A 1m3 tank containing air at 25℃ and 500kPa is connected through a valve to
another tank containing 5kg of air at 35℃ and 200kPa. Now the valve is opened,
and the entire system is allowed to reach thermal equilibrium, which is at 20℃
(Take: Ru = 8.314 kJ / kg.K).
Answer:
The right answer is "2.2099 m³".
Explanation:
Given:
Mass,
m = 5 kg
Temperature,
T = 35℃
or,
= 35 + 273
Pressure,
P = 200 kPa
Gas constant,
R = 0.2870 kj/kgK
By using the ideal gas equation,
The volume will be:
⇒ [tex]PV=mRT[/tex]
or,
⇒ [tex]V=\frac{mRT}{P}[/tex]
By substituting the values, we get
[tex]=\frac{5(0.2870)(35+273)}{200}[/tex]
[tex]=\frac{441.98}{200}[/tex]
[tex]=2.2099 \ m^3[/tex]
Reinforced concrete is a raw material that has always been available, but it was unappreciated by architects until the nineteenth century.
a. True
b. False
Answer: False
Explanation:
Reinforced concrete is simply a combination of the traditional cement concrete with the steel bars which are the reinforcements.
Reinforced concrete is utilized for construction purpose mostly on a large scale. The reinforced concrete was invented by French gardener Joseph in 1849 therefore, it has always been available and appreciated by architects before the 19th century.
Atmospheric pressure is 101 kPa. Pressure inside a tire is measured using a typical tire pressure gage to be 900 kPa. Find gage pressure and absolute pressure in the tire. ___________________________________________________________________
Answer:
The gage and absolute pressures are 900 and 1001 kilopascals, respectively.
Explanation:
The gage pressure ([tex]P_{g}[/tex]), in kilopascals, is the difference between absolute ([tex]P_{abs}[/tex]) and atmospheric pressures ([tex]P_{atm}[/tex]), measured in kilopascals. If we know that [tex]P_{g} = 900\,kPa[/tex] and [tex]P_{atm} = 101\,kPa[/tex], then the gage and absolute pressures are, respectively:
[tex]P_{g} = 900\,kPa[/tex]
[tex]P_{abs} = P_{atm} + P_{g}[/tex]
[tex]P_{abs} = 101\,kPa + 900\,kPa[/tex]
[tex]P_{abs} = 1001\,kPa[/tex]
The gage and absolute pressures are 900 and 1001 kilopascals, respectively.
Determine the pressure difference in N/m2,between two points 800m apart in horizontal pipe-line,150 mm diameter, discharging water at the rate of 12.5litres per second. Take the frictional coefficient ,f, as being 0.008
Answer: [tex]10.631\times 10^3\ N/m^2[/tex]
Explanation:
Given
Discharge is [tex]Q=12.5\ L[/tex]
Diameter of pipe [tex]d=150\ mm[/tex]
Distance between two ends of pipe [tex]L=800\ m[/tex]
friction factor [tex]f=0.008[/tex]
Average velocity is given by
[tex]\Rightarrow v_{avg}=\dfrac{12.5\times 10^{-3}}{\frac{\pi }{4}(0.15)^2}\\\\\Rightarrow v_{avg}=\dfrac{15.9134\times 10^{-3}}{2.25\times 10^{-2}}\\\\\Rightarrow v_{avg}=7.07\times 10^{-1}\\\Rightarrow v_{avg}=0.707\ m/s[/tex]
Pressure difference is given by
[tex]\Rightarrow \Delta P=f\ \dfrac{L}{d}\dfrac{\rho v_{avg}^2}{2}\\\\\Rightarrow \Delta P=0.008\times \dfrac{800}{0.15}\times \dfrac{997\times (0.707)^2}{2}\\\\\Rightarrow \Delta P=10,631.45\ N/m^2\\\Rightarrow \Delta P=10.631\ kPa[/tex]
1. A manufacturing cell with two workers is responsible for producing a small frying pan with a required takt time of 496 seconds. The material passes through two processes: a deep drawing process and a trimming process. The average cycle time for the deep drawing process is 450 seconds and average cycle time for trimming is 430 seconds. (2 pts.)
a. Does the work cell have adequate capacity to meet demand? Explain.
b. What is the required daily production capacity of the work cell (in number of frying pans per day)? Assume 480 minutes/workday of available time.
