Step-by-step explanation:
we cannot see the diagram, so we don't know how many layers of bricks are used. and therefore it is impossible to tell the height of the wall.
Find the difference.
(3x3−2x2+4x−8)−(5x3+12x2−3x−4)=
Answer:
-2x³ - 14x² + 7x - 4
General Formulas and Concepts:
Pre-Algebra
Distributive PropertyAlgebra I
Terms/CoefficientsStep-by-step explanation:
Step 1: Define
Identify
(3x³ - 2x² + 4x - 8) - (5x³ + 12x² - 3x - 4)
Step 2: Simplify
[Distributive Property] Distribute negative: 3x³ - 2x² + 4x - 8 - 5x³ - 12x² + 3x + 4Combine like terms (x³): -2x³ - 2x² + 4x - 8 - 12x² + 3x + 4Combine like terms (x²): -2x³ - 14x² + 4x - 8 + 3x + 4Combine like terms (x): -2x³ - 14x² + 7x - 8 + 4Combine like terms: -2x³ - 14x² + 7x - 4Write an equation that represents the line.
Answer:
Y = 2/3X + 4/3
Step-by-step explanation:
(1,2) (4,4)
M = 2/3
Y = 2/3X + b
4 = 8/3 + b
12 = 8 + 3b
4 = 3b
B = 4/3
Y = 2/3X + 4/3
what is the domain of f(x)
Answer:
Values of x
Step-by-step explanation:
The domain of a function is the set of all possible inputs for the function while the co-domain is the set of all possible outputs of the function.
In other words, domain is the set of x-values that you can put into any given equation while co-domain is the sex of f(x)-values that you get from substituting the values of x.
Hope it's clear
A ice cream shop sells 8 different flavors of ice cream with A choice of three different styles of calls how many different ice cream cones are possible if you select one ice cream flavor with one type of ice cream cone
Explanation:
There are 8 different flavors and 3 types of cones. This means there are 8*3 = 24 different combos possible.
Imagine a table with 8 rows and 3 columns. Each row is a different flavor and each column is a different cone type. The table formed has 24 inner cells to represent a different combination of flavor + cone type. So that's why we multiplied those values earlier.
Note: This only works if you're only able to select one type of flavor.
Time Remaining 59 minutes 49 seconds00:59:49 PrintItem 1 Time Remaining 59 minutes 49 seconds00:59:49 At the end of Year 2, retained earnings for the Baker Company was $2,950. Revenue earned by the company in Year 2 was $3,200, expenses paid during the period were $1,700, and dividends paid during the period were $1,100. Based on this information alone, what was the amount of retained earnings at the beginning of Year 2?
Answer:
$2550
Step-by-step explanation:
Calculation to determine the amount of retained earnings at the beginning of Year 2
Using this formula
Beginning Retained Earnings + Revenue − Expenses − Dividends = Ending Retained Earnings
Let plug in the formula
Beginning Retained Earnings + $3,200 − $1,700 − $1,100 = $2950
Beginning Retained Earnings= $2,950-$400
Beginning Retained Earnings = $2,550
Therefore the amount of retained earnings at the beginning of Year 2 is $2550
if sine Theta is less than 0 and tan Theta is greater than 0 then
Answer:
Sine Theta is a negative number, Tan Theta is a greater number then zero.
Step-by-step explanation:
If Sine Theta is less then zero, she is a negative number. So 0 - y = -y.
So if Tan Theta is a greater number than zero, her number is not negative. So 0 + y = y
I hope this helped! I didn’t really understand the question though.
Divide: (2n3+4n−9)÷(n+2).
Answer:
2n+2
_____
9 2n
Find the standard normal area for each of the following (Round your answers to 4 decimal places.): Standard normal area a.P(1.26 < Z < 2.16) b.P(2.05 < Z < 3.05) c.P(-2.05 < Z < 2.05) d.P(Z > .55)
Answer:
The correct answer is:
(a) 0.0884
(b) 0.0190
(c) 0.9596
(d) 0.2921
Step-by-step explanation:
(a)
= [tex]P(1.26<Z<2.16)[/tex]
= [tex]P(Z<2.16)-P(Z<1.26)[/tex]
= [tex]0.9846-0.8962[/tex]
= [tex]0.0884[/tex]
(b)
= [tex]P(2.05<Z<3.05)[/tex]
= [tex]P(Z<3.05)-P(Z<2.05)[/tex]
= [tex]0.9989-0.9798[/tex]
= [tex]0.0190[/tex]
(c)
= [tex]P(-2.05<Z<2.05)[/tex]
= [tex]P(Z<2.05)-P(Z<-2.05)[/tex]
= [tex]0.9798-0.0202[/tex]
= [tex]0.9596[/tex]
(d)
= [tex]P(Z>0.55)[/tex]
= [tex]1-P(Z<0.55)[/tex]
= [tex]1-0.7088[/tex]
= [tex]0.2912[/tex]
An adult soccer league requires a ratio of at least 2 women per 7 men on the roster. If 14 men are on the roster, how many women are needed to maintain that ratio?
