

Learn more about Probability:

https://brainly.com/question/795909

Which of the following is an arithmetic sequence? A.-2, 4, -6, 8, ... B.2, 4, 8, 16, ... C.-8, -6, -4, -2, ...

Answers

Answer:

C. -8, -6, -4, -2, ...

Step-by-step explanation:

An arithmetic sequence increases by the same amount every time through addition or subtraction. There is a common difference.

A: -2, 4, -6, 8, ... If there were a common difference, the numbers would not switch between being positive and back to negative. The numbers would either keep going positive or keep going negative.

B: 2, 4, 8, 16, ... The common difference between 16 and 8 is 16 - 8 = 8. The difference between 8 and 4 is 8 - 4 = 4. Since the difference changes between the numbers, this is not an arithmetic sequence.

C. -8, -6, -4, -2, ... The common difference between -2 and -4 is -2 - (-4) = -2 + 4 = 2. The difference between -4 and -6 is -4 - (-6) = -4 + 6 = 2. The difference between -6 and -8 is -6 - (-8) = -6 + 8 = 2. Since the common difference is always two, this is an arithmetic sequence.

Hope this helps!

Carolyn and Paul are playing a game starting with a list of the integers $1$ to $n.$ The rules of the game are: $\bullet$ Carolyn always has the first turn. $\bullet$ Carolyn and Paul alternate turns. $\bullet$ On each of her turns, Carolyn must remove one number from the list such that this number has at least one positive divisor other than itself remaining in the list. $\bullet$ On each of his turns, Paul must remove from the list all of the positive divisors of the number that Carolyn has just removed. $\bullet$ If Carolyn cannot remove any more numbers, then Paul removes the rest of the numbers. For example, if $n=6,$ a possible sequence of moves is shown in this chart: \begin{tabular}{|c|c|c|} \hline Player & Removed \# & \# remaining \\ \hline Carolyn & 4 & 1, 2, 3, 5, 6 \\ \hline Paul & 1, 2 & 3, 5, 6 \\ \hline Carolyn & 6 & 3, 5 \\ \hline Paul & 3 & 5 \\ \hline Carolyn & None & 5 \\ \hline Paul & 5 & None \\ \hline \end{tabular} Note that Carolyn can't remove $3$ or $5$ on her second turn, and can't remove any number on her third turn. In this example, the sum of the numbers removed by Carolyn is $4+6=10$ and the sum of the numbers removed by Paul is $1+2+3+5=11.$ Suppose that $n=6$ and Carolyn removes the integer $2$ on her first turn. Determine the sum of the numbers that Carolyn removes.

Answers

Answer:

The sum of the numbers that Carolyn removes is 5.

Step-by-step explanation:

The provided instruction for the game are:

Carolyn always has the first turn. Carolyn and Paul alternate turns.On each of her turns, Carolyn must remove one number from the list such that this number has at least one positive divisor other than itself remaining in the list.On each of his turns, Paul must remove from the list all of the positive divisors of the number that Carolyn has just removed.If Carolyn cannot remove any more numbers, then Paul removes the rest of the numbers.

The value of n is supposed as 6.

And it is also provided that Carolyn removes the integer 2 on her first turn.

The table displaying the outcomes of the game are as follows:

Player          Removed             Remaining

Carolyn                2                    1, 3, 4, 5, 6

 Paul                    1                       3, 4, 5, 6

Carolyn                3                         4, 5, 6

 Paul                    6                           4, 5

Carolyn             None                        4, 5

 Paul                  4, 5                        None

The sum of the numbers that Carolyn removes is:

S = 2 + 3 = 5

Thus, the sum of the numbers that Carolyn removes is 5.

I believe the answer is 8, but I am not sure.

22. f(x) is stretched horizontally by a factor of 2 and reflected across the x-axis. Which choice shows the correct representation of f(x) after these transformations?
Options:

A. –f(1/2x)

B. f(–2x)

C. –f(2x)

D. f(–1/2x)

Answers

Answer:

A. -f(1/2 x)

Step-by-step explanation:

Reflextion about the x-axis is

f(x) -> -f(x)

and horizontal dilation is

f(x) -> f(-x/b) where b is the factor of dilation.

so the proper answwer is

A. -f(1/2 x)

What is the solution to the following system of equations? 3x-2y=12 6x - 4y = 24

Answers

Answer:

D question,somewhat confusing, itsit's like simultaneous equation,but values are different

Answer:

x = 4 + 2y/3

Step-by-step explanation:

How many vehicles have been driven less than 200 thousand kilometers?