2. What is the total daily idle time for both workers in Problem 1? Report your answer in (a) seconds of idle time and (b) as a percentage of total working time for the cell. (2 pts.)
Answer:
Explanation:
[tex]496=\frac{480\times 60}{demand}[/tex]
demand per day = 58 pans
Due to availability of two workers we can have parallel we can have deep drawing and trimming operations simultaneously.
Hence the cycle time would be the greater time of the two operations.
cycle time = 450 seconds
[tex]\text{capacity of work cell}=\frac{\text{available working time}}{\text{cycle time}}[/tex]
[tex]\text{capacity of work cell}=\frac{480\times 60}{450}[/tex]
[tex]\text{capacity of work cell}=64 ~pans[/tex] (which is greater than the demand of 58 pans)
Therefore the work cell has sufficient capacity and time (496 sec.>cycle time 450 sec) to meet the demand.
b)
Required daily production is 58 pans
HELP PLEASE!! ASAP!!!!
can some answer this 2 questions please as paragraph i want it nowww it is graded what action should be taken to make it safe ? also the first question
Actions violated:
Long hair isn't tied upThe girl isn't wearing a lab coatThe girl isn't wearing safety gogglesExtra: There doesn't seem to be an emergency fire blanket in the safeActions to be taken:
Make sure the girl wears a lab coat or kick her outMake sure the girl wears safety goggles or kick her outMake sure her hair is tied up or kick her outEdit: Use these to write your paragraph.
A venturimeter of 400 mm × 200 mm is provided in a vertical pipeline carrying oil of specific gravity 0.82, flow being upward. The difference in elevation of the throat section and entrance section of the venturimeter is 300 mm. The differential U-tube mercury manometer shows a gauge deflection of 300 mm. Calculate: (i) The discharge of oil, and (ii) The pressure difference between the entrance section and the throat section.Take the coefficient of meter as 0.98 and specific gravity of mercury as 13.6
Answer:
the rate of flow = 29.28 ×10⁻³ m³/s or 0.029 m³/s
Explanation:
Given:
Diameter of the pipe = 100mm = 0.1m
Contraction ratio = 0.5
thus, diameter at the throat of venturimeter = 0.5×0.1m = 0.05m
The formula for discharge through a venturimeter is given as:
Where,
is the coefficient of discharge = 0.97 (given)
A₁ = Area of the pipe
A₁ =
A₂ = Area at the throat
A₂ =
g = acceleration due to gravity = 9.8m/s²
Now,
The gauge pressure at throat = Absolute pressure - The atmospheric pressure
⇒The gauge pressure at throat = 2 - 10.3 = -8.3 m (Atmosphric pressure = 10.3 m of water)
Thus, the pressure difference at the throat and the pipe = 3- (-8.3) = 11.3m
Substituting the values in the discharge formula we get
or
or
Q = 29.28 ×10⁻³ m³/s
Hence, the rate of flow = 29.28 ×10⁻³ m³/s or 0.029 m³/s
Hope This Helps :D
What must you do to become ASE certified as an automotive technician?
Answer:
To become ASE certified, you must pass an ASE test and have relevant hands-on work experience. The amount of work experience required can vary by test, and is specified in detail here. ASE recommends submitting the form after you've registered to take an ASE certification test.
Good luck!
Explanation:
Answer: One theme in White Fang is adapting in order to survive. White Fang finally submits to Gray Beaver. He also copes with fighting other dogs. White Fang changes his behaviors so that he can live.
Explanation: its the sample response
Set the leak rate to zero and choose a non-zero value for the proportional feedback gain.Restart the simulation and turn on the outflow valve.What happens to the liquid level in the tank?Repeat this process with higher and lower values for the proportional feedback gain.What happens when the proportional feedback gain is increased?What happens when it is decreased?Find the proportional gain that will reach steady state the quickest without oscillationin the state of the valve and restart the simulation.What is the system time constant, as determined from the tank level versus time plot.
