Answer:
0.3333
Explanation:
Acceleration = change in velocity/time
a = 20 m/s / 60 m/s
a = 0.3333 m/s^2
A rectangular field is of length 42 cm and breadth 25 m. Find the area of the field in SI unit. EXPLAIN STEP BY STEP
Answer:
the area of the rectangular field is 10.5 m²
Explanation:
Given;
length of the rectangular field, L = 42 cm = 0.42 m
breadth of the rectangular field, b = 25 m
The area of the rectangular field is calculated as follows;
Area = Length x breadth
Area = 0.42 m x 25 m
Area = 10.5 m²
Therefore, the area of the rectangular field is 10.5 m²
does net force stay the same when a massless pulley is replaced by a pulley with mass
Suppose that 2 J of work is needed to stretch a spring from its natural length of 28 cm to a length of 43 cm. (a) How much work is needed to stretch the spring from 33 cm to 35 cm
Answer:
0.035 J
Explanation:
Applying,
W = ke²/2.............. Equation 1
Where W = workdone by the stretching the spring, k = spring constant, e = extension.
make k the subject of the equation
k = 2W/e²............... Equation 2
From the question
Given: W = 2 J, e = (43-28) = 15 cm = 0.15 m
Substitute these values into equation 2
k = (2×2)/(0.15²)
k = 177.78 N/m
Hence, work need to stretch the spring from 33 cm to 35 cm
therefore,
e = 35-33 = 2 cm = 0.02 m
Substitute into equation 1
W = 177.78(0.02²)/2
W = 0.035 J
2 Lights slows down when it enters water from air.
a What happens to its speed?
b What happens to its wavelength?
c What happens to its frequency?
What happens if you move a magnet near a coil of wire?
A) current is induced
B)power is consumed
C)the coil becomes magnetized
D) the magnets field is reduced
The food calorie, equal to 4186 J, is a measure of how much energy is released when food is metabolized by the body. A certain brand of fruit-and-cereal bar contains 160 food calories per bar.
Part A
If a 67.0 kg hiker eats one of these bars, how high a mountain must he climb to "work off" the calories, assuming that all the food energy goes only into increasing gravitational potential energy?
Express your answer in meters.
Part B
If, as is typical, only 20.0 % of the food calories go into mechanical energy, what would be the answer to Part A? (Note: In this and all other problems, we are assuming that 100% of the food calories that are eaten are absorbed and used by the body. This is actually not true. A person's "metabolic efficiency" is the percentage of calories eaten that are actually used; the rest are eliminated by the body. Metabolic efficiency varies considerably from person to person.)
Express your answer in meters.
Answer: 1 cal is 4.186 J, 1 kcal = 4186 J A : 1014 m , B 200 m
Explanation: A) Work done by climber is change in potential energy.
W = ΔEp = mgh = 67.0 kg· 9.81 m/s²· h = 160 kcal · 4186 J / kcal.
Solve h = 160 kcal · 4186 J / kcal /67.0 kg· 9.81 m/s² = 1014 m
B Energy is only 20 % : Then h = 0.20 ·160 kcal · 4186 J / kcal /67.0 kg· 9.81 m/s² = 200 m.
Actually, muscles also produce heat from most of the energy provided by food.
A circus performer stretches a tightrope between two towers. He strikes one end of the rope and sends a wave along it toward the other tower. He notes that it takes 0.9 s for the wave to travel the 26 m to the opposite tower. If one meter of the rope has a mass of 0.28 kg, find the tension in the tightrope.
Answer:
the tension in the tightrope is 233.68 N
Explanation:
Given the data in the question;
Time taken to reach the opposite tower t = 0.9 s
Distance between the two towers S = 26 m
mass per one meter length = 0.28 kg
First we calculate the velocity;
Velocity V = Distance / time
we substitute
Velocity V = 26 m / 0.9 s
Velocity V = 28.889 m/s
We know that Velocity V can also be expressed as;
V = √( T / m )
we make T the subject of formula
V² = T / m
T = mV²
we substitute
T = 0.28 × ( 28.889 )²
T = 233.68 N
Therefore, the tension in the tightrope is 233.68 N
In a science fiction novel two enemies, Bonzo and Ender, are fighting in outer spce. From stationary positions, they push against each other. Bonzo flies off with a velocity of 1.1 m/s, while Ender recoils with a velocity of -4.3 m/s. Determine the ratio Bonzo/mEnder of the masses of these two enemies.