Answer:
Atleast 4 women
Step-by-step explanation:
Ratio of
Women to men = 2 : 7
Number of women needed to maintain the ratio if there are 14 men on the roster :
The minimum number of women required :
(2 : 7) * number of men in roster
(2 / 7) * 14
2 * 2 = 4 women
Atleast 4 women are required to main the ratio
Sarah invests £2000 for 2 years in a saving account. She earns 3% per annum in compound interest.
How much did Sarah have in her saving account after 2 years?
£
Use the formula:
A=P(1+r100)n
Where;
A = the amount of money accumulated after n years, including interest
P = the principal sum (the initial amount borrowed or invested)
r = the rate of interest (percentage)
n = the number of years the amount is borrowed or invested
Answer:
£2120.27
Step-by-step explanation:
A = P (1 + r100)
A = 2000 (1+ 0.03/365)^365(2)
A = 2000 ( 1.00008)^730
A = 2000 (1.060)
A = £2120.27
We are testing a new drug with potentially dangerous side effects to see if it is significantly better than the drug currently in use. If it is found to be more effective, it will be prescribed to millions of people.
1.
a. What does it mean in context to make a type I error in this situation?
b. What does it mean in context to make a type Il error in this situation?
c. Which error do you think is worse? Now we are testing to see whether taking a vitamin supplement each day has significant health benefits. There are no (known) harmful side effects of the supplement.
2.
a. What does it mean in context to make a type I error in this situation?
b. What does it mean in context to make a type Il error in this situation?
c. Which error do you think is worse? For a given situation, what should you do if you think that committing a type l error is much worse than committing a type Il error?
A. Increase the significance level.
B. Decrease the significance level.
C. Nothing, just be careful to take a good sample.
Answer:
1) a) accepting the new drug is better based on its effectiveness when in reality the drug ain't better than the drug in current use because of its side effects
b) Accepting and using the current drug in use when it is not as effective as the new drug
c) Type 1 error
2) a) rejecting the vitamin supplement based on not knowing the harmful side effects
b) Accepting the Vitamin supplement based on just health benefits it portrays without comparison with other supplement.
c) Type II error
3) Increase the significance level ( A )
Step-by-step explanation:
1)
a) To make a type 1 error in this situation is accepting the new drug is better and prescribing it to the millions of people based only on its effectiveness when in reality the drug ain't better than the drug in current use because of its side effects
b) A type II error in context is :Accepting and using the current drug in use when it is not as effective as the new drug
c) Type I error
2)
a) Type 1 error is rejecting the vitamin supplement based on not knowing the harmful side effects
b) Accepting the Vitamin supplement based on just health benefits it portrays without comparison with other supplement.
c) Type II error
3) If committing a type 1 error is much worse
Increase the significance level
Determine the value of the missing letters in the sum of numbers
below:
ab1
+ ba
abb
49x
Answer:
a=2, b=3,x=6
Step-by-step explanation:
We are given that
We have to find the value of the missing letters in the sum of numbers.
From given sum
1+a+b=x ....(1)
b+b+b=9 .....(2)
a+a=4 ......(3)
From equation (2) we get
[tex]3b=9[/tex]
[tex]\implies b=3[/tex]
From equation (3) we get
[tex]2a=4[/tex]
[tex]a=4/2[/tex]
[tex]a=2[/tex]
Now, substitute the values in equation (1) we get
[tex]1+2+3=x[/tex]
[tex]x=6[/tex]
Therefore,
231+32+233=496
Make a substitution to express the integrand as a rational function and then evaluate the integral. int_(25)^(81) sqrt(x)/(x-1) dx
Let y = √x, so that y ² = x and 2y dy = dx. Then the integral becomes
[tex]\displaystyle \int_{25}^{81} \frac{\sqrt x}{x-1}\,\mathrm dx = \int_{\sqrt{25}}^{\sqrt{81}} \frac y{y^2-1}(2y\,\mathrm dy) = 2 \int_5^9 \frac{y^2}{y^2-1}\,\mathrm dy[/tex]
Now,
y ² / (y ² - 1) = 1 + 1 / (y ² - 1) = 1 + 1/2 (1/(y - 1) - 1/(y + 1))
so integrating gives us
[tex]\displaystyle 2\int_5^9\frac{y^2}{y^2-1}\,\mathrm dy= \int_5^9\left(2+\frac1{y-1}-\frac1{y+1}\right)\,\mathrm dy \\\\= (2y+\ln|y-1|-\ln|y+1|)\bigg|_5^9 \\\\= \boxed{8+\ln\left(\dfrac65\right)}[/tex]
Evaluate for x=2 and y=3: x^2y^-3/x^-1y
Answer:
8/81
Step-by-step explanation:
It's most efficient to simplify the quotient algebraically before inserting the values of the variables x and y.