Answers

The number of vehicles that drove less than 200, 000 km is 12 vehicles

How to find the vehicle that drove less than 200 thousand km?

The bar char represents the distance in thousand of km vehicles drove.

3 vehicle drove for 50 thousand kilometres.

4  vehicle drove for 100 thousand kilometres.

5  vehicle drove for 150 thousand kilometres.

Therefore, the total vehicle that drove for less than 200 thousand kilometres is as follows:

total vehicle that drove for less than 200, thousand km = 3 + 4 + 5 = 12 vehicles

learn more on linear bar chart here: https://brainly.com/question/3101280

#SPJ1

Answer:

2

Step-by-step explanation:

The area of the circle x² + y2 - 6x-4y +9 = 0 is​

Answers

Answer:

Your answer is here.Enjoy dude

Answer:

12.56 unit²

Step-by-step explanation:

Given:x² + y² - 6x - 4y + 9 = 0To find:The area of circleSolution:

The form of the circle is:

(x- h)² + (y-k)² = r²

Let's bring the given to the form of a circle as above:

x² + y² - 6x - 4y + 9 = 0x² - 6x  + y²-  4y + 9 = 0        ⇒ combining like terms and completing squarex² - 6x + 9 + y²- 4y + 4 = 4    ⇒ adding 4 to both sides(x-3)² + (y - 2)² = 2²                ⇒ got the form of this circle

As per the form, we got r² = 2², so the radius of circle is 2 units.

The area of circle:

A= πr² = 3.14×2² = 12.56 unit²

Brian needs to paint a logo using two right triangles. The dimensions of the logo are shown below. What is the difference between the area of the large triangle and the area of the small triangle? ​

Answers

Answer:

7.5 cm²

Step-by-step explanation:

Dimensions of the large ∆:

[tex] base (b) = 3cm, height (h) = 9cm [/tex]

[tex] Area = 0.5*b*h = 0.5*3*9 = 13.5 cm^2 [/tex]

Dimensions of the small ∆:

[tex] base (b) = 2cm, height (h) = 6cm [/tex]

[tex] Area = 0.5*b*h = 0.5*2*6 = 6 cm^2 [/tex]

Difference between the area of the large and the small ∆ = 13.5 - 6 = 7.5 cm²

determine each unknown addend ___ + 41=-18

Answers

Answer:

-59

Step-by-step explanation:

x+41=-18

x= -18-41

x = -59

What is the domain of f?

Answers

Answer:

-5 ≤x ≤6

Step-by-step explanation:

The domain is the values that x can take

X goes from -5 and includes -5 to x =6 and includes 6

-5 ≤x ≤6

Answer:

See attached!

Step-by-step explanation:

A coin is tossed 4 times. Let E1 be the event "the first toss shows heads" and E2 the event "the second toss shows heads" and so on. That is, Ei is the event that the "i"th toss shows up heads.
A. Are the events e e and f f independent?
B. Find the probability of showing heads on both toss.

Answers

Answer:

The events are independent.

The probability of showing heads on both toss is equal to 1/2

Step-by-step explanation:

The sample space for this experiment consists of 2⁴= 16 sample points, as each toss can result in two outcomes we assume that the events are equally likely.

Two events are independent in the sample space if the probability of one event occurs, is not affected by whether the other event has or has not occurred.

In general the k events are defined to be mutually independent if and only if the probability of the intersection of  any 2,3,--------, k  equals the product of their respective probabilities.

P (A∩B) = P(A). P(B)

P (A∩B)   = 1/2. 1/2= 1/4

                                                                  Head          Tail

 P(E1)= 1/2  ----------          Coin 1               H,H              T,H

                                                                1/4                  1/4

  P(E2)= 1/2  ---------------  Coin 2             H, H               H,T

                                                                      1/4           1/4

So the events are independent.

The probability of showing heads on both toss is equal to 1/2

The sample space for this experiment consists of 2⁴= 16 sample points, out of which eight will have heads on both toss.

Or in other words ( 1/4* 1/4) = 2/4 = 1/2

Find the fourth roots of 16(cos 200° + i sin 200°).

Answers

Answer:

See below.

Step-by-step explanation:

To find roots of an equation, we use this formula:

[tex]z^{\frac{1}{n}}=r^{\frac{1}{n}}(cos(\frac{\theta}{n}+\frac{2k\pi}{n} )+\mathfrak{i}(sin(\frac{\theta}{n}+\frac{2k\pi}{n})),[/tex] where k = 0, 1, 2, 3... (n = root; equal to n - 1; dependent on the amount of roots needed - 0 is included).