Answer:
Explanation:
The proportional gain K is usually a fixed property of the controller . If proportional gain is increased , The sensitivity of the controller to error is increased but the stability is impaired. The system approaches the behaviour of on off controlled system and it response become oscillatory
WILL MARK BRAINLIST I need help on this asap thanks
Determine the dimensions for T if T = M V^2 A / L^3 where M is a mass, V is a velocity, A is an area, and L is a length.
L / T
M
M L / T^2
M / (L T^2)
No dimensions
Explanation:
ask your dad please and use your brain
where are the field poles mounted on an alternator
Answer:
The magnetic field for this type of alternator is established by a set of stationary field poles mounted on the periphery of the alternator frame. The field flux created by these poles is cut by conductors inserted in slots on the surface of the rotating armature.
bending stress distribution is a.rectangle b.parabolic c.curve d.i section
The system is initially moving with the cable taut, the 15-kg block moving down the rough incline with a speed of 0.080 m/s, and the spring stretched 39 mm. By the method of this article, (a) determine the velocity v of the block after it has traveled 99 mm, and (b) calculate the distance d traveled by the block before it comes to rest.
Solution :
The spring is expanded by 2 times of the block when it moves down an inclined by x times.
Here, [tex]$x_1$[/tex] = 39 mm
[tex]x_2[/tex] = 225 mm
a). From the work energy principal,
Work forces = kinetic energy
[tex]$(mg \sin 50^\circ)\times \frac{99}{1000}-(\mu_k mg \cos 50^\circ) \times \frac{99}{1000} -\frac{1}{2}k(0.225^2 - 0.039^2)=\frac{1}{2}m(V^2_2-0.08^2)$[/tex]
[tex]$(112.6 \times 0.099)-(14.17 \times 0.099)-4.91= 7.5(V^2_2-0.08^2)$[/tex]
[tex]$9.75= 7.5(V^2_2-0.08^2)$[/tex]
[tex]$1.3= V^2_2-0.08^2$[/tex]
[tex]$V_2=1.14\ m/s$[/tex]
b). calculating the distance travelled by the block before it comes to rest.
Substitute the value of [tex]V_2[/tex] in (1),
[tex]$-(\mu_kmg \cos 50^\circ)x + (mg \sin 50^\circ)x-\frac{1}{2}k\left( ( 2x+0.039)^2 - 0.039^2\right)= -\frac{1}{2}m(0.08)^2$[/tex]
[tex]$-14.17x+112.6x - 100(4x^2+0.156x)=-0.048$[/tex]
[tex]$98.43x - 100(4x^2+0.156x)+0.048=0$[/tex]
[tex]$98.43x - 400x^2-15.6x+0.048=0$[/tex]
[tex]$82.83x - 400x^2+0.048=0$[/tex]
[tex]$ 400x^2- 82.83x-0.048=0$[/tex]
x = 0.20 m
All of the following are instruments involved in changing a tire EXCEPT:
Answer:
can you please give us the option for this question
Using 1.5 V batteries, a switch, and three lamps, devise a circuit to apply 4.5 V across eitherone lamp, two lamps in series, or three lamps in series with a single-control switch. Draw theschematic.
Answer: the attached picture is the answer.
Explanation:
Assuming:
the switch position connect to 1, hence 4.5V exist at across lamp1
the switch position connects to 2 hence 4.5 V exist across lamp 1 and lamp 2
the switch position connects to 3, hence, 4.5 V exist across lamp 1, lamp 2 and lamp 3.
Explain why veracity, value, and visualization can also be said to apply to relational databases as well as Big Data.
Answer:
Veracity, Value and Visualization are not only the characteristics of Big Data but are also the characteristics of relational databases. Veracity of data is issue with smallest data stores this is the reason that it is important in relation...
Determine the transfer function H(s) for a high pass filter with the following characteristics:
1. a cutoff frequency of 100 kHz
2. a stopband attenuation rate of 40 dB/decade
3. a nominal passband gain of 20 dB, which drops to 14 dB at the cutoff frequency
Write the formula for H(s) that satisfies these requirements.