The given expression reduces to x³ / y^4.
Substituting 2 for x and 3 for y, we get:
(2)³ 8
--------- = ---------- (Agrees with first given possible answer)
(3)^4 81
5
12
of the pupils in Year 9 say their favourite colour is red.
There are 240 pupils in Year 9.
How many students said red is their favourite colour?
Answer:
100
Step-by-step explanation:
I assume you mean [tex]\frac{5}{12}[/tex] of the students in Year 9.
Basically, first you need to work out 1/12 of the students, which is just 240 divided by 12, equals 20.
So, we know 1/12 of 240 is 20, therefore, in order to work out 5/12, we must do 20 x 5, which is 100.
Floataway Tours has $420,000 that can be use to purchase new rental boats for hire during the summer. The boats can be purchased from two different manufacturers. Floataway Tours would like to purchase at least 50 boats and would like to purchase the same number from Sleekboat as from Racer to maintain goodwill. At the same time,Floataway Tours wishes to have a total seating capacity of at least 200.
Required:
Formulate this problem as a linear program.
Answer and explanation:
A linear problem is an equation based on known and unknown variables that follow a linear path, usually without exponents and look like this:
y=mx+b. To formulate the linear constraints of the problem above, we look at the unknown variables and known variables and define and equation using this.
From the problem, assume x and y are the prices of the different boat brands:
50x+50y=420000
Assume a and b are number of x brand boats and y brand boats supplied thus:
a+b>=200
The five-number summary of a data set is: 0, 4, 6, 14, 17
An observation is considered an outlier if it is below:
An observation is considered an outlier if it is above:
Answer:
Outlier therefore could only be values below - 12.75
or could only be values above + 121.125
Step-by-step explanation:
0, 4, 6, 14, 17
inner quartile range of 0 - 17 is 1/2 of 17 subtracted from the higher number = 17 - 1/2 of 8.5 = 8.5 - 4.25 = 4.25 - 4.25 x 3
= 4.25 to 12.75 for inner quartile
inner quartile range is 12.75-4.25 = 8.5
We then 1.5 x 8.5 to show the outlier
= 12.75 meaning there is no outlier if is below.
Lower quartile fences = 4.25 - 1.5 = 2.75
or -1.5 x 8.5 (the range) = -12.75
Upper quartile fence = 12.75 + 1.5 = 14.25 x 8.5 = 121.125 this would be an outlier if it is 12.75 higher than 121.125 or 12.75 lower than 5.50.
Outlier therefore could only be values below - 12.75
or could only be values above + 121.125
An observation is considered an outlier if it exceeds a distance of 1.5 times the interquartile range (IQR) below the lower quartile or above the upper quartile. The values of the lower quartile - 1.5 x IQR and upper quartile + 1.5 x IQR are known as the inner fences.
An observation is an outlier if it falls more than above the upper quartile or more than below the lower quartile. The minimum value is so there are no outliers in the low end of the distribution. The maximum value is so there are no outliers in the high end of the distribution.
Find an expression for the general term of each of the series below. Use n as your index, and pick your general term so that the sum giving the series starts with n=0.
A. x^3cosx^2=x^3-(x^7)/2!+(x^11)/4!-(x^15)/6!+...
general term =
B. x^3sinx^2=x^5-(x^9)/3!+(x^13)/5!-(x^17)/7!+...
general term =
Answer:
[tex]x^{3}cos(x^{2})=\sum _{n=0} ^{\infty} \frac{(-1)^{n}x^{4n+3}}{(2n)!}[/tex]
[tex]x^{3}sin(x^{2})=\sum _{n=0} ^{\infty} \frac{(-1)^{n}x^{4n+5}}{(2n+1)!}[/tex]
Step-by-step explanation:
A
Let's start with the first function:
[tex]x^{3}cos(x^{2})=x^{3}-\frac{x^{7}}{2!}+\frac{x^{11}}{4!}-\frac{x^{15}}{6!}+...[/tex]
In order to find the expression for the general term, we will need to analyze each part of the sum. First, notice that the sign of the terms of the sum will change with every new term, this tells us that the expression must contain a
[tex](-1)^{n}[/tex].