In this case, n = 4.

Therefore, we adjust the polar equation we are given and modify it to be solved for the roots.

Part 2: Solving for root #1

To solve for root #1, make k = 0 and substitute all values into the equation. On the second step, convert the measure in degrees to the measure in radians by multiplying the degrees measurement by [tex]\frac{\pi}{180}[/tex] and simplify.

[tex]z^{\frac{1}{4}}=16^{\frac{1}{4}}(cos(\frac{200}{4}+\frac{2(0)\pi}{4}))+\mathfrak{i}(sin(\frac{200}{4}+\frac{2(0)\pi}{4}))[/tex]

[tex]z^{\frac{1}{4}}=2(cos(\frac{5\pi}{18}+\frac{\pi}{4}))+\mathfrak{i}(sin(\frac{5\pi}{18}+\frac{\pi}{4}))[/tex]

[tex]z^{\frac{1}{4}} = 2(sin(\frac{5\pi}{18}+\frac{\pi}{4}))+\mathfrak{i}(sin(\frac{5\pi}{18}+\frac{\pi}{4}))[/tex]

Root #1:

[tex]\large\boxed{z^\frac{1}{4}=2(cos(\frac{19\pi}{36}))+\mathfrack{i}(sin(\frac{19\pi}{38}))}[/tex]

Part 3: Solving for root #2

To solve for root #2, follow the same simplifying steps above but change k  to k = 1.

[tex]z^{\frac{1}{4}}=16^{\frac{1}{4}}(cos(\frac{200}{4}+\frac{2(1)\pi}{4}))+\mathfrak{i}(sin(\frac{200}{4}+\frac{2(1)\pi}{4}))[/tex]

[tex]z^{\frac{1}{4}}=2(cos(\frac{5\pi}{18}+\frac{2\pi}{4}))+\mathfrak{i}(sin(\frac{5\pi}{18}+\frac{2\pi}{4}))\\[/tex]

[tex]z^{\frac{1}{4}}=2(cos(\frac{5\pi}{18}+\frac{\pi}{2}))+\mathfrak{i}(sin(\frac{5\pi}{18}+\frac{\pi}{2}))\\[/tex]

Root #2:

[tex]\large\boxed{z^{\frac{1}{4}}=2(cos(\frac{7\pi}{9}))+\mathfrak{i}(sin(\frac{7\pi}{9}))}[/tex]

Part 4: Solving for root #3

To solve for root #3, follow the same simplifying steps above but change k to k = 2.

[tex]z^{\frac{1}{4}}=16^{\frac{1}{4}}(cos(\frac{200}{4}+\frac{2(2)\pi}{4}))+\mathfrak{i}(sin(\frac{200}{4}+\frac{2(2)\pi}{4}))[/tex]

[tex]z^{\frac{1}{4}}=2(cos(\frac{5\pi}{18}+\frac{4\pi}{4}))+\mathfrak{i}(sin(\frac{5\pi}{18}+\frac{4\pi}{4}))\\[/tex]

[tex]z^{\frac{1}{4}}=2(cos(\frac{5\pi}{18}+\pi))+\mathfrak{i}(sin(\frac{5\pi}{18}+\pi))\\[/tex]

Root #3:

[tex]\large\boxed{z^{\frac{1}{4}}=2(cos(\frac{23\pi}{18}))+\mathfrak{i}(sin(\frac{23\pi}{18}))}[/tex]

Part 4: Solving for root #4

To solve for root #4, follow the same simplifying steps above but change k to k = 3.

[tex]z^{\frac{1}{4}}=16^{\frac{1}{4}}(cos(\frac{200}{4}+\frac{2(3)\pi}{4}))+\mathfrak{i}(sin(\frac{200}{4}+\frac{2(3)\pi}{4}))[/tex]

[tex]z^{\frac{1}{4}}=2(cos(\frac{5\pi}{18}+\frac{6\pi}{4}))+\mathfrak{i}(sin(\frac{5\pi}{18}+\frac{6\pi}{4}))\\[/tex]

[tex]z^{\frac{1}{4}}=2(cos(\frac{5\pi}{18}+\frac{3\pi}{2}))+\mathfrak{i}(sin(\frac{5\pi}{18}+\frac{3\pi}{2}))\\[/tex]

Root #4:

[tex]\large\boxed{z^{\frac{1}{4}}=2(cos(\frac{16\pi}{9}))+\mathfrak{i}(sin(\frac{16\pi}{19}))}[/tex]

The fourth roots of 16(cos 200° + i(sin 200°) are listed above.