Answer:
H(s) = 10 / [ 1 + s / (200*10^3π ) ]^2
Explanation:
Characteristics of the high pass filter
Cutoff frequency = 100 kHz
stopband attenuation rate = 40 dB/decade
nominal passband gain = 20dB = 20logK = 20
Formula for H(s) satisfying the requirements above
given that the stopband attenuation = 40 dB/decade the formula for H(s) that will satisfy the requirements is a second order filter
H(s) = K / ( 1 + s/Wo ) ^2 ----- ( 1 )
Wo = 2πf = 2π ( 100 * 10^3 ) = 200 * 10^3 π
K = 10
back to equation ( 1 )
H(s) = 10 / [ 1 + s / (200*10^3π ) ]^2
Your shifts productivity is Slow because one person is not pulling his share. The rest of the team is Getting upset.
Answer:
you are right but then you ddnt ask a question
How do your arm muscles work to lift a mug of coffee to your lips?
A.
The biceps muscle contracts while the triceps muscle relaxes. Only then can the forearm move up to lift the mug.
B.
The muscle tendons in your arms stretch to their limit as a result of the flexibility exercises that lift the mug.
C.
Your muscles rapidly increase the speed at which they twitch to trigger your arm movement.
D.
Your biceps and triceps muscles first relax, and then the arm muscle raises the mug.
Answer:
A. The biceps muscle contracts while the triceps muscle relaxes. Only then can the forearm move up to lift the mug.
Explanation:
Skeletal muscle is also known as voluntary muscle and it can be defined as a type of muscle connected with the skeleton by tendons, so as to form a mechanical system that enables the movement of the limbs and other body parts with respect to another.
Generally, skeletal muscles are only found in vertebrates.
The muscles in the arm work to lift a mug of coffee to your lips when the biceps muscle contracts while the triceps muscle relaxes.
Basically, the only way the forearm move up to lift a mug for example, is through the contraction of the biceps muscle and the relaxation of the triceps muscle.
This ultimately implies that, the elbow joint is straightened or bent due to the actions of the biceps muscle and triceps muscle against each other.
To bend the elbow and raise the forearm, the biceps muscle contracts and the triceps muscle relaxes.To straighten the elbow and lower the forearm, the biceps muscle relaxes and the triceps muscle contracts.Answer:A
Explanation:
got it right on plato
A 20-mm-diameter steel bar is to be used as a torsion spring. If the torsional stress in the bar is not to exceed 110 MPa when one end is twisted through an angle of 15°, what must be the length of the bar?
Answer:
1.887 m
Explanation:
(15 *pi)/180
= 0.2618 rad
Polar moment
= Pi*d⁴/32
= (22/7*20⁴)/32
= 15707.96
Torque on shaft
= ((22/7)*20³*110)/16
= 172857.14
= 172.8nm
Shear modulus
G = 79.3
L = Gjθ/T
= 79.3x10⁹x(1.571*10^-8)x0.2618/172.8
= 1.887 m
The length of the bar is therefore 1.887 meters
In a true Brayton cycle, the pressure ratio is 9. Air input temperature to the cycle 300 K pressure is 100 kPa. The maximum temperature in the cycle is 1300 K. Compressor and turbine their yields are equal to each other. Net work obtained from the cycle is 225 kJ / kg. Accordingly, the cycle find the overall yield. The specific temperatures are variable.
Answer:
i did not known answer but anobody help you
An intersection with a four phase signal has a displayed red time of 35 seconds, a start-up lost time of 2 seconds, a yellow time of 4 seconds, and an all red time of 1 second per phase. The total lost time is typically calculated as ____ seconds per cycle.
