Answer:
23 nickels and 16 dimes
Step-by-step explanation:
16 dimes = 1.60
23 nickels = 1.15
1.60 + 1.15 = 2.75
Solve for z
3z-5+2z=25-5z
Answer:
z=3
Step-by-step explanation:
1. collect like terms
5z-5=25-5z
2. Move the variable to the left hand side and change its sign
5z-5+5z=25
3. Collect like terms
10z=25+5
4. Divide both sides of the equation by 10
z=3
The solution to the equation is z = 3.
To solve for z in the equation 3z - 5 + 2z = 25 - 5z, we can simplify and combine like terms on both sides:
3z + 2z + 5z = 25 + 5
Combining the terms on the left side gives:
10z = 30
Next, we isolate the variable z by dividing both sides of the equation by 10:
(10z)/10 = 30/10
This simplifies to:
z = 3
Therefore, the solution to the equation is z = 3.
To know more about equation:
https://brainly.com/question/10724260
#SPJ6
please help now
Your pump empties the water from a swimming pool in 4 hours. When your friend's pump is used together with your pump, the pool is emptied in 48 minutes. How long (in hours) does it take your friend's pump to empty the pool when working alone?
Answer:
Time taken for pump B to empty pool = 1 hour.
Step-by-step explanation:
Given:
Time taken for pump A to empty pool = 4 hour
Time taken together = 48 minutes = 48 / 60 = 4/5 hour
Find:
Time taken for pump B to empty pool
Computation:
Assume;
Time taken for pump B to empty pool = a
1/4 + 1/a = 1 / (4/5)
1/4 + 1/a = 5/4
1/a = 5/4 - 1/4
1/a = (5 - 1) / 4
1/a = 1
a = 1
Time taken for pump B to empty pool = 1 hour.
Which inequality is true?
А. Зп > 9
B. 7 + 8< 11
C. 27 -1 < 5
D. 2 > 2
SUBMIT
< PREVIOUS
9514 1404 393
Answer:
А. Зп > 9
Step-by-step explanation:
The inequality of A may or may not be true. (It is true only if n > 3.) All of the others are definitely false.
Hello please help me solve this inequality shown in the graph, thank you so much!
Answer to the question?
Answer:
35
Step-by-step explanation:
AEC and AEB form a straight angle(180°)
180-40=140
AEV and AED are equal
140 divided by 4 = 35
question : Suppose you have VND 100 million to save orspend. If you lend, you will receive 112 million after a year. Inflation is 14% / year.
a. What is the nominal interest rate you get?
b. What is the real interest rate?
c. Should you save or spend that money?
d. Question (c) how will be answered if inflation is 10% / year, nominal interest rates do not change?
Answer:
Step-by-step explanation:
Let f(x)=x2+10x+37 .
What is the vertex form off(x)?
What is the minimum value off(x)?
Enter your answers in the boxes.
Vertex form: f(x)=
Minimum value of f(x):
Answer:
f(x) = (x+5)^2 +12
The minimum value is 12
Step-by-step explanation:
f(x)=x^2+10x+37
The vertex will be the minimum value since this is an upwards opening parabola
Completing the square by taking the coefficient of x and squaring it adding it and subtracting it
f(x) = x^2+10x + (10/2) ^2 - (10/2) ^2+37
f(x) = ( x^2 +10x +25) -25+37
= ( x+5) ^2+12
Th is in vertex form y = ( x-h)^2 +k where (h,k) is the vertex
The vertex is (-5,12)
The minimum is the y value or 12
PLEASE HELP ME!!! I need to simplify these equations, not answer them.
Answer:
Step-by-step explanation:
a= 2qr^3 quotent 6p^2
Xavier shoots a basketball in which the height, in feet, is modeled by the equation,h(t) = -4t2 + 10 + 18, where t is time, in
seconds. What is the maximum height of the basketball?
Answer:
The maximum height of the basketball is of 24.25 feet.
Step-by-step explanation:
Vertex of a quadratic function:
Suppose we have a quadratic function in the following format:
[tex]f(x) = ax^{2} + bx + c[/tex]
It's vertex is the point [tex](x_{v}, y_{v})[/tex]
In which
[tex]x_{v} = -\frac{b}{2a}[/tex]
[tex]y_{v} = -\frac{\Delta}{4a}[/tex]
Where
[tex]\Delta = b^2-4ac[/tex]
If a<0, the vertex is a maximum point, that is, the maximum value happens at [tex]x_{v}[/tex], and it's value is [tex]y_{v}[/tex].
