Answer:
110 basic plans and 200 standard plans were purchased.
Step-by-step explanation:
This question is solved using a system of equations.
I am going to say that:
x is the number of basic plans.
y is the number of standard plans.
310 new subscribers
This means that [tex]x + y = 310[/tex], and so, [tex]y = 310 - x[/tex]
A cable network offers members a Basic plan for $7.26 per month. For $3.00 more per month. Total paid of $2580.60.
This means that:
[tex]7.26x + 10.26y = 2580.6[/tex]
Since [tex]y = 310 - x[/tex]
[tex]7.26x + 10.26(310 - x) = 2580.6[/tex]
[tex]7.26x + 3180.6 - 10.26x = 2850.6[/tex]
[tex]3x = 330[/tex]
[tex]x = \frac{330}{3}[/tex]
[tex]x = 110[/tex]
Then
[tex]y = 310 - x = 310 - 110 = 200[/tex]
110 basic plans and 200 standard plans were purchased.
The product of two consecutive negative integers is 600. What is the value of the lesser integer?
–60
–30
–25
–15
Answer:
-25
Step-by-step explanation:
-24×(-25)=600
Hope this helps! :)
Answer: It's -25
edg 2023
Ariana owns a food truck that sells tacos and burritos. She sells each taco for $4 and each burrito for $8.25. Ariana must sell at least $960 worth of tacos and burritos each day. Write an inequality that could represent the possible values for the number of tacos sold, tt, and the number of burritos sold, bb, that would satisfy the constraint.
Answer:
09
Step-by-step explanation:
The following hypothetical data represent a sample of the annual numbers of home fires started by candles for the past several years.
5640, 5090, 6590, 6380, 7165, 8440, 9980
The population has a standard deviation equal to 1210. Assuming that the data is from a distribution that is approximately normal, construct a 90 % confidence interval for the mean number of home fires started by candles each year
Answer:
(6290.678 ; 7790.742)
Step-by-step explanation:
Given the data :
5640, 5090, 6590, 6380, 7165, 8440, 9980
The sample mean, xbar = Σx / n = 49285 / 7 = 7040.71
The 90% confidence interval :
Xbar ± Margin of error
Margin of Error = Zcritical * σ/√n
Since the σ is known, we use the z- distribution
Zcritical at 90% confidence = 1.64
Hence,
Margin of Error = 1.64 * 1210/√7
Margin of Error = 750.032
90% confidence interval is :
7040.71 ± 750.032
Lower boundary = 7040.71 - 750.032 = 6290.678
Upper boundary = 7040.71 + 750.032 = 7790.742
(6290.678 ; 7790.742)
A store donated a percent of every sale to charity The total sales were $9,850 so the store donated $591. What percent of $9,850 was donated?
I need the answer asap!
Answer:
Well, 10% of 6640 is $664, and $332 is half of that, so 5%
Missing: $9850 $591.
Step-by-step explanation:
Answer:
espero ayudarte ..............
Without using mathematical table or calculator simplify 3 4/9 ÷(5 1/3 _ 2 3/4) + 5 9/10
Answer:
[tex]{ \tt{3 \frac{4}{9} \div (5 \frac{1}{3} - 2 \frac{3}{4}) + 5 \frac{9}{10} }} \\ \\ = { \tt{ \frac{31}{9} \div ( \frac{16}{3} - \frac{11}{4} ) + \frac{59}{10} }} \\ \\ = { \tt{ \frac{31}{9} \div ( \frac{31}{12} ) + \frac{59}{10} }} \\ \\ { \tt{ = \frac{4}{3} + \frac{59}{10} }} \\ \\ { \bf{ = \frac{217}{30} }} \\ \\ { \boxed{ \tt{answer : 7 \frac{7}{30} }}} \\ \\ { \underline{ \blue{ \tt{becker ⚜jnr}}}}[/tex]
Answer:
[tex]7 \frac{7}{30}[/tex]
Step-by-step explanation:
[tex]3 \frac{4}{9} \div ( 5\frac{1}{3} - 2 \frac{3}{4}) + 5 \frac{9}{10}\\\\\frac{31}{9} \div (\frac{16}{3} - \frac{11}{4} ) + \frac{59}{10} \\\\\\Solving \ using \ BODMAS\\\\First \ Solve \ expression \ inside \ Bracket \\\\\frac{31}{9} \div (\frac{(16 \times 4) - ( 11 \times 3)}{12}) + \frac{59}{10} \\\\\frac{31}{9} \div (\frac{64- 33)}{12}) + \frac{59}{10} \\\\\frac{31}{9} \div \frac{31}{12} + \frac{59}{10} \\\\\\ \\\\\\Next \ solve \ Dvision \\\\\frac{\frac{31}{9}}{\frac{31}{12}} + \frac{59}{10}\\\\[/tex]
[tex](\frac{31}{9}} \times {\frac{12}{31}) + \frac{59}{10}[/tex]
[tex]\frac{4}{3} + \frac{59}{10}\\\\ Now \ solve \ final \ expression \\\\\\\frac{(4 \times 10) + ( 59 \times 3)}{30}\\\\\frac{40 + 177}{30}\\\\\frac{217}{30}\\\\7 \frac{7}{30}[/tex]
If g(x)=x2 - 5 and 1(x)=7x-11, then what is the value of h(g(3)) ?