Answer:
the ratio Bonzo/mEnder of the masses of these two enemies is 3.91
Explanation:
Given the data in the question;
Velocity of Bonzo [tex]V_{Bonzo[/tex] = 1.1 m/s
Velocity of Ender [tex]V_{Ender[/tex] = -4.3 m/s
the ratio Bonzo/mEnder of the masses of these two enemies = ?
Now, using the law of conservation of momentum.
momentum of both Bonzo and Ender are conserved
so
Initial momentum = final momentum
we have
0 = [tex]m_{Bonzo[/tex] × [tex]V_{Bonzo[/tex] + [tex]m_{Ender[/tex] × [tex]V_{Ender[/tex]
[tex]m_{Bonzo[/tex] × [tex]V_{Bonzo[/tex] = -[ [tex]m_{Ender[/tex] × [tex]V_{Ender[/tex] ]
[tex]m_{Bonzo[/tex] / [tex]m_{Ender[/tex] = -[ [tex]V_{Ender[/tex] / [tex]V_{Bonzo[/tex] ]
we substitute
[tex]m_{Bonzo[/tex] / [tex]m_{Ender[/tex] = -[ -4.3 m/s / 1.1 m/s ]
[tex]m_{Bonzo[/tex] / [tex]m_{Ender[/tex] = -[ -3.9090 ]
[tex]m_{Bonzo[/tex] / [tex]m_{Ender[/tex] = 3.91
Therefore, the ratio Bonzo/mEnder of the masses of these two enemies is 3.91
what is newtons 2nd law
According to the Newton's second law :- The acceleration of an object is directly related to the net force and inversely related to its mass. Acceleration of an object depends on two things, force and mass.
I’ve been stuck please help !!
Answer:
The slope of the position time graph gives the velocity.
Explanation:
The slope of the position time graph gives the value of velocity.
In first graph,
The slope is constant in both the parts but positive . So the velocity is also constant and positive for both the parts. and more than the second part, so the initial velocity is more than the final velocity.
In the second graph,
The slope is constant in both the parts but negative. So, the velocity is constant but negative for both the parts. Initial velocity is more negative than the final velocity.
Calculate the heat energy conducted per hour through the side walls of a cylindrical steel
boiler of 1.00 m diameter and 3.0 m long if the internal and external temperatures of the
walls are 140 °C and 40 °C respectively and the thickness of the walls is 6.0 mm. (Thermal
conductivity of steel, k = 42 Wm-4°C-4)
Explanation:
heat caoacity and heat is difference
The heat energy conducted per hour through the side walls of the cylindrical steel boiler is 27708847 kJ.
What is thermal conductivity?The rate at which heat is transported by conduction through a material's unit cross-section area when a temperature gradient exits perpendicular to the area is known as thermal conductivity.
In the International System of Units (SI), thermal conductivity is measured by Wm⁻¹K⁻¹.
Diameter of the cylindrical steel boiler: d = 1.00m.
Length of the cylindrical steel boiler: l = 3.00m.
thickness of the walls is = 6.0 mm = 0.006 m
Temperature gradient is = (140-40) °C/0.006 m = 1666.67 °C/m
Thermal conductivity of steel, = 42 W/m-°C.
Hence, the heat energy conducted per hour through the side walls of the cylindrical steel boiler = 42×3600×1666.67 ×2π×0.5(0.5+3.0) Joule
= 27708847 kJ
Learn more about thermal conductivity here:
https://brainly.com/question/23897839
#SPJ2
Two argon atoms form the molecule Ar2 as a result of a van der Waals interaction with U0 = 1.68×10-21 J and R0= 3.82×10 the frequency of small oscillations of one Ar atom about its equilibrium position.
Answer:
[tex]\mathbf{f_o =1.87 \times 10^{11} \ Hz}[/tex]
Explanation:
From the given information:
The elastic potential energy can be calculated by using the formula:
[tex]U_o = \dfrac{1}{2}kR_o^2[/tex]
Making K the subject;
[tex]K = \dfrac{2 U_o}{R_o^2}[/tex]
[tex]k = \dfrac{2\times 1.68 \times 10^{-21}}{(3.82\times 10^{-10})^2}[/tex]
k = 2.3 × 10⁻² N/m
Now; the frequency of the small oscillation can be determined by using the formula:
[tex]f_o = \dfrac{1}{2 \pi}\sqrt{\dfrac{k}{m}}[/tex]
where;
m = mass of each atom = 1.66 × 10⁻²⁶ kg
[tex]f_o = \dfrac{1}{2 \pi}\sqrt{\dfrac{2.3 \times 10^{-2} N/m}{1.66 \times 10^{-26} \ kg}}[/tex]
[tex]\mathbf{f_o =1.87 \times 10^{11} \ Hz}[/tex]
1. Lifting an elevator 18m takes 100kJ. If doing so takes 20s, what is the average power of the elevator during the process?