This will guarantee us that the terms will always change their signs so that will be the first part of our expression.
next, the power of the x. Notice the given sequence: 3, 7, 11, 15...
we can see this is an arithmetic sequence since the distance between each term is the same. There is a distance of 4 between each consecutive power, so this sequence can be found by adding a 4n to the original number, the 3. So the power is given by 4n+3.
so let's put the two things together:
[tex](-1)^{n}x^{4n+3}[/tex]
Finally the denominator, there is also a sequence there: 0!, 2!, 4!, 6!
This is also an arithmetic sequence, where we are multiplying each consecutive value of n by a 2, so in this case the sequence can be written as: (2n)!
So let's put it all together so we get:
[tex]\frac{(-1)^{n}x^{4n+3}}{(2n)!}[/tex]
So now we can build the whole series:
[tex]x^{3}cos(x^{2})=\sum _{n=0} ^{\infty} \frac{(-1)^{n}x^{4n+3}}{(2n)!}[/tex]
B
Now, let's continue with the next function:
[tex]x^{3}sin(x^{2})=x^{5}-\frac{x^{9}}{3!}+\frac{x^{13}}{5!}-\frac{x^{17}}{7!}+...[/tex]
In order to find the expression for the general term, we will need to analyze each part of the sum. First, notice that the sign of the terms of the sum will change with every new term, this tells us that the expression must contain a
[tex](-1)^{n}[/tex].
This will guarantee us that the terms will always change their signs so that will be the first part of our expression.
next, the power of the x. Notice the given sequence: 5, 9, 13, 17...
we can see this is an arithmetic sequence since the distance between each term is the same. There is a distance of 4 between each consecutive power, so this sequence can be found by adding a 4n to the original number, the 5. So the power is given by 4n+5.
so let's put the two things together:
[tex](-1)^{n}x^{4n+5}[/tex]
Finally the denominator, there is also a sequence there: 1!, 3!, 5!, 7!
This is also an arithmetic sequence, where we are multiplying each consecutive value of n by a 2 starting from a 1, so in this case the sequence can be written as: (2n+1)!
So let's put it all together so we get:
[tex]\frac{(-1)^{n}x^{4n+5}}{(2n+1)!}[/tex]
So now we can build the whole series:
[tex]x^{3}sin(x^{2})=\sum _{n=0} ^{\infty} \frac{(-1)^{n}x^{4n+5}}{(2n+1)!}[/tex]
Question 1
Points 3
Rese
A carpet is in the shape of a right triangle. The longer leg
measures 8 feet. The hypotenuse is 4 feet more than the
length of the shorter leg. How long is the shorter leg?
Reset
after
assess
Answer:
6 feetStep-by-step explanation:
Given right triangle with:
Legs s and 8, and hypotenuse s + 4Use Pythagorean and solve for s:
(s + 4)² = s² + 8²s² + 8s + 16 = s² + 648s = 64 - 168s = 48s = 6Given the function, calculate the following values...
f(0) = 56
f(2) = 42
f(-2) = 70
f(x+1) = 7|x-7|
f(x²+2) = 7|x²-6|
Answered by GAUTHMATH
21. The mean salary of twelve men is $58,000, and the
mean salary of eight women is $42,000. Find the
mean salary of all twenty people.
Adam borrowed $5,600 from the bank. The bank charges 4.2% simple interest each year.
Which equation represents the amount of money in dollars, x, Adam will owe in one year, if no payments are made?
x=5,600+5,600(42)(12)
x=5,600+5,600(0.042)(1)
x=5,600+5,600(42)(1)
x=5,600+5,600(0.042)(12)
Answer:
[tex]x = 5600 + 5600 * 0.042 * 1[/tex]
Step-by-step explanation:
Given
[tex]P = 5600[/tex] -- Principal
[tex]R = 4.2\%[/tex] -- Rate
[tex]T = 1[/tex] -- Time
Required
The amount (x) to be paid
This is calculated as:
[tex]x = P + I[/tex]
Where:
[tex]I = PRT[/tex]
So, we have:
[tex]x = 5600 + 5600 * 4.2\% * 1[/tex]
Express percentage as decimal
[tex]x = 5600 + 5600 * 0.042 * 1[/tex]
(c) is correct
A rectangular prism has a volume of 60cm^3. What could the length, width and
height be? Explain how you know. "Recall, the formula for the volume of a prism
is V=lwh.