Answer:
The value of h(g(3)) is 17.
Step-by-step explanation:
We are given these following functions:
[tex]g(x) = x^2 - 5[/tex]
[tex]h(x) = 7x - 11[/tex]
h(g(3)) ?
[tex]h(g(x)) = h(x^2-5) = 7(x^2-5) - 11 = 7x^2 - 35 - 11 = 7x^2 - 46[/tex]
At x = 3
[tex]h(g(3)) = 7(3)^2 - 46 = 63 - 46 = 17[/tex].
The value of h(g(3)) is 17.
For the sequence an = an-1 + an-2 and ai = 2, a2 = 3,
its first term is
its second term is
its third term is
its fourth term is
its fifth term is
Answer:
[tex]a_1 = 2[/tex]
[tex]a_2 = 3[/tex]
[tex]a_3 = 5[/tex]
[tex]a_4 = 8[/tex]
[tex]a_5 = 13[/tex]
Step-by-step explanation:
Given
[tex]a_n = a_{n-1} + a_{n-2}[/tex]
[tex]a_1 = 2[/tex]
[tex]a_2 = 3[/tex]
Solving (a): The first term
This has already been given as:
[tex]a_1 = 2[/tex]
Solving (b): The second term
This has already been given as:
[tex]a_2 = 3[/tex]
Solving (c): The third term
This is calculated as:
[tex]a_n = a_{n-1} + a_{n-2}[/tex]
[tex]a_3 = a_{3-1} +a_{3-2}[/tex]
[tex]a_3 = a_2 +a_1[/tex]
[tex]a_3 = 3 +2[/tex]
[tex]a_3 = 5[/tex]
Solving (d): The fourth term
This is calculated as:
[tex]a_n = a_{n-1} + a_{n-2}[/tex]
[tex]a_4 = a_{4-1} +a_{4-2}[/tex]
[tex]a_4 = a_3 +a_2[/tex]
[tex]a_4 = 5+3[/tex]
[tex]a_4 = 8[/tex]
Solving (e): The fifth term
This is calculated as:
[tex]a_n = a_{n-1} + a_{n-2}[/tex]
[tex]a_5 = a_{5-1} +a_{5-2}[/tex]
[tex]a_5 = a_4 +a_3[/tex]
[tex]a_5 = 8+5[/tex]
[tex]a_5 = 13[/tex]
wich one is the answer
You buy items costing $1900 and finance the cost with a fixed installment loan for 24 months at 8% simple interest per year.
1. What is the finance charge?
2. What is your monthly payment?
* Please explain how you got the answer*
9514 1404 393
Answer:
$304$91.83Step-by-step explanation:
1. The finance charge is found from the simple interest formula;
I = Prt
where P is the principal amount, r is the annual rate, and t is the number of years.
24 months is 2 years, so the interest charged is ...
I = $1900×0.08×2 = $304
The finance charge is $304.
__
2. The monthly payment will be the total amount due, divided by the number of months.
payment = ($1900 +304)/24 = $2204/24 ≈ $91.83
The monthly payment is $91.83.
A person must score in the upper of the population on an IQ test to qualify for membership in Mensa, the international high-IQ society. If IQ scores are normally distributed with a mean of and a standard deviation of , what score must a person have to qualify for Mensa (to whole number)
Answer:
The person must score at least [tex]X = \mu + Z\sigma[/tex], in which Z has a p-value of [tex]1 - \frac{p}{100}[/tex], considering p the upper percentage the person must score, [tex]\mu[/tex] is the mean IQ score for the population and [tex]\sigma[/tex] is the standard deviation.
Step-by-step explanation:
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
In this question:
Mean [tex]\mu[/tex], standard deviation [tex]\sigma[/tex]
What score must a person have to qualify for Mensa?