Answer:
53 sec / cycle
Explanation:
Displayed red time = 35 seconds
Start up lost time = 2 seconds
Yellow time = 4 seconds
Red time = 1 second
Total lost time L = 2n + r
L = lost time
n = number of phase
R = red time
35+2+4+4*1
= 45
L = 2x4+45
= 53 sec/cycle
The total lost time is typically calculated as 53 seconds per cycle
In a CNC machining operation, the has to be moved from point (5, 4) to point(7, 2)along a circular path with center at (7,2). Before starting operation, the tool is at (5, 4).The correct G and M code for this motion is
Answer: hello your question is incomplete below is the complete question
answer:
N010 GO2 X7.0 Y2.0 15.0 J2.0 ( option 1 )
Explanation:
Given that the NC machining has to be moved from point ( 5,4 ) to point ( 7,2 ) along a circular path
GO2 = circular interpolation in a clockwise path
G91 = incremental dimension
hence the correct option is :
N010 GO2 X7.0 Y2.0 15.0 J2.0
How much energy does it take to boil water for pasta? For a one-pound box of pasta
you would need four quarts of water, which requires 15.8 kJ of energy for every degree
Celsius (°C) of temperature increase. Your thermometer measures the starting
temperature as 48°F. Water boils at 212°F.
a. [1 pts] How many degrees Fahrenheit (°F) must you raise the temperature?
b. [2 pts] How many degrees Celsius (°C) must you raise the temperature?
c. [2 pts] How much energy is required to heat the four quarts of water from
48°F to 212°F (boiling)?
Answer:
a. 164 °F b. 91.11 °C c. 1439.54 kJ
Explanation:
a. [1 pts] How many degrees Fahrenheit (°F) must you raise the temperature?
Since the starting temperature is 48°F and the final temperature which water boils is 212°F, the number of degrees Fahrenheit we would need to raise the temperature is the difference between the final temperature and the initial temperature.
So, Δ°F = 212 °F - 48 °F = 164 °F
b. [2 pts] How many degrees Celsius (°C) must you raise the temperature?
To find the degree change in Celsius, we convert the initial and final temperature to Celsius.
°C = 5(°F - 32)/9
So, 48 °F in Celsius is
°C₁ = 5(48 - 32)/9
°C₁ = 5(16)/9
°C₁ = 80/9
°C₁ = 8.89 °C
Also, 212 °F in Celsius is
°C₂ = 5(212 - 32)/9
°C₂ = 5(180)/9
°C₂ = 5(20)
°C₂ = 100 °C
So, the number of degrees in Celsius you must raise the temperature is the temperature difference between the final and initial temperatures in Celsius.
So, Δ°C = °C₂ - °C₁ = 100 °C - 8.89 °C = 91.11 °C
c. [2 pts] How much energy is required to heat the four quarts of water from
48°F to 212°F (boiling)?
Since we require 15.8 kJ for every degree Celsius of temperature increase of the four quarts of water, that is 15.8 kJ/°C and it rises by 91.11 °C, then the amount of energy Q required is Q = amount of heat per temperature rise × temperature rise = 15.8 kJ/°C × 91.11 °C = 1439.54 kJ
what type of slab and beam used in construction of space neddle
jrjrkeekkekekkwkkakkllalllalallalllalalaallalalaalalalalalallallallllallalalallaaallalallllllallllllllalaalalalaaaaalalaaaaaaalgjgiejxpwunfifjruritiririirieoeowowowowowowowowooeowowowoeeoeowowowowowowowoowowwowowowoozoeisiaokseekxidjdkdjfidjfjdjfjfjrifjrifjdirjdjrjfjrjfjrjfjrfuejwwuxmaneanfjkaosndjxieneamalhaqzeeshanvhorahfuensiwjakaksjdhfhfnfhfndjxnxmakaalalalwlwlwwow
A micromechanical resonator is to be designed to have a Q factor of 1000 and a natural frequency of 2 kHz. Determine the system-damping factor and the system bandwidth.
Answer:
Explanation:
Given:
Q factor, =1000
natural frequency, [tex]f_n=2000~Hz[/tex]
Damping factor, [tex]\zeta=?[/tex]
Bandwidth, BW=?
We have the relation:
[tex]Q=\frac{1}{2\zeta}[/tex]
[tex]\zeta=\frac{1}{2Q}[/tex]
[tex]\zeta=\frac{1}{2\times 1000}[/tex]
[tex]\zeta=5\times 10^{-4}[/tex]
Bandwidth:
[tex]BW=\frac{f_n}{Q}[/tex]
[tex]BW=\frac{2000}{1000}[/tex]
[tex]BW=2~Hz[/tex]
In low speed subsonic wind tunnels, the value of test section velocity can be controlled by adjusting the pressure difference between the inlet and test-section for a fixed ratio of inlet-to-test section cross-sectional area.
a. True
b. false
Answer:
Hence the given statement is false.
