Answer:
The fraction filled with water is 7/40
Step-by-step explanation:
Okay.
Here we start by calculating the volume of the cylindrical tank.
Mathematically, that would be;
V = π * r^2 * h
From the question
r = 80 cm = 80/100 = 0.8 meters
h = 1.4 meters
π = 22/7
Plugging these values into the volume equation, we have;
V = 22/7 * 0.8 * 0.8 * 1.4 = 2.816 m^3
But mathematically;
1 m^3 = 1000 liters
So 2.816 m^3 = 2.816 * 1000 = 2816 liters
So the fraction filled with water will be;
492.8/2816 = 0.175 = 175/1000 = 7/40
The height of a building model is 2% of its actual height. If the building
model is 3 feet tall, how tall is the actual building?
Answer:
x = 150 feets
Step-by-step explanation:
Given that,
The height of a building model is 2% of its actual height.
The building model is 3 feet tall, h = 3 feet
We need to find the height of the actual building. Let it is x.
According to question,
h = 2% of x
We have, h = 3 feet
So,
[tex]x=\dfrac{h}{2\%}\\\\x=\dfrac{3}{2/100}\\\\x=150\ \text{feet}[/tex]
So, the actual height of the building is 150 feets.
1-Determine a solução dos sistemas abaixo pelo método de adição: a) {x + y = 5 {2x- y=9 b) {3x - y = 10 {x + y =18 Prfvr gente
a)
X + Y = 5
2X - Y = 9
X + 2X + Y - Y = 5 + 9
3X = 14
X = 14/3Para Y, basta substituir o valor de X em qualquer uma das 2 equacoes - arbitrariamente. Escolhendo a primeira:
X+ Y = 5
14/3 + Y = 5
Y = 5 - 14/3
Y = 1/3.........................
b)
3X - Y = 10
X + Y = 18
3X + X - Y + Y = 10 + 18
4X = 28
X = 7Para Y, basta substituir o valor de X em qualquer uma das 2 equacoes - arbitrariamente. Escolhendo a segunda:
X + Y = 18
7 + Y = 18
Y = 18 - 7
Y = 11
Write the equation of the line which passes
through the points (4,2) and (-3, 1)
Answer:
y = 1/3x + 4/7
Step-by-step explanation:
Slope Formula: [tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]
Slope-Intercept Formula: y = mx + b
Step 1: Find slope m
m = (1 - 2)/(-3 - 4)
m = -1/-7
m = 1/7
y = 1/7x + b
Step 2: Find y-intercept b
1 = 1/7(3) + b
1 = 3/7 + b
b = 4/7
Step 3: Write linear equation
y = 1/3x + 4/7
the perimeter of square is 76 cm find are of square
Answer:
Given the information above, the area of the square is 361 cm²
Step-by-step explanation:
A square is a shape with four equal sides. So, in order to find the area of the square, we must find the length of each individual side. We can do this by dividing the perimeter by 4 because a square has 4 equal sides meaning they have the same lengths.
The perimeter of the square is 76. So, let's divide 76 by 4.
76 ÷ 4 = 19
So, the lengths of each sides in the square is 19cm.
In order to find the area, we must multiply the length and the width together. Since a square has equal sides, then we will multiply 19 by 19 to get the area.
19 × 19 = 361
So, the area of the square is 361 cm²
Answer:
361 cm^2
Step-by-step explanation:
The area of a square can be found by squaring the side length.
[tex]A=s^2[/tex]
A square has four equal sides. The perimeter is the sum of all four sides added together. Therefore, we can find one side length by dividing the perimeter by 4.
[tex]s=\frac{p}{4}[/tex]
The perimeter is 76 centimeters.
[tex]s=\frac{76 cm}{4}[/tex]
Divide 76 by 4.
[tex]s=19 cm[/tex]
The side length is 19 centimeters.
Now we know the side length and can plug it into the area formula.
[tex]A=s^2\\s=19cm[/tex]
[tex]A= (19 cm)^2[/tex]
Evaluate the exponent.
(19cm)^2= 19 cm* 19cm=361 cm^2
[tex]A= 361 cm^2[/tex]
The area of the square is 361 square centimeters.