Score of at least X, given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]X - \mu = Z\sigma[/tex]
[tex]X = \mu + Z\sigma[/tex]
In which Z has a p-value of [tex]1 - \frac{p}{100}[/tex], considering p the upper percentage the person must score.
x+y=13
2x-y=5
solve using any method
Answer:
x = 6 , y = 7
Step-by-step explanation:
solving by substitution method
x + y = 13
x = 13 - y equation (i)
2x - y = 5
substitute the value of x
2(13 - y) - y = 5
26 - 2y - y = 5
26 - 3y = 5
26 - 5 = 3y
21/3 = y
7 = y
substitute the value of y in equation (i)
x = 13 - y
x = 13 - 7
x = 6
Solve the solution as an ordered pair
X + 9 = y
X = 4y - 6
Answer:
-10, -1
Step-by-step explanation:
See Image below:)
A rectangular prism has a base area of 2 square feet and a height of 5 feet. What
is the volume of the prism in cubic feet?
10
15
12
11
Submit
If ∠1 = 3x, ∠2 = 5x + 18, and s ⊥ r, find m∠1.
I hope it will help you.
Answer:
x = 9
Step-by-step explanation:
angle <1 and angle <2 is complementary and their sum is 90 degrees
3x + 5x + 18 = 90 add like terms
8x + 18 = 90 subtract 18 from both sides
8x = 72 divide both sides by 8
x = 9 to find the measure of angle <1 replace x with the value we found
find the derivative
f (x ) = (x-5)^2 (3-x)^2
Given:
The function is
[tex]f(x)=(x-5)^2(3-x)^2[/tex]
To find:
The derivative of the given function.
Solution:
Chain rule of differentiation:
[tex][f(g(x))]'=f'(g(x))g'(x)[/tex]
Product rule of differentiation:
[tex][f(x)g(x)]'=f(x)g'(x)+g(x)f'(x)[/tex]
We have,
[tex]f(x)=(x-5)^2(3-x)^2[/tex]
Differentiate with respect to x.
[tex]f'(x)=(x-5)^2\dfrac{d}{dx}(3-x)^2+(3-x)^2\dfrac{d}{dx}(x-5)^2[/tex]
[tex]f'(x)=(x-5)^2[2(3-x)(0-1)]+(3-x)^2[2(x-5)(1-0)][/tex]
[tex]f'(x)=(x^2-10x+25)(-6+2x)+(9-6x+x^2)(2x-10)[/tex]
[tex]f'(x)=(x^2)(-6)+(-10x)(-6)+(25)(-6)+(x^2)(2x)-10x(2x)+25(2x)+(9)(2x)+(-6x)(2x)+x^2(2x)+9(-10)+(-6x)(-10)+x^2(-10)[/tex]
On further simplification, we get
[tex]f'(x)=-6x^2+60x-150+2x^3-20x^2+50x+18x-12x^2+2x^3-90+60x-10x^2[/tex]
[tex]f'(x)=(2x^3+2x^3)+(-6x^2-20x^2-12x^2-10x^2)+(60x+50x+18x+60x)+(-90-150)[/tex]
[tex]f'(x)=4x^3-48x^2+188x-240[/tex]
Therefore, the derivative of the given function is [tex]f'(x)=4x^3-48x^2+188x-240[/tex].
Choose which two numbers the following will fall between: *
V156 PLEASE HELP ME FASTTTTT
[tex]\sf\purple{A.\:Between \:12\:and\:13.}[/tex] ✅
[tex]\large\mathfrak{{\pmb{\underline{\red{Step-by-step\:explanation}}{\orange{:}}}}}[/tex]
[tex] \sqrt{156} \\ = 12.4899 \\ = 12.49[/tex]
Therefore, [tex] \sqrt{156} [/tex] will fall in between 12 and 13.
[tex]\large\mathfrak{{\pmb{\underline{\orange{Happy\:learning }}{\orange{!}}}}}[/tex]
What is the equivalent recursive definition for an = 12+ (n - 1)3?
A. a1 = 3, An = An-1 + 12
B. a1 = 12, An = 30n-1
C. a1 = 12, Un = On-1 +3
D. a1 = n, an= 1201-1+3
Answer:
[tex]A_1 = 12[/tex]
[tex]A_n = A_{n-1} + 3[/tex]
Step-by-step explanation:
Given
[tex]A_n =12+(n-1)3[/tex]
Required
Write as recursive
We have:
[tex]A_n =12+(n-1)3[/tex]
Open bracket
[tex]A_n =12+3n-3[/tex]
[tex]A_n =12-3+3n[/tex]
[tex]A_n =9+3n[/tex]
Calculate few terms
[tex]A_1 =9+3*1 = 9 + 3 = 12[/tex]
[tex]A_2 =9+3*2 = 9 + 6 = 15[/tex]
[tex]A_3 =9+3*3 = 9 + 9 = 18[/tex]
The above shows that the rule is to add 3.
So, we have:
[tex]A_1 = 12[/tex]
[tex]A_n = A_{n-1} + 3[/tex]
I need help with this pls help and write the Correct answer
A stamp gets more expensive each year. It increases in value by 60 % each year. Wha
is the growth FACTOR?