Explanation:
For low-speed subsonic wind tunnels, the air density remains nearly constant decreasing the cross-section area cause the flow to extend velocity, and reduce pressure. Similarly increasing the world cause to decrease and therefore the pressure to extend.
The speed within the test section is decided by the planning of the tunnel.
Thus by adjusting the pressure difference won't change the worth of test section velocity.
Answer:
The given statement is false .
The propeller shaft of the submarine experiences both torsional and axial loads. Draw Mohr's Circle for a stress element on the outside surface of the solid shaft. Determine the principal stresses, the maximum in-plane shear stress and average normal stress using Mohr's Circle.
Answer: Attached below is the missing detail and Mohr's circle.
i) б1 = 9.6 Ksi
б2 = -10.7 ksi
ii) 10.2 Ksi
iii) -0.51Ksi
Explanation:
First step :
direct compressive stress on shaft
бd = P / π/4 * d^2
= -20 / 0.785 * 5^2 = -1.09 Ksi
shear stress at the outer surface due to torsion
ζ = 16*T / πd^3
= (16 * 250 ) / π * 5^3 = 010.19 Ksi
Calculate the Principal stress, maximum in-plane shear stress and average normal stress
Using Mohr's circle ( attached below )
i) principal stresses:
б1 = 4.8 cm * 2 = 9.6 Ksi
б2 = -5.35 cm * 2 = -10.7 ksi
ii) maximum in-plane shear stress
ζ = radius of Mohr's circle
= 5.1 cm = 10.2 Ksi ( Given that ; 1 cm = 2Ksi )
iii) average normal stress
= 9.6 + ( - 10.7 ) / 2
= -0.51Ksi
A well insulated rigid tank contains 4 kg of argon gas at 450 kPa and 30 C. A valve is opened, allowing the argon to escape until the tank pressure drops to 200 kPa. Assuming that the argon remaining in the tank experiences a reversible adiabatic process, find the final mass of argon in the tank. Since you don't have argon gas tables, assume cp, cv, k as needed at some appropriate temperature(s).
Answer:
Final mass of Argon= 2.46 kg
Explanation:
Initial mass of Argon gas ( M1 ) = 4 kg
P1 = 450 kPa
T1 = 30°C = 303 K
P2 = 200 kPa
k ( specific heat ratio of Argon ) = 1.667
assuming a reversible adiabatic process
Calculate the value of the M2
Applying ideal gas equation ( PV = mRT )
P₁V / P₂V = m₁ RT₁ / m₂ RT₂
hence : m2 = P₂T₁ / P₁T₂ * m₁
= (200 * 303 ) / (450 * 219 ) * 4
= 2.46 kg
Note: Calculation for T2 is attached below
A stream of oxygen enters a compressor at a rate of 200 SCMH. The oxygen exits at 360 K and 500 bar. Determine the volumetric flowrate exiting the compressor using the compressibility factor equation of state.
Answer:
≈ 0.516 m^3/hr
Explanation:
Inlet of compressor = 200 SCMH
sheer standard conditions = 1 atm and 288.5 K
For oxygen :
critical pressure(Pc) = 49.8 atm
critical temperature Tc = 154.6 K
hence at compressor inlet
Tr = T / Tc = 288.5/154.6 = 1.866
Pr = P / Pc = 1 / 49.8 = 0.0204
Z1 ( from compressibility chart ) = 0.98
at compressor outlet
P2 = 500 bar = 500*0.9869 = 493.45 atm , T2 = 360 k
hence : Pr = P / Pc = 493.45 / 49.8 = 9.91
Tr = T / Tc = 360 / 154.6 = 2.33
Z2 ( from compressibility chart ) ≈ 1
V2( volumetric flow rate ) = V1*(P₁Z₂T₂) / (P₂Z₁T₁)
= 200 ( 1 * 1* 360) / (493.45 *0.98*288.5)
= 0.516 m^3/hr