Determine the equation of the graph and select the correct answer below.
(1, 1-3)
Courtesy of Texas Instruments
Answer:
y = (x -1)² -3
Step-by-step explanation:
A quadratic with a vertex at (h, k) will have an equation of the form ...
y = a(x -h)² +k
You have (h, k) = (1, -3), and a vertical scale factor* of 1. So, the equation of the graphed curve is ...
y = (x -1)² -3
_____
* One way to determine the value of "a" in the form shown is to look at the vertical difference between the vertex and the points 1 unit right or left of the vertex. Here, those points are 1 unit above the vertex, so the vertical scale factor "a" is 1.
A ship drops its anchor into the water and creates a circular ripple. The radius of the ripple increases at
a rate of 50 cm/s. If the origin is used as the location where the anchor was dropped into the water.
Find the equation for the circle 12 seconds after the anchor is dropped
Please write all the steps it’s for my summer school test and I need it done quick as possible thanks.
Answer:
The equation for the circle 12 seconds after the anchor is dropped is x^2 + y^2 = 360,000
Step-by-step explanation:
To find the equation for the circle 12 seconds when the radius of the ripple increases at a rate of 50 cm/s, the circle radius will be;
50 * 12 = 600 cm
Then place the equation inform of Pythagoras equation which is;
x^2 + y^2 = r^2
Where r is the radius
x^2 + y^2 = 600^2
x^2 + y^2 = 360,000
Then, the equation for the circle 12 seconds after the anchor is dropped is x^2 + y^2 = 360,000
I need help factoring this question, Factor 4(20) + 84.
Answer:
164
Step-by-step explanation:
B for brackets
O for of
D for division
M for multiplication
A for addition
S for subtraction
You first start with the brackets (20) and multiply with 4 which is equal to 80 and then add it to 84 which makes 164
I hope this helps
Please answer this question now in two minutes
Answer:
m∠C = 102°
Step-by-step explanation:
This diagram is a Quadrilateral inscribed in a circle
The first step is to determine what m∠B
is
The sum of opposite angles in an inscribed quadrilateral is equal to 180°
m∠D + m∠B = 180°
m∠B = 180° - m∠D
m∠B = 180° - 80°
m∠B = 100°
Second step is we proceed to determine the exterior angles of the circle
m∠ADC = 2 × m∠B
m∠ADC = 2 × 100°
m∠ADC = 200°
m∠ADC = m∠CD + m∠AD
m∠AD = m∠ADC - m∠CD
m∠AD = 200° - 116°
m∠AD = 84°
The third step is to determine m∠BAD
m∠BAD = m∠AD + m∠AB
m∠BAD = 84° + 120°
m∠BAD = 204°
The final step Is to determine what m∠C is
It is important to note that:
m∠BAD is Opposite m∠C
Hence
m∠C = 1/2 × m∠BAD
m∠C = 1/2 × 204
m∠C = 102°
Can someone help me with this please it’s algebra 2
Answer:
7 8 9
Step-by-step explanation:
If x^2 -8x=48 and x<0, what is the value of x+10?
Answer:
6
Step-by-step explanation:
To calculate x+10, we first need to find x. To do this, we can use the first equation.
We are given the equation:
[tex]x^2-8x=48[/tex]
To solve for x, turn one side of the equation into 0 and solve. Therefore:
[tex]x^2-8x=48\\x^2-8x-48=0\\(x-12)(x+4)=0\\x=-4, 12[/tex]
So, the possible values for x are -4 and 12.
However, we are also told that x<0. In other words, x must be negative. Thus, we can remove 12. That leaves us with: x=-4.