Height of the basketball:
Given by the following function:
[tex]h(t) = -4t^2 + 10t + 18[/tex]
Which is a quadratic function with [tex]a = -4, b = 10, c = 18[/tex]
What is the maximum height of the basketball?
y(in this case h) of the vertex. So
[tex]\Delta = b^2-4ac = 10^2 - 4(-4)(18) = 388[/tex]
[tex]y_{v} = -\frac{388}{4(-4)} = 24.25[/tex]
The maximum height of the basketball is of 24.25 feet.
Which inequality has the solution shown below?
-18 -17 -16 -15 -14 -13 -12
Answer:
0.2x+5>2
Step-by-step explanation:
0.2 is the same as 2/10;
(2/10)x>2-5
(2/10)x>-3
2x>-30
X>-15( since -15 is lesser than -14,-13,-12 and so on. the sign should be >
Please help a girl out, math is not my forte
Answer:
80 ft²
Step-by-step explanation:
You are given the formula
a = (1/2)bh
Just plug in the base and height, then multiply
a = (1/2) * 8 *20
a = (1/2) * 160
a = 80 ft²
Answer:
80 [tex]ft^{2}[/tex]
Step-by-step explanation:
Area = [tex]\frac{1}{2} bh[/tex]
Area = [tex]\frac{1}{2}[/tex] 8 · 20
Area = [tex]\frac{1}{2}[/tex] 160
Area = 80 [tex]ft^{2}[/tex]
help please quick please
Answer:
the answer is 3.5
Step-by-step explanation:
Will choose brainliest! Please help! (This is Khan Academy)
Answer:
Option B. A = (5/6)^-⅛
Step-by-step explanation:
From the question given above, we obtained:
(5/6)ˣ = A¯⁸ˣ
We can obtain the value of A as follow:
(5/6)ˣ = A¯⁸ˣ
Cancel x from both side
5/6 = A¯⁸
Recall:
M¯ⁿ = 1/Mⁿ
A¯⁸ = 1/A⁸
Thus,
5/6 = 1/A⁸
Cross multiply
5 × A⁸ = 6
Divide both side by 5
A⁸ = 6/5
Take the 8th root of both sides
A = ⁸√(6/5)
Recall
ⁿ√M = M^1/n
Thus,
⁸√(6/5) = (6/5)^⅛
Therefore,
A = (6/5)^⅛
Recall:
(A/B)ⁿ = (B/A)¯ⁿ
(6/5)^⅛ = (5/6)^-⅛
Therefore,
A = (5/6)^-⅛
Write the simplified expression that represents the perimeter of the triangle below.
X - 3
4x + 4
2x + 1
Show Work
Answer:
Just plus everything together
X-3+4X+4+2X+1
Step-by-step explanation:
7) Point P is located at (4,8) on a coordinate plane. Point P will be relfected over y = x. What will bee
the coordiantes of the image of point P?
A. (28,4)
B. 24,8)
C. (4,28)
D. (8,4)
Find the distance between a point (–7, –19) and a horizontal line at y = 3.
61 1/20 as a decimal
Answer:
61.05
Step-by-step explanation:
1/20 = 5/100 = 0.05
61+0.05 = 61.05
The Centers for Disease Control and Prevention Office on Smoking and Health (OSH) is the lead federal agency responsible for comprehensive tobacco prevention and control. OSH was established in 1965 to reduce the death and disease caused by tobacco use and exposure to secondhand smoke. One of the many responsibilities of the OSH is to collect data on tobacco use. The following data show the percentage of U.S. adults who were users of tobacco for a recent 11-year period
Year Percentage of Adults Who Smoke
1 22.9
2 21.7
3 21
4 20.3
5 20.3
6 19.9
7 19.4
8 20.7
9 20.7
10 19
11 18.8
What type of pattern exists in the data?
Use simple linear regression analysis to find the parameters for the line that minimizes MSE for this time series. Do not round your interim computations and round your final answers to three decimal places. For subtractive or negative numbers use a minus sign. (Example: -300)
y-intercept, b0 =
Slope, b1 =
MSE =
One of OSH’s goals is to cut the percentage of U.S. adults who were users of tobacco to 12% or less within nine years of the last year of these data. Does your regression model from part (b) suggest that OSH is on target to meet this goal?