9514 1404 393
Answer:
1.60
Step-by-step explanation:
The growth factor is 1 more than the growth rate:
1 + 60% = 1 + 0.60 = 1.60 = growth factor
what is the mean mark of 847 ÷ 30?
Answer:
Step-by-step explanation:
I’ll give brainliest
Answer:
y = 1.19x
Step-by-step explanation:
y is the dependent variable (total cost)
x is the independent variable (number of pounds)
i need help, this is for a final
Step-by-step explanation:
Since the two triangles are similar
Then the ratio of sides are equal
Then MK:ML =JH:JI
Sub in this and you will get x =64.1
please help. no links!
Answer:
I think B
Step-by-step explanation:
121.346° is more close to 121.3°, than 121.4°
if i'm wrong, the i'm sorry
NO LINKS!!!
What is the volume of this solid?
220 cubic units.
Answer:
Solution given:
for small cylinder
r=1
and for large cylinder
R=5+1=6
height for both [h]=2
Now
Volume of solid=πR²h-πr²h=πh(R²-r²)
=3.14*2(6²-1²)=219.8 =220 units ³.
Small cylinder is r=1
Large cylinder is R= 5+1 =6
Height (h) =2
Volume of solid,
→ πR²h-πr²h
→ πh(R²-r²)
→ 3.14 × 2(6²-1²)
→ 219.8
→ 220 cubic units
can someone answer this please
Answer:
x = 14
Step-by-step explanation:
Please note, the word trapezium is a synonym for the word trapezoid.
This problem gives one the area of the trapezoid, a well as one of the measurements of a base and the height of the figure. One is asked to find the length of the other base. This can be done by using the formula to find the area of a trapezoid. This formula is the following,
[tex]A=(h)(\frac{b_1+b_2}{2})[/tex]
Where (A) represents the area of a trapezoid, ([tex]b_1[/tex]) and ([tex]b_2[/tex]) represents the bases and (h) represents the height. Substitute in the given values and solve for the unknown base.
[tex]b_1=7\\h=6\\A=84[/tex]
[tex]A=(h)(\frac{b_1+b_2}{2})\\[/tex]
Substitute,
[tex]84=6(\frac{7+b_2}{2})\\[/tex]
Inverse operations,
[tex]84=6(\frac{7+b_2}{2})[/tex]
[tex]14=\frac{7+b_2}{2}[/tex]
[tex]28=7+b_2[/tex]
[tex]14=b_2[/tex]
What is the probability that a randomly selected day in the summer will be rainy if it’s cloudy?
Answer:
0.872
Step-by-step explanation:
Given that :
P(cloudy) = P(C) = 0.94
P(cloudy and rainy) = P(C n R) = 0.82
Probability that a given day will be rainy if it is cloudy ; this is a conditional probability problem:
Recall ; P(A|B) = P(AnB) / P(B)
P(R|C) = P(C n R) / P(C) = 0.82 / 0.94 = 0.872
3. The simple interest on $6,000 for 4 years is $1,680. *
Which of the following is most likely the next step in the series?
Answer:
B
Step-by-step explanation:
Hi there!
TL;DR: Observe the vertices of the shapes inside the circles and their relationship with the circle.
For the first figure, the rectangle has 4 vertices and there are 4 dots on the perimeter of the circle.
For the second figure, the triangle has 3 vertices and there are 3 dots on the perimeter of the circle.
For the third figure, the line has 2 points and there are 2 dots on the perimeter of the circle.
For the fourth figure, there would most likely be only one dot on the perimeter of the circle (4, 3, 2, 1). The only option that shows this is B.
I hope this helps!
An item was marked down 64% from its original price, x. The amount discounted was $30. Which equation can be
used to find the original price?
0.64(x) = 30
0.64(30) = x
30 +0.64 = x
x + 0.064 = 30
Answer:
0.64(x) = 30
Step-by-step explanation:
Hope that's correct.
Suppose a quadratic equation is given as follows:
(k – 1)x² + x + 1 = 0
Select all values of k for which the above equation has two real and unequal roots
0
.25
0.5
0.75
1
1.25
1.5
1.75
Answer:
k>1.25
Step-by-step explanation:
The given quadratic equation is :
(k – 1)x² + x + 1 = 0
We need to find all values of k for which the above equation has two real and unequal roots.
For a quadratic equation ax²+bx+c=0, for real and unequal roots,
b²-4ac>0
Here, a = (k-1), b = 1 and c = 1
Put all the values,
1²-4×(k-1)1>0
1-4k+4>0
5-4k>0
k>1.25
S, k can take values more than 1.25. Hence, it can take values 1.5, 1.75.