So:
[tex]x+10\\(-4)+10\\=6[/tex]
A zoo train ride costs $4 per adult and $1 per child. On a certain day, the total number of adults (a) and children (c) who took the ride was 27, and the total money collected was $60. What was the number of children and the number of adults who took the train ride that day, and which pair of equations can be solved to find the numbers? 1) 11 children and 16 adults Equation 1: a + c = 27 Equation 2: 4a + c = 60 2) 16 children and 11 adults Equation 1: a + c = 27 Equation 2: 4a + c = 60 3) 11 children and 16 adults Equation 1: a + c = 27 Equation 2: 4a − c = 60 4) 16 children and 11 adults Equation 1: a + c = 27 Equation 2: 4a − c = 60
Answer:
11 adults and 16 children
Step-by-step explanation:
a + c = 27 and 4a + c = 60
3a = 60 - 27 = 33
a= 11
so c = 16
The graph of f(x) = StartRoot x EndRoot is reflected over the y-axis. Use the graphing calculator to graph this reflection. Which list contains three points that lie on the graph of the reflection? (–81, 9), (–36, 6), (–1, 1) (1, –1), (16, –4), (36, –6) (–49, 7), (–18, 9), (–1, 1) (1, –1), (4, –16), (5, –25)
Answer:
(–81, 9), (–36, 6), (–1, 1) are the correct three points.
Step-by-step explanation:
Given the function:
[tex]f(x) =\sqrt x[/tex]
Please refer to the attached image.
The green line shows the graph of actual function.
It is reflected over y axis.
The reflected graph is shown in black color in attached image.
When reflected over y axis, the sign of variable [tex]x[/tex] changes from Positive to Negative.
So, the resultant function becomes:
[tex]f(x)=\sqrt{-x}[/tex]
i.e. we will have to give the values of x as negative now.
so, the options in which value of x is negative are the possible answers only.
The possible answers are:
(–81, 9), (–36, 6), (–1, 1) and
(–49, 7), (–18, 9), (–1, 1)
Now, we will check the square root function condition.
In the 2nd option, (–18, 9) does not satisfy the condition.
So, the correct answer is:
(–81, 9), (–36, 6), (–1, 1)
Answer:
A on E2020
Step-by-step explanation:
:)
Reduce any fractions to lowest terms. Don't round your answer, and don't use mixed fractions. 4x+4\leq9x+84x+4≤9x+8
Answer:
x ≥ -4/5
Step-by-step explanation:
Maybe you want to solve ...
4x+4 ≤ 9x +8
0 ≤ 5x +4 . . . . . subtract 4x+4
0 ≤ x +4/5 . . . . . divide by 5
-4/5 ≤ x . . . . . . . subtract 4/5
Answer:
x ≥−4/5
Step-by-step explanation:
how many are 6 raised to 4 ???
Answer:
[tex]\large \boxed{1296}[/tex]
Step-by-step explanation:
6 raised to 4 indicates that the base 6 has an exponent or power of 4.
[tex]6^4[/tex]
6 is multiplied by itself 4 times.
[tex]6 \times 6 \times 6 \times 6[/tex]
[tex]=1296[/tex]
If 4SINB=3SIN(2A+B) :
Prove that:7COT(A+B)=COTA
Answer:
Step-by-step explanation:
Given the expression 4sinB = 3sin(2A+B), we are to show that the expression 7cot(A+B) = cotA
Starting with the expression
4sinB= 3sin(2A+B)
Let us re write angle B = (A + B) - A
and 2A + B = (A + B) + A
Substituting the derived expression back into the original expression ww will have;
4Sin{(A + B) - A } = 3Sin{(A + B)+ A}
From trigonometry identity;
Sin(D+E) = SinDcosE + CosDSinE
Sin(D-E) = SinDcosE - CosDSinE
Applying this in the expression above;
4{Sin(A+B)CosA - Cos(A+B)SinA} = 3{Sin(A+B)CosA + Cos(A+B)sinA}
Open the bracket
4Sin(A+B)CosA - 4Cos(A+B)SinA = 3Sin(A+B)CosA + 3Cos(A+B)sinA
Collecting like terms
4Sin(A+B)CosA - 3Sin(A+B)cosA = 3Cos(A+B)sinA + 4Cos(A+B)sinA
Sin(A+B)CosA = 7Cos(A+B)sinA
Divide both sides by sinA
Sin(A+B)CosA/sinA= 7Cos(A+B)sinA/sinA
Since cosA/sinA = cotA, the expression becomes;
Sin(A+B)cotA = 7Cos(A+B)
Finally, divide both sides of the resulting equation by sin(A+B)
Sin(A+B)cotA/sin(A+B) = 7Cos(A+B)/sin(A+B)
CotA = 7cot(A+B) Proved!