2. How much work can a 0.4 hp electric mixer do in 15 s?
Answer:
1. Power = 5000 Watts
2. Workdone = 11185.5 Joules
Explanation:
Given the following data;
1. Distance = 18 m
Energy = 100 KJ = 100,000 Joules
Time = 20 seconds
To find the average power of the elevator;
Power = energy/time
Power = 100000/20
Power = 5000 Watts
2. Power = 0.4 HP
Time = 15 seconds
Conversion:
1 horsepower = 745.7 Watts
0.4 horsepower = 0.4 * 745.7 = 298.28 Watts
To find the amount of work done by the electric mixer;
Work done = power * time
Workdone = 745.7 * 15
Workdone = 11185.5 Joules
Some runners train with parachutes that trail behind them to provide a large drag force. These parachutes are designed to have a large drag coefficient. One model expands to a square 1.8 mm on a side, with a drag coefficient of 1.4. A runner completes a 240 mm run at 6.0 m/s with this chute trailing behind.
Required:
How much thermal energy is added to the air by the drag force?
Answer:
by the drag force, 2.4004512 × 10⁻⁵ J is added to the air.
Explanation:
Given the data in the question;
drag coefficient of Cd = 1.4
speed v = 6.0 m/s
One model expands to a square 1.8 mm on a side
Area A = 1.8 × 1.8 = 3.24 mm² = 3.24 × 10⁻⁶ m²
distance travelled s = 240 mm = 0.24 m
we know that; density of air e = 1.225 kg/m³
Now,
Dragging force F[tex]_D[/tex] = ( Cd × e × v² × A ) / 2
thermal energy = F[tex]_D[/tex] × s
so
thermal energy = ( 1.4 × 1.225 × (6)² × (3.24 × 10⁻⁶) × 0.24 ) / 2
thermal energy = ( 4.8009024 × 10⁻⁵ ) / 2
thermal energy = 2.4004512 × 10⁻⁵ J
Therefore, by the drag force, 2.4004512 × 10⁻⁵ J is added to the air.
A professional quarterback throws a 0.40 kg football. what is the force of weight?
Answer:
3.92N
Explanation:
Force= mass×accelerarion due gravity
But mass= 0.40kg
acceleration due to gravity = 9.8 m/s^2
Force = 0.40×9.8
Force=3.92N
Consider different points along one spoke of a wheel rotating with constant angular velocity. Which of the following is true regarding the centripetal acceleration at a particular instant of time?
a. The magnitude of the centripetal acceleration is greater for points on the spoke closer to the hub than for points closer to the rim
b. both the magnitude and the direction of the centripetal acceleration depend on the location of the point on the spoke.
c. The magnitude of the centripetal acceleration is smaller for points on the spoke closer to the hub than for points closer to the rim but the direction of the acceleration is the same at all points on this spoke.
d. The magnitude and direction of the centripetal acceleration is the same at all points on this spoke.
Answer:
Option (a).
Explanation:
Let the angular velocity is w.
The centripetal acceleration is given by
[tex]a = r w^2[/tex]
where, r is the distance between the axle and the spoke.
So, more is the distance more is the centripetal acceleration.
(a) For the points on the spoke closer to the hub than for points closer to the rim is larger distance, so the centripetal force is more.
The statement is true.
(b) The direction of centripetal acceleration is always towards the center, so the statement is false.
(c) It is false.
(d) It is false.
Option (a) is correct.
the two factors that affect the amount of heat
Answer:
The two important factors that affect heat energy are specific heat and temperature. Specific heat is a heat-constant of a material per unit mass per degree of temperature change (in units of energy per mass and temperature), like Joules/Kg-°C .
Thank you.....
Have a good day.....
As part of a safety investigation, two 1300 kg cars traveling at 17 m/s are crashed into different barriers. Find the average forces exerted on:
a. the car that hits a line of water barrels and takes 1.5 s to stop
b. the car that hits a concrete barrier and takes 0.10 s to stop.