Use your model from part (b) to estimate the number of years that must pass after these data have been collected before OSH will achieve this goal. Round your answer to the nearest whole number.
years.
Answer:
1.) A negative linear pattern
2.) Y = - 0.298X1 + 22.241
3.) slope = - 0.298 ; intercept = 22.241
Kindly check explanation
Step-by-step explanation:
Fitting the time series data using technology, the regression equation obtained is :
Y = - 0.298X+ 22.241
Where ; y = percentage of adults who smoke
x = year
Comparing with the linear equation model :
y = b1x + b0
y = - 0.298x + 22.41
-0.298 = slope
22.41 = intercept
The mean squared error, MSE = 0.512
To achieve, percentage users of 12% or less :
y = 12
Y = - 0.298X+ 22.241
12 = - 0.298X + 22.241
12 - 22.241 = - 0.298X1
-10.241 = - 0.298X
X = 10.241 / 0.298
X = 34.365
X = 35 years
From the model OSHA is not on target to meet it's goal as it will take 35 - 11 = 24 years from the last year of the data to achieve a smoker percentage less Than 12%
Based on the information below, which statement provides a logical
conclusion?
On Monday, Suzanne got up at 6:00 a.m. and was on time for first period.
On Wednesday, Suzanne got up at 6:15 a.m. and was late to first period.
Answer:
It's A because on b it says is she gets up after 6:00 she will not be late and that's wrong cause she will be
The retail cost of a TV is 50 % more than its wholesale cost. Therefore, the retail cost is ____ times the wholesale cost.
Answer:
Let the retail cost be x and the wholesale cost be y
Step-by-step explanation:
x = y + 0.50y
x = 1.50y
Therefore the retail cost is 1.50 times the wholesale cost.
Use the substitution method or the elimination method to solve the following system.
2x−20y
=
10
−7x+70y
=
−35
9514 1404 393
Answer:
x -10y = 5 . . . . . infinite number of solutions
Step-by-step explanation:
We can put each equation into standard form by dividing it by its x-coefficient.
x -10y = 5 . . . . first equation
x -10y = 5 . . . . second equation
Subtracting the second equation from the first eliminates the x-variable to give ...
(x -10y) -(x -10y) = (5) -(5)
0 = 0 . . . . . . . true for all values of x or y
The system has an infinite number of solutions. Each is a solution to ...
x -10y = 5.
[tex] {x}^{2} + \sqrt{x} + \sqrt[5]{x} [/tex]
what is f'(3) of this equation?
Answer:
[tex]3 + \frac{1}{2\sqrt{3} } + \frac{1}{5\sqrt[5]{81} }[/tex]
Step-by-step explanation:
Just to make it easier to see, [tex]\sqrt{x} = x^{\frac{1}{2} }[/tex] and [tex]\sqrt[5]{x} = x^{\frac{1}{5} }[/tex] This way we could more easily use the power rule of derivatives.
So if f(x) = [tex]x^{2} +x^{\frac{1}{2} } +x^{\frac{1}{5} }[/tex] then f'(x) will be as follows.
f'(x) = [tex]x^{1} +\frac{1}{2} x^{-\frac{1}{2} } +\frac{1}{5} x^{-\frac{4}{5} } = x +\frac{1}{2x^{\frac{1}{2} }} +\frac{1}{ 5x^{\frac{4}{5} }} = x +\frac{1}{2\sqrt{x}} +\frac{1}{ 5\sqrt[5]{x^4} }[/tex]
to find f'(3) just plug 3 into f'(x) so [tex]3 + \frac{1}{2\sqrt{3} } + \frac{1}{5\sqrt[5]{81} }[/tex]
Write the word sentence as an inequality.
3.2 less than a number t is at most 7.5
t-3.2 ≤ 7.5
"at most" means less than or equal to
The radius of a circle is 10 cm. Find its circumference in terms of \piπ.
[tex]{ \bf{ \underbrace{Given :}}}[/tex]
Radius of the circle "[tex]r[/tex]" = 10 cm.
[tex]{ \bf{ \underbrace{To\:find:}}}[/tex]
The circumference of the circle.