Can you guys help
The quadrilateral KLMN is dilated with the center of dilation located at point M. Which statement is accurate?
1. The scale factor is 3, which means the length of the image of segment KL will be 1/3 times as long.
2. The scale factor is 1/3, which means the length of the image of segment KL will be 1/3 times as long.
3. The scale factor is 3, which means the length of the image of segment KL will be 3 times as long.
4. The scale factor is 1/3, which means the length of the image of segment KL will be 3 times as long.
Answer:
3. The scale factor is 3, which means the length of the image of segment KL will be 3 times as long.
Step-by-step explanation:
Transformation is the movement of a point from its initial location to a new location. Types of transformation are rotation, translation, reflection and dilation.
Dilation is the increase or decrease in the size of a figure. If a point A(x, y) is dilated about the center of dilation located at O(a, b), the new point is at A'[k(x - a) + a, k(y - b) + b].
Quadrilateral KLMN has vertices at K(2, 1), L(-1, -5), M(6, -5) and N(6, 1). If it is dilated by 3, about the center M(6, -5), the new points are:
K' = (3(2 - 6) + 6, 3(1 - (-5)) + (-5)) = (-6, 13)
L' = (3(-1 - 6) + 6, 3(-5 - (-5)) + (-5)) = (-15, -5)
M' = (3(6 - 6) + 6, 3(-5 - (-5)) + (-5)) = (6, -5)
N' = (3(6 - 6) + 6, 3(1 - (-5)) + (-5)) = (6, 13)
Therefore the image of segment KL will be 3 times long.
Acellus
First, find the surface area of the yellow prism.
3 cm 3 cm
: ?
4 cm
3 cm
front: [?]
back: [ ]
right: [ ]
left: [ ]
3cm
3cm
4cm
top:[]
5 cm
TOTAL: [ ]
Note: The bottom will not be
included because this is whern
5 cm
Answer:
57 cm²
Step-by-step explanation:
Surface area of the yellow prism = front + back + right + left + top
✔️Area of the front = L * W
L = 4 cm
W = 3 cm
Area of the front = 4*3 = 12 cm²
✔️Area of the back = L * W
L = 4 cm
W = 3 cm
Area of the back = 4*3 = 12 cm²
✔️Area of the right face = L * W
L = 4 cm
W = 3 cm
Area of the right face = 4*3 = 12 cm²
✔️Area of the left face = L * W
L = 4 cm
W = 3 cm
Area of the left face = 4*3 = 12 cm²
✔️Area of the top = L * W
L = 3 cm
W = 3 cm
Area of the top = 3*3 = 9 cm²
✅Total = 12 + 12 + 12 + 12 + 9 = 57 cm²
More math sorry. But I honestly don’t know any of these
Answer: A
Step-by-step explanation:
The main parent functions are x, and x raised to the power of something (examples: [tex]x^2, x^3, x^4[/tex], etc)
Domain and range
O Function
O Not a function
Answer:
Radiation 1- Function
Radiation 2- Not a function
Radiation 3- function
Radiation 4- function
Answer:
1 - Function
2 - Not a function
3 - function
4 - function
Step-by-step explanation:
find the value of...
Answer:
1
Step-by-step explanation:
tan(1)tan(2)....tan(89)=?
Recall tan(90-x)=cot(x) and cot(x)tan(x)=1.
tan(89)=tan(90-1)=cot(1)
tan(88)=tan(90-2)=cot(2)
tan(87)=tan(90-3)=cot(3)
...
tan(46)=tan(90-44)=cot(44)
tan(45)=tan(90-45)=cot(45)
So we can replace the last half of the factors with cotangent of the angles in the first half.
The only one that doesn't get a partner is the exact middle factor which is tan(45).
So this is whar we have:
tan(1)tan(2)tan(3)....tan(45)....cot(3)cot(2)cot(1)
So you should see that cot(1)tan(1)=1 and cot(2)tan(2)=1 and so on....
So the product equals tan(45) and tan(45)=1 using unit circle.
3 coins are flipped.
Answer:
just keep writing down outcome on a sheet of paper then count total
Step-by-step explanation:
What is A∪ϕ and A∩ϕ for a set A?
Answer:
1 ans A second phi okay yed