Answer:
a. F = 14,733.33 N
b. F = 221,000 N
Explanation:
Given;
mass of the cars, m = 1300 kg
velocity of the cars, v = 17 m/s
time taken for the first car to stop after hitting a barrier, t = 1.5 s
time taken for the second car to stop after hitting a barrier, t = 0.1 s
The average forces exerted on each car is calculated as follows;
a. the car that hits a line of water barrels and takes 1.5 s to stop
[tex]F = ma = m\times \frac{v}{t} = 1300 \times \frac{17}{1.5} = 14,733.33 \ N\\\\F = 14,733.33 \ N[/tex]
b. the car that hits a concrete barrier and takes 0.10 s to stop
[tex]F = ma = m\times \frac{v}{t}= 1300 \times \frac{17}{0.1} = 221,000 \ N\\\\F = 221,000 \ N[/tex]
Question 2 of 32
A water-skier with a mass of 68 kg is pulled with a constant force of 980 N by
a speedboat. A wave launches him in such a way that he is temporarily
airbome while still being pulled by the boat, as shown in the image below.
Assuming that air resistance can be ignored, what is the vertical acceleration
that the water-skier experiences on his return to the water surface? (Recall
that g = 9.8 m/s2)
Rope Force
ODON
Weight
O A. - 18.1 m/s2
OB. - 15.6 m/s2
O C. -11.2 m/s2
OD. -9.8 m/s2
Answer:
OD. -9.8 m/s2
Explanation:
The only force vertical force that is acting on the skier is gravity and since its pulling him back it's a negative force down the y axis.
What are 3 artificial and 2 natural sources of electromagnetic radiation?
Answer: its b bro
Explanation:
ajafa'jfbA'FJ
A crane raises a crate with a mass of 150 kg to a height of 20 m. Given that
the acceleration due to gravity is 9.8 m/s2, what is the crate's potential energy
at this point?
Answer:
[tex]\boxed {\boxed {\sf 29,400 \ Joules}}[/tex]
Explanation:
Gravitational potential energy is the energy an object possesses due to its position. It is the product of mass, height, and acceleration due to gravity.
[tex]E_P= m \times g \times h[/tex]
The object has a mass of 150 kilograms and is raised to a height of 20 meters. Since this is on Earth, the acceleration due to gravity is 9.8 meters per square second.
m= 150 kg g= 9.8 m/s²h= 20 mSubstitute the values into the formula.
[tex]E_p= 150 \ kg \times 9.8 \ m/s^2 \times 20 \ m[/tex]
Multiply the three numbers and their units together.
[tex]E_p=1470 \ kg*m/s^2 \times 20 m[/tex]
[tex]E_p=29400 \ kg*m^2/s^2[/tex]
Convert the units.
1 kilogram meter square per second squared (1 kg *m²/s²) is equal to 1 Joule (J). Our answer of 29,400 kg*m²/s² is equal to 29,400 Joules.
[tex]E_p= 29,400 \ J[/tex]
The crate has 29,400 Joules of potential energy.
Answer:
29,400 J
Explanation:
did the quiz <3
semiconductor have negative temperature coefficient of resistance why
Answer:
As the number of free electrons increases, the resistance of this type of non-metallic material decreases with increasing temperature.
Explanation:
The triceps muscle in the back of the upper arm extends the forearm. This muscle in a professional boxer exerts a force of 2.00\times 10^32.00×10 ^3 N with an effective perpendicular lever arm of 3.00 cm, producing an angular acceleration of the forearm of 120 rad/s^2 .
What is the moment of inertia of the boxer's forearm?
Answer:
Explanation:
From the given information:
The torque produced due to the force can be expressed as:
[tex]\tau = F \times r[/tex]
where;
[tex]\tau[/tex] = torque
F = force exerted
r = lever's arm radius
[tex]\tau[/tex] = [tex]2.00 \times 10^3 \times 0.03 m[/tex]
[tex]\tau[/tex] = 60 N.m
However, equating the torque with the moment of inertia & angular acceleration, we use the equation:
[tex]\tau[/tex] = I∝
60 Nm = I × 120 rad/s²
I = 60 Nm/120 rad/s²
I = 0.5 kg.m²
A motorist travels due North at 90 km/h for 2 hours. She changes direction and travels West at 60 km/for 1 hour.
a) Calculate the average speed of the motorist [4]
b) Calculate the average velocity of the motorist.
Answer:
a. 50km/hr.
b. 10km/hr
Explanation:
Average speed, which is calculated by dividing the total distance travelled by the time interval as follows:
Average speed = total distance travelled ÷ time
Average velocity is calculated by dividing the total displacement by the time interval as follows:
Average velocity = change in displacement (∆x) ÷ time (t)
According to this question, a motorist travels due North at 90 km/h for 2 hours. She then changes direction and travels West at 60 km/for 1 hour.