[tex]{ \bf{ \underbrace{Solution :}}}[/tex]
[tex]\sf\orange{The\:circumference \:of\:the\:circle\:is\:20\:π\:cm.}[/tex]
[tex]\large\mathfrak{{\pmb{\underline{\red{Step-by-step\:explanation}}{\red{:}}}}}[/tex]
We know that,
[tex]\sf\purple{Circumference\:of\:a\:circle \:=\:2πr }[/tex]
[tex] = 2 \: \pi \times 10 \: cm \\ \\ = 20 \: \pi \: cm[/tex]
Therefore, the circumference of the circle is 20 π cm.
[tex]\huge{\textbf{\textsf{{\orange{My}}{\blue{st}}{\pink{iq}}{\purple{ue}}{\red{35}}{\green{♡}}}}}[/tex]
Is this the correct answer?
Answer:
Correct.
Step-by-step explanation:
It looks good to me.
Good job!
Kern Shipping Inc. has a requirement that all packages must be such that the combined length plus the girth (the perimeter of the cross section) cannot exceed 99 inches. Your goal is to find the package of maximum volume that can be sent by Kern Shipping. Assume that the base is a square.
a. Write the restriction and objective formulas in terms of x and y. Clearly label each.
b. Use the two formulas from part (a) to write volume as a function of x, V(x). Show all steps.
Answer:
Step-by-step explanation:
From the given information:
a)
Assuming the shape of the base is square,
suppose the base of each side = x
Then the perimeter of the base of the square = 4x
Suppose the length of the package from the base = y; &
the height is also = x
Now, the restriction formula can be computed as:
y + 4x ≤ 99
The objective function:
i.e maximize volume V = l × b × h
V = (y)*(x)*(x)
V = x²y
b) To write the volume as a function of x, V(x) by equating the derived formulas in (a):
y + 4x ≤ 99 --- (1)
V = x²y --- (2)
From equation (1),
y ≤ 99 - 4x
replace the value of y into (2)
V ≤ x² (99-4x)
V ≤ 99x² - 4x³
Maximum value V = 99x² - 4x³
At maxima or minima, the differential of [tex]\dfrac{d }{dx}(V)=0[/tex]
[tex]\dfrac{d}{dx}(99x^2-4x^3) =0[/tex]
⇒ 198x - 12x² = 0
[tex]12x \Big({\dfrac{33}{2}-x}}\Big)=0[/tex]
By solving for x:
x = 0 or x = [tex]\dfrac{33}{2}[/tex]
Again:
V = 99x² - 4x³
[tex]\dfrac{dV}{dx}= 198x -12x^2 \\ \\ \dfrac{d^2V}{dx^2}=198 -24x[/tex]
At x = [tex]\dfrac{33}{2}[/tex]
[tex]\dfrac{d^2V}{dx^2}\Big|_{x= \frac{33}{2}}=198 -24(\dfrac{33}{2})[/tex]
[tex]\implies 198 - 12 \times 33[/tex]
= -198
Thus, at maximum value;
[tex]\dfrac{d^2V}{dx^2}\le 0[/tex]
Recall y = 99 - 4x
when at maximum x = [tex]\dfrac{33}{2}[/tex]
[tex]y = 99 - 4(\dfrac{33}{2})[/tex]
y = 33
Finally; the volume V = x² y is;
[tex]V = (\dfrac{33}{2})^2 \times 33[/tex]
[tex]V =272.25 \times 33[/tex]
V = 8984.25 inches³
Select the correct answer.
What is the factored form of this expression?
-12x+36
ОА.(x - 12)(x-3)
O B. (x - 6)^2
OC. (x + 6)^2
OD. (x-6)(x+6)
The answer is B
the method use to solved this is called foil
33. Given the following algebraic expression 5x² + 10 Which statement is true?
a. The coefficient is 5
b. The constant is 2
C. The power is 10
d. The constant is 5
Answer:
Given the following algebraic expression 5x² + 10 Which statement is true?
a. The coefficient is 5. ( true)
b. The constant is 2
C. The power is 10
d. The constant is 5
A ramp is in the shape of a triangle
Answer:
Step-by-step explanation:
PLEASE HELP ME !!!! WILL GIVE BRAINLIEST TO WHOEVER ANSWERS CORRECTLY
Answer:
(8x + 1)° + ( 4x+11)° = 180° (linear pair )
8x +1 + 4x +11 = 180
8x + 4x + 1 + 11 = 180
12x + 12 = 180
12x = 180 - 12
12x = 168
x= 168/12
x = 14