A combination lock uses three numbers between 1 and 46 with repetition, and they must be selected in the correct sequence. Is the name of "combination lock" appropriate? Why or why not? Choose the correct answer below. A. No, because the multiplication counting rule would be used to determine the total number of combinations. B. Yes, because the combinations rule would be used to determine the total number of combinations. C. No, because factorials would be used to determine the total number of combinations. D. No, because the permutations rule would be used to determine the total number of combinations.
The correct answer is D. No because the permutations rule would be used to determine the total number of combinations.
Explanation:
The difference between a combination and a permutation is that in permutations the order is considered. This applies to the numbers in a lock because these need to be in order. Therefore, to analyze the permutations in a lock, the rule for permutations should be used. This includes the general formula P (n,r) =[tex]\frac{n!}{(n-r) !}[/tex]; in this, n is the number of objects and r refers to the objects used in a permutation. Thus, the term "combination" is inappropriate because this is a permutation, and the permutation rule should be used.
is 5.676677666777 a rational number
Answer:Yes, because all integers have decimals. No, because integers do not have decimals. No, because integers cannot be negative. Jeremy says that 5.676677666777... is a rational number because it is a decimal that goes on forever with a pattern.
Step-by-step explanation:
Pls help, I don’t know how to fo
frustum of a cone is: = pi * l(R + r)
(l) = slant height of the frustum.
from 2929.645714 - 506.1257143
= 2423.52
= 2423.5cm
Answer:
from 2929.645714 - 506.1257143
= 2423.52
= 2423.5cm
Solve. 4x−y−2z=−8 −2x+4z=−4 x+2y=6 Enter your answer, in the form (x,y,z), in the boxes in simplest terms. x= y= z=
Answer:
(-2, 4, 2)
Where x = -2, y = 4, and z = 2.
Step-by-step explanation:
We are given the system of three equations:
[tex]\displaystyle \left\{ \begin{array}{l} 4x -y -2z = -8 \\ -2x + 4z = -4 \\ x + 2y = 6 \end{array}[/tex]
And we want to find the value of each variable.
Note that both the second and third equations have an x.
Therefore, we can isolate the variables for the second and third equation and then substitute them into the first equation to make the first equation all one variable.
Solve the second equation for z:
[tex]\displaystyle \begin{aligned} -2x+4z&=-4 \\ x - 2 &= 2z \\ z&= \frac{x-2}{2}\end{aligned}[/tex]
Likewise, solve the third equation for y:
[tex]\displaystyle \begin{aligned} x+2y &= 6\\ 2y &= 6-x \\ y &= \frac{6-x}{2} \end{aligned}[/tex]
Substitute the above equations into the first:
[tex]\displaystyle 4x - \left(\frac{6-x}{2}\right) - 2\left(\frac{x-2}{2}\right)=-8[/tex]
And solve for x:
[tex]\displaystyle \begin{aligned} 4x+\left(\frac{x-6}{2}\right)+(2-x) &= -8 \\ \\ 8x +(x-6) +(4-2x) &= -16 \\ \\ 7x-2 &= -16 \\ \\ 7x &= -14 \\ \\ x &= -2\end{aligned}[/tex]
Hence, x = -2.
Find z and y using their respective equations:
Second equation:
[tex]\displaystyle \begin{aligned} z&=\frac{x-2}{2} \\ &= \frac{(-2)-2}{2} \\ &= \frac{-4}{2} \\ &= -2\end{aligned}[/tex]
Third equation:
[tex]\displaystyle \begin{aligned} y &= \frac{6-x}{2}\\ &= \frac{6-(-2)}{2}\\ &= \frac{8}{2}\\ &=4\end{aligned}[/tex]
In conclusion, the solution is (-2, 4, -2)
Answer:
x = -2
y =4
z=-2
Step-by-step explanation:
4x−y−2z=−8
−2x+4z=−4
x+2y=6
Solve the second equation for x
x = 6 -2y
Substitute into the first two equations
4x−y−2z=−8
4(6-2y) -y -2 = 8
24 -8y-y -2z = 8
-9y -2z = -32
−2(6-2y)+4z=−4
-12 +4y +4z = -4
4y+4z = 8
Divide by 4
y+z = 2
z =2-y
Substitute this into -9y -2z = -32
-9y -2(2-y) = -32
-9y -4 +2y = -32
-7y -4 = -32
-7y =-28
y =4
Now find z
z = 2-y
z = 2-4
z = -2
Now find x
x = 6 -2y
x = 6 -2(4)
x =6-8
x = -2
determine the image of the point p[-3,10) under the translation [5,-7]
[tex](-3+5,10-7)=(2,3)[/tex]
If you make $3.80 an hour plus tips, what is your paycheck for the week if you worked 40 hours and made $250.00 dollars in tips?