The Triangle shown below has an area of 12 Units^2.
Find X
10
6

Answers

Answer:

4

Step-by-step explanation:

I got it right on Khan

The value of x is 4.

What is Triangle?

A triangle is a polygon in two dimensional geometry. I has three sides and three angles along with three vertices.

Area of a triangle = [tex]\frac{1}{2}[/tex] × b × h

where b is the base of the triangle and h is the length of height of the triangle.

The given triangle is an obtuse triangle which has an angle equal to greater than 90 degrees. So the height of the triangle is found by drawing a perpendicular line from the base to the opposite vertex.

Here, height = x and base length = 6

Area = 12 units²

[tex]\frac{1}{2}[/tex] × 6 × h = 12

6 × h = 12 × 2

6 × h = 24

h = 24/6

h = 4 units.

Hence the length of the height which is x is 4 units.

To learn more about Triangles, click on the link given below :

https://brainly.com/question/2773823

#SPJ2

How do i do this equation
-3(-2y-4)-5y-2=

Answers

Answer:

combined like terms and then follow  the order of operations.

Step-by-step explanation:

Combine like terms and then follow order of operations

A cabinet door has a perimeter of 76 inches. Its area is 357 square inches. What are the dimensions of the door?

Answers

Answer:

  17 by 21 inches

Step-by-step explanation:

The perimeter is twice the sum of the dimensions, and the area is their product, so you have ...

  L + W = 38

  LW = 357

__

Solution:

  W(38 -W) = 357 . . . . . substitute for L

  -(W^2 -76W) = 357 . . expand on the left

  -(W^2 -38 +19^2) = 357 -19^2 . . . . complete the square

  (W -19)^2 = 4 . . . . . . . write as a square

  W -19 = ±√4 = ±2 . . . take the square root; next, add 19

  W = 19 ±2 = {17, 21} . . . . if width is one of these, length is the other

The dimensions are 17 by 21 inches.

a data set includes 110 body temperatures of healthy adult humans having a mean of 98.1F and a standard deviation of 0.64F. Construct a 99% confidence interval estimate of the mean body temperature of all healthy humans

Answers

Answer:

The 99%  confidence interval is  [tex]97.94 < \mu < 98.26[/tex]

Step-by-step explanation:

From the question we are told that

    The sample size is  n =  110

     The  sample mean is  [tex]\= x = 98.1 \ F[/tex]

       The standard deviation is  [tex]\sigma = 0.64 \ F[/tex]

Given that the confidence level is  99% the level of significance i mathematically evaluated as

                  [tex]\alpha = 100 - 99[/tex]

                  [tex]\alpha = 1\%[/tex]

                  [tex]\alpha = 0.01[/tex]

Next we obtain the critical value of  [tex]\frac{\alpha }{2}[/tex] from the normal distribution, the values is  

          [tex]Z_{\frac{\alpha }{2} } = Z_{\frac{0.01 }{2} } = 2.58[/tex]

Generally the margin of error is mathematically represented as

           [tex]E = Z_{\frac{\alpha }{2} } * \frac{\sigma}{\sqrt{n} }[/tex]

substituting values

          [tex]E = 2.58 * \frac{ 0.64}{\sqrt{110} }[/tex]

          [tex]E = 0.1574[/tex]

Generally the  99% confidence interval  is mathematically represented as

               [tex]\= x - E < \mu < \= x + E[/tex]

substituting values

             [tex]98.1 - 0.1574 < \mu < 98.1 + 0.1574[/tex]

             [tex]97.94 < \mu < 98.26[/tex]

                 

         

Answer:

Step-by-step explanation:

I need help will rate you branliest

Answers

Answer:

[tex] {x}^{2} + 5x + 10[/tex]

Answer:

[tex]\large \boxed{x^2 +5x+10}[/tex]

Step-by-step explanation:

A polynomial is an expression that has variables, coefficients, and constants.

An example of a polynomial can be x² - 6x + 2.