Total distance of this journey is 90 + 60 = 150
Total time taken = 1 + 2 = 3hours
Average speed = 150/3
= 50km/hr.
b.) Average velocity = x2 - x1/t
Average velocity = 90 - 60/3
= 30/3
= 10km/hr
A charge Q is transferred from an initially uncharged plastic ball to an identical ball 24 cm away.The force of attraction is then 17 mN. How many electrons were transferred from one ball to the other?
Answer:
The number of electrons transferred from one ball to the other is 2.06 x 10¹² electrons
Explanation:
Given;
magnitude of the attractive force, F = 17 mN = 0.017 N
distance between the two objects, r = 24 cm = 0.24 m
The attractive force is given by Coulomb's law;
[tex]F = \frac{1}{4\pi \epsilon _0} \times \frac{Q^2}{r^2} = \frac{kQ^2}{r^2} \\\\Q^2 = \frac{Fr^2}{k} \\\\Q = \sqrt{ \frac{Fr^2}{k}} \\\\Q = \sqrt{ \frac{(0.017)(0.24)^2}{9\times 10^9}} \\\\Q = 3.298 \times 10^{-7} \ C[/tex]
The charge of 1 electron = 1.602 x 10⁻¹⁹ C
n(1.602 x 10⁻¹⁹ C) = 3.298 x 10⁻⁷
[tex]n = \frac{3.298 \times 10^{-7}}{1.602 \times 10^{-19}} = 2.06 \times 10^{12} \ electrons[/tex]
Therefore, the number of electrons transferred from one ball to the other is 2.06 x 10¹² electrons
An unstretched ideal spring hangs vertically from a fixed support. A 0.4 kg object is then attached to the lower end of the spring. The object is pulled down to a distance of 0.35 m below the unstretched position and released from rest at time t= 0. A graph of the subsequent vertical position y of the lower end of the spring as a function of t is given above, where y= 0 when the spring was initially unstretched. At which time is the upward velocity of the object the greatest?
Answer:
The correct answer will be "0.25 sec".
Explanation:
The graph of the given question is attached below.
According to the graph of the question,
Time,
T = 1 sec
For the upward velocity,
⇒ [tex]t = \frac{T}{4}[/tex]
By putting the value, we get
⇒ [tex]=\frac{1}{4}[/tex]
⇒ [tex]=0.25 \ sec[/tex]
violations in a responsible manner in a democratic society?
Activity 5:
Ending
From your findings, what conclusions and recommendations can you make on the
issue of human rights violations to:
5.1
Government
Answer:
Kindly check explanation
Explanation:
The trampling and violation of human rights individuals, groups and corporate organizations is really alarming ad as such, the government who are charged to protect the right and interest of its citizen. In other to curtail the trending issues of human right violation, it is imperative if sensitization programmes could be organiz d in other to keep people informed of the various ways in which people's right may be trampled upon. With these education, the ignorance can be expunged leaving only those who genuinely decides to relate and threaten the right of his fellow country person.
The laws on human right violation should be reviewed and capital punishment metted on violators in other to send a strong warning to those who still nurture the intention.
Which element makes up most of the Sun?
A. Sodium
B. Carbon
C. Lithium
D. Hydrogen
Answer:
D. Hydrogen
Explanation:
The sun is a big ball of gas and plasma. Most of the gas — 91 percent — is hydrogen.
Answer:
D. Hydrogen
Explanation:
Hydrogen makes up most of the Sun. It is nearly 91 percent.
A light-emitting diode (LED) connected to a 3.0 V power supply emits 440 nm blue light. The current in the LED is 11 mA , and the LED is 51 % efficient at converting electric power input into light power output. How many photons per second does the LED emit?
Answer:
3.73 * 10^16 photons/sec
Explanation:
power supply = 3.0 V
Emits 440 nm blue light
current in LED = 11 mA
efficiency of LED = 51%
Calculate the number of photons per second the LED will emit
first step : calculate the energy of the Photon
E = hc / λ
=( 6.62 * 10^-34 * 3 * 10^8 ) / 440 * 10^-9
= 0.0451 * 10^-17 J
Next :
Number of Photon =( power supply * efficiency * current ) / energy of photon
= ( 3 * 0.51 * 11 * 10^-3 ) / 0.0451 * 10^-17
= 3.73 * 10^16 photons/sec
Find the weight of a man whose mass is 40 kg on earth.
(also
write complete data plus proper formula).
I am sure it help you with that much ☺️
Explanation:
pleasae give me some thanks please good morning sister