Answer:
$402
Step-by-step explanation:
Hello!
If you made 3.80 an hour and worked 40 we can multiply these to find the total amount you earned.
3.80 * 40 = 152
You also made 250 in tips so we add that to the total
152+250 = 402
The answer is $402
Hope this helps!
A researcher performs a hypothesis test to test the claim that for a particular manufacturer, the mean weight of cereal in its 18 ounce boxes is less than 18 ounces. He uses the following hypotheses: H 0: μ = 18 vs H A: μ < 18 and finds a P-value of 0.01. Draw a conclusion about the cereal box weight at a significance level of 0.05.
Answer:
We conclude that the mean weight of cereal in its 18-ounce boxes is less than 18 ounces.
Step-by-step explanation:
We are given that a researcher performs a hypothesis test to test the claim that for a particular manufacturer, the mean weight of cereal in its 18-ounce boxes is less than 18 ounces.
Let [tex]\mu[/tex] = mean weight of cereal in its 18-ounce boxes.
So, Null Hypothesis, [tex]H_0[/tex] : [tex]\mu[/tex] = 18 {mean that the mean weight of cereal in its 18-ounce boxes is equal to 18 ounces}
Alternate Hypothesis, [tex]H_A[/tex] : [tex]\mu[/tex] < 18 {mean that the mean weight of cereal in its 18-ounce boxes is less than 18 ounces}
Also, it is given that the P-value is 0.01 and the level of significance is 0.05.
The decision rule based on the P-value is given by;
If the P-value of our test statistics is less than the level of significance, then we have sufficient evidence to reject our null hypothesis as our test statistics will fall in the rejection region.If the P-value of our test statistics is more than the level of significance, then we have insufficient evidence to reject our null hypothesis as our test statistics will not fall in the rejection region.Here, clearly our P-value is less than the level of significance as 0.01 < 0.05, so we have sufficient evidence to reject our null hypothesis as our test statistics will fall in the rejection region.
Therefore, we conclude that the mean weight of cereal in its 18-ounce boxes is less than 18 ounces.
Two birds sit at the top of two different trees. The distance between the first bird and a birdwatcher on the ground is 32 feet. The distance between the birdwatcher and the second bird is 45 feet. A triangle is created from point Bird Watcher, point First Bird, and point Second Bird. Angle First Bird is a right angle, and angle Second Bird measures x degrees. What is the angle measure, or angle of depression, between this bird and the birdwatcher? Round your answer to the nearest tenth. 35.4° 44.7° 45.3° 54.6°
Answer:
Step-by-step explanation:
When you draw out that picture (and very good description, btw!) basically what you have is a right triangle that has a base of 32 and a hypotenuse of 45. The right angle is one of the base angles and x is the vertex angle. We need to find the vertex angle before we can find the angle of depression from the second bird to the watcher. The side of length 32 is opposite the angle x, and 45 is the hypotenuse, so the trig ratio we need is the only one that directly relates side opposite to hypotenuse, which is the sin ratio:
[tex]sin(x)=\frac{32}{45}[/tex] and
sin(x) = .711111111
Go to your calculator and hit the 2nd button then the sin button and on your screen you will see:
[tex]sin^{-1}([/tex]
and after that open parenthesis enter in your decimal .711111111 and hit equals. You should get an angle of 45.325. That's angle x. But that's not the angle of depression. The angle of depression is the one complementary to angle x.