1
1 point
mZABD = 79
D
C
V
(5x + 4)
(8x - 3)
В B.
A
x= type your answer...
2
1 point

Answers

Answer:

x = 6

Step-by-step explanation:

∠ DBC + ∠ ABC = ∠ ABD , substitute values

5x - 4 + 8x - 3 = 79

13x + 1 = 79 ( subtract 1 from both sides )

13x = 78 ( divide both sides by 13 )

x = 6

Stock prices used to be quoted using eighths of a dollar. Find the total price of the transaction. 400 shares of national semi at 135 1/2

Answers

Answer:

The value is [tex]T = \$54200[/tex]

Step-by-step explanation:

From the question we are told that

      The  number of shares is  n  =  400

      The rate  of each share is  [tex]k = 135\frac{1}{2} = 135.5[/tex]

Generally the total price is mathematically represented as

     [tex]T = 400 * 135.5[/tex]

      [tex]T = \$54200[/tex]

Simplify using calculator.. I'm not sure if i am putting it in the calculator right

Answers

Answer: D) 64

You would type in

32^(6/5)

Or you could type in

32^(1.2)

since 6/5 = 1.2

Either way, the final result is 64

A roll of steel is manufactured on a processing line. The anticipated number of defects in a 10-foot segment of this roll is two. What is the probability of no defects in 10 feet of steel

Answers

Answer:

the probability of no defects in 10 feet of steel = 0.1353

Step-by-step explanation:

GIven that:

A roll of steel is manufactured on a processing line. The anticipated number of defects in a 10-foot segment of this roll is two.

Let consider β to be the average value for defecting

So;

β = 2

Assuming Y to be the random variable which signifies the anticipated number of defects in a 10-foot segment of this roll.

Thus, y follows a poisson distribution as number of defect is infinite with the average value of β = 2

i.e

[tex]Y \sim P( \beta = 2)[/tex]

the probability mass function can be represented as follows:

[tex]\mathtt{P(y) = \dfrac{e^{- \beta} \ \beta^ \ y}{y!}}[/tex]

where;

y =  0,1,2,3 ...

Hence,  the probability of no defects in 10 feet of steel

y = 0

[tex]\mathtt{P(y =0) = \dfrac{e^{- 2} \ 2^ \ 0}{0!}}[/tex]

[tex]\mathtt{P(y =0) = \dfrac{0.1353 \times 1}{1}}[/tex]

P(y =0) = 0.1353

Which point is located at (5, –2)?

Answers

Answer: Point D

Explanation:

The origin is the center of the grid. This is where the x and y axis meet. The location of this point is (0,0).

Start at the origin and move 5 places to the right. Note how the x coordinate is 5 which tells us how to move left/right. Positive x values mean we go right.

Then we go down 2 spots to arrive at point D. We move down because the y coordinate is negative.

You could also start at (0,0) and go down 2 first, then to the right 5 to also arrive at point D. Convention usually has x going first as (x,y) has x listed first.

Answer:

Point D is located at (5, -2)

Step-by-step explanation:

The coordinates are in the form of (x,y) so that means the point has the x value of 5 and the y value of -2

which expression shows a way to find 2813×7

Answers

Answer:

19,691

Step-by-step explanation:

Answer:

2813 x 7 = 19691

Hope this helps!

What does "C" represent and how do you evaluate this?

Answers

It represents 'combinations'.

It means that you have 9 items, and you want to count the combinations of 7 items.

The answer is:
9! / ((9-7)! * (7!))
= 9! / (2! * 7!)
= 9*8/2
= 36

[tex]_9C_7=\dfrac{9!}{7!2!}=\dfrac{8\cdot9}{2}=36[/tex]

The probability density function for random variable W is given as follows: Let x be the 100pth percentile of W and y be the 100(1 – p)th percentile of W, where 0

Answers

Answer:

Step-by-step explanation:

A probability density function (pdf) is used for continuous random variables. That is why p is between 0 and 1 (the two extremes - 0 and 1 - exclusive).

X = 100pth percentile of W

Y = 100(1-p)th percentile of W

Expressing Y as a function of X;

Y = 100(1-p)th = 100th - 100pth

Recall that 100pth is same as X, so substitute;

Y = 100th - X

where 100th = hundredth percentile of W and X = 100pth percentile of W  

Explain how to perform a​ two-sample z-test for the difference between two population means using independent samples with known.

Answers

Answer:

The steps 1-7 have been explained

Step-by-step explanation:

The steps are;

1) We will verify that the population standard deviations are known and that the population is normally distributed which means the sample size must be a minimum of 30.

2) We will state the null and alternative hypothesis

3) We will determine the critical values from the relevant tables

4) From the critical values gotten, we will determine it's corresponding region where it can be rejected.