Angle of depression = 90 - angle x and
Angle of depression = 90 - 45.325 so
Angle of depression = 44.67 or 44.7 degrees.
Answer:
Its 45.3!!!
Step-by-step explanation:
How can I divide decimals and fin the correct quotient and remainder.?
Answer:
Add a zero to the remainder and a decimal point in the quotient. Then we can continue to divide decimals. We divide 64 by 5 and obtain 12 as a quotient and 4 as a remainder. Since the remainder is not zero, we can continue to get a decimal answer by adding a decimal point in the quotient and a zero to the remainder
Step-by-step explanation:
solve this equation -2x+9=-5x-15
Answer:
x = -8
I hope this helps!
Of the 40 specimens of bacteria in a dish, 3 specimens have a certain trait. If 5 specimens are to be selected from the dish at random and without replacement, which of the following represents the probability that only 1 of the 5 specimens selected will have the trait?1) (5/1)/(40/3)
2) (5/1)/(40/5)
3) (40/3)/(40/5)
4) (3/1)(37/4)/(40/3)
5) (3/1)(37/4)/(40/5)
Answer:
[tex]\frac{(^3_1)*(^{37}_4)}{(^{40}_5)}[/tex]
Step-by-step explanation:
The total number of ways in which 5 specimens can be selected from the dish at random is given as C(40, 5).
Since only one of the five specimens would have the trait, the number of ways of selecting the one specimen out of the 3 specimens with the trait is C(3, 1).
3 specimens have the trait therefore 37 specimens (40 - 3) do not have the trait. The number of ways in which the remaining 4 specimens out of the 5 spemimens that do not have the trait is C(37, 4).
Therefore, the probability that only 1 of the 5 specimens selected will have the trait = [tex]\frac{C(3,1)*C(37,4)}{C(40,5)} =\frac{(^3_1)*(^{37}_4)}{(^{40}_5)}[/tex]
Use the motion map to answer the question.
Which scenario could be represented by the motion
map?
O A car speeds up to merge onto the freeway and
then continues at a constant velocity
O A car speeds up to pass a truck, then slows down
to a constant velocity.
O A car slows to stop at a stop sign. Once traffic is
clear, the car speeds up.
O A car slows to makes a U-turn, then continues in
the opposite direction.
Answer:
A car slows to stop at a stop sign. Once traffic is clear, the car speeds up.
Step-by-step explanation:
Answer:
C.) A car slows to stop at a stop sign. Once traffic is clear, the car speeds up.
Step-by-step explanation:
PLEASE HELP QUICK, WILL MARK BRAINLIEST!
Solve for x: −6 < x − 1 < 9
5 < x < 10
−5 < x < 10
−5 > x > 10
5 > x > −10
Answer:
−5 < x < 10
Step-by-step explanation:
−6 < x − 1 < 9
Add 1 to all sides
−6+1 < x − 1+1 < 9+1
−5 < x < 10
Answer:
B
Step-by-step explanation:
Add one to everything
-5 < x < 10
Best of Luck!
This rectangular wall is to be painted. Paint is sold in tins. How much does it cost to paint the wall?
Answer:
£23.96
Step-by-step explanation:
Area to be painted:
3.6 m * 8.3 m = 29.88 m^2
The area to be painted is 29.88 m^2.
A tin of paint covers 8 m^2. We divide to find the number of tins needed.
29.88/8 = 3.735
Since full tins must be bought, the smallest number of tins needed is 4.
Now we find the price of 4 tins. 1 tin costs £5.99, so 4 tins cost:
4 * £5.99 = £23.96
I am visiting my friend Janette in Bristol. My journey takes a total time of 1 hour 26 minutes. I travel by train for 34 minutes, then walk at a rate of 1/2 mile per 10 minutes. How many miles do I walk for?
Answer:
2.6 miles
Step-by-step explanation:
1 hour 26 minutes= 86 minutes
86-34=52 total walk time
52 minutes= 5*1/2 miles
=2.5 miles walked
and 2 minutes.
so we need to find 1/5 of 1/2
(1/2)/5=0.1 mile
2.5+0.1=2.6 miles