5)We will calculate the value of the test statistic from the formula;

z = [(x1' - x2') - (μ1 - μ2)]/√[((σ1)²/n1) + ((σ2)²/n2)]

6) If the value of the test statistic gotten from step 5 above falls in the region of rejection noted in step 4,then we will reject the null hypothesis

7) After rejection of the null hypothesis, we will now give a decision/conclusion on the claim.

Word phrase for algebraic expression 15-1.5/d

Answers

Answer: 1.5 less than 15 is divided by a number d.

Step-by-step explanation:

The equation below is written in words. x plus ten equals two. What's the value of x?

Answers

Answer:

x+10 =2

x = -8

Step-by-step explanation:

plus means add

x+10 =2

Subtract 10 from each side

x+10-10 =2-10

x = -8

f as a function of x is equal to the square root of quantity 4 x plus 6, g as a function of x is equal to the square root of quantity 4 x minus 6 Find (f + g)(x). x times the square root of 8 4x square root of 8 times x The square root of quantity 4 times x plus 6 plus the square root of quantity 4 times x minus 6

Answers

Answer:

Last one

Step-by-step explanation:

The function f is:

● f (x)= √(4x+6)

The function g is:

● g(x) = √(4x-6)

Add them together:

● f+g (x)= √(4x+6 )+ √(4x-6)

Answer:

[tex]\large \boxed{{\sqrt{4x+6} + \sqrt{4x-6} }}[/tex]

Step-by-step explanation:

[tex]f(x)=\sqrt{4x+6}[/tex]

[tex]g(x)=\sqrt{4x-6}[/tex]

[tex](f+g)(x)[/tex]

[tex]f(x)+g(x)[/tex]

Add both functions.

[tex](\sqrt{4x+6} )+ (\sqrt{4x-6} )[/tex]

Other Questions
(x+3)(x-5)=(x+3)(x5)= Name brand drugs are able to continue capitalizing on their market power even after generic drugs enter the market because (i) almost all people fear the generic drug companies are devoting too few resources to research and development. (ii) some people fear that generic drugs are inferior. (iii) some people are loyal to the name brand. Group of answer choices Which property of equality was used to solve this equation? x 5 = -14 x 5 + 5 = -14 + 5 x = -9 A. addition property of equality B. subtraction property of equality C. multiplication property of equality D. division property of equality Need Help Please Show Work what is the spainsh alphlipet What is the slope of the line that passes through the points (-10, 8) and(-15, 7)? Write your answer in simplest form. Which governing principles are identified in the Constitution? write the slope- intercept form of the equation for the liney=-8/7x-3/2y=7/8x-3/2y=-7/8x-3/2y=-3/2x+7/8 Many gluten-free food options are found on the store shelves in the United States, but they are scarcely available in international markets. Given the increasing awareness of a healthy lifestyle, such products satisfy an unmet need. Therefore, a product such as gluten-free food in international markets:_________. Dennis throws a volleyball up in the air. It reaches its maximum height 1.1\, \text s1.1s1, point, 1, start text, s, end text later. We can ignore air resistance. What was the volleyball's velocity at the moment it was tossed into the air? Water pressurized to 3.5 x 105 Pa is flowing at 5.0 m/s in a horizontal pipe which contracts to 1/3 its former area. What are the pressure and velocity of the water after the contraction A saturated sodium carbonate solution at 0C contains 7.1 g of dissolved sodium carbonate per 100. mL of solution. The solubility product constant for sodium carbonate at this temperature is [tex]4x - 2x = [/tex] Nina has the flu and a high fever. Her immune system is exhibiting the A cube has an edge of 2 feet. The edge is increasing at the rate of 5 feet per minute. Express the volume of the cube as a function of m, the number of minutes elapsed. drawing is hard sentence or fragment The residents of a city voted on whether to raise property taxes. The ratio of yes votes to no votes was 5 to 6. If there were 4508 no votes, what was the totalnumber of votes (10 PTS) How do I solve for this? Please show work Click an item in the list or group of pictures at the bottom of the problem and, holding the button down, drag it into the correct position in the answer box. Release your mouse button when the item is place. If you change your mind, drag the item to the trashcan. Click the trashcan to clear all your answers. Factor completely and then place the factors in the proper location on the grid. x 2 + 13x + 36 A normal distribution has a mean of 30 and a variance of 5.Find N such that the probability that the mean of N observations exceeds 30.5 is 1%.