A disk between vertebrae in the spine is subjected to a shearing force of 375 N. Find its shear deformation, taking it to have a shear modulus of 1.60×109 N/m2. The disk is equivalent to a solid cylinder 0.750 cm high and 6.50 cm in diameter.

Answers

Answer 1

Answer:

5.29×10^-7

Explanation:

shear stress τ = F/ A

shear deformation δ = (VL)/ (AG)

= (τL)/ G

V=shear force

L=height of disk=6.50×10^-2

A=cross sectional area

G= shear modulus= (1.60x10^9N/m^2)

A=πd^2/4

Then substitute the values we have

4×(375N)(0.00750m)

________________ = δ

(π*0.00650^2)(1.60x10^9N/m^2)

= 5.29×10^-7


Related Questions

g One of the harmonics in an open-closed tube has frequency of 500 Hz. The next harmonic has a frequency of 700 Hz. Assume that the speed of sound in this problem is 340 m/s. a. What is the length of the tube

Answers

Answer:

The length of the tube is 85 cm

Explanation:

Given;

speed of sound, v = 340 m/s

first harmonic of open-closed tube is given by;

N----->A , L= λ/₄

λ₁ = 4L

v = Fλ

F = v / λ

F₁ = v/4L

Second harmonic of open-closed tube is given by;

L = N-----N + N-----A, L = (³/₄)λ

[tex]\lambda = \frac{4L}{3}\\\\ F= \frac{v}{\lambda}\\\\F_2 = \frac{3v}{4L}[/tex]

Third harmonic of open-closed tube is given by;

L = N------N + N-----N + N-----A, L = (⁵/₄)λ

[tex]\lambda = \frac{4L}{5}\\\\ F= \frac{v}{\lambda}\\\\F_3 = \frac{5v}{4L}[/tex]

The difference between second harmonic and first harmonic;

[tex]F_2 -F_1 = \frac{3v}{4L} - \frac{v}{4L}\\\\F_2 -F_1 = \frac{2v}{4L} \\\\F_2 -F_1 =\frac{v}{2L}[/tex]

The difference between third harmonic and second harmonic;

[tex]F_3 -F_2 = \frac{5v}{4L} - \frac{3v}{4L}\\\\F_3 -F_2 = \frac{2v}{4L} \\\\F_3 -F_2 =\frac{v}{2L}[/tex]

Thus, the difference between successive harmonic of open-closed tube is

v / 2L.

[tex]700H_z- 500H_z= \frac{v}{2L} \\\\200 = \frac{v}{2L}\\\\L = \frac{v}{2*200} \\\\L = \frac{340}{2*200}\\\\L = 0.85 \ m\\\\L = 85 \ cm[/tex]

Therefore, the length of the tube is 85 cm

UVC light used in sterilizers, has wavelengths between 100 to 280 nm. If a certain UVC wave has a wavelength of 142.9 nm, what is the energy of one of its photons in J

Answers

Answer:

The energy of one of its photons is 1.391 x 10⁻¹⁸ J

Explanation:

Given;

wavelength of the UVC light, λ = 142.9 nm = 142.9 x 10⁻⁹ m

The energy of one photon of the UVC light is given by;

E = hf

where;

h is Planck's constant = 6.626 x 10⁻³⁴ J/s

f is frequency of the light

f = c / λ

where;

c is speed of light = 3 x 10⁸ m/s

λ  is wavelength

substitute in the value of f into the main equation;

E = hf

[tex]E = \frac{hc}{\lambda} \\\\E = \frac{6.626*10^{-34} *3*10^{8}}{142.9*10^{-9}} \\\\E = 1.391*10^{-18} \ J[/tex]

Therefore, the energy of one of its photons is 1.391 x 10⁻¹⁸ J

hat a 15 kg body is pulled along a horizontal fictional table by a force of 4N what is the acceleration of the body ​

Answers

Answer:

Acceleration of the body is:

[tex]a=0.27\,\,m/s^2[/tex]

Explanation:

Use Newton's second Law to solve for the acceleration:

[tex]F=m\,\,a\\a=\frac{F}{m} \\a=\frac{4\,N}{15\,\,kg} \\a=0.27\,\,m/s^2[/tex]

What happens to the deflection of the galvanometer needle (due to moving the magnet) when you increase the number of loops

Answers

Answer:

If the magnet is moved, the galvanometer needle will deflect, showing that current is flowing through the coil which will increase total induced electromotive force

Explanation:

galvanometer is an instrument that can detect and measure small current in an electrical circuit.

If the magnet is moved, the galvanometer needle will deflect, showing that current is flowing through the coil. If it is move in a way into the coil,the needle deflect in that way and if it move in another way, it will deflect in the other way.

The total induced emf is equal to the emf induced in each loop by the changing magnetic flux, then multiplied by the number of loops and an increase in the number of loops will cause increase in the total induced emf.

A 70 kg man floats in freshwater with 3.2% of his volume above water when his lungs are empty, and 4.85% of his volume above water when his lungs are full.

Required:
a. Calculate the volume of air he inhales - called his lung capacity - in liters.
b. Does this lung volume seem reasonable?

Answers

Answer:

Explanation:

A) Vair = 1.3 L

B) Volume is not reasonable

Explanation:

A)

Assume

m to be total mass of the man

mp be the mass of the man that pulled out of the water

m1 be the mass above the water with the empty lung

m2 be the mass above the water with full lung

wp be the weight that the buoyant force opposes as a result of the air.

Va be the volume of air inside man's lungs

Fb be the buoyant force due to the air in the lung

given;

m = 78.5 kg

m1 = 3.2% × 78.5 = 2.5 kg

m2 = 4.85% × 78.5 = 3.8kg

But, mp = m2- m1

mp = 3.8 - 2.5

mp = 1.3kg

So using

Archimedes principle, the relation for formula for buoyant force as;

Fb = (m_displaced water)g = (ρ_water × V_air × g)

Where ρ_water is density of water = 1000 kg/m³

Thus;

Fb = wp = 1.3× 9.81

Fb = 12.7N

But

Fb = (ρ_water × V_air × g)

So

Vair = Fb/(ρ_water × × g)

Vair = 12.7/(1000 × 9.81)

V_air = 1.3 × 10^(-3) m³

convert to litres

1 m³ = 1000 L

Thus;

V_air = 1.3× 10^(-3) × 1000

V_air = 1.3 L

But since the average lung capacity of an adult human being is about 6-7litres of air.

Thus, the calculated lung volume is not reasonable

Explanation:

Sammy is 5 feet and 5.3 inches tall. What is Sammy's height in inches? ​

Answers

Answer:

[tex]\boxed{\sf 65.3 \ inches}[/tex]

Explanation:

1 foot = 12 inches

Sammy is 5 feet tall.

5 feet = ? inches

Multiply the feet value by 12 to find in inches.

5 × 12

= 60

Add 5.3 inches to 60 inches.

60 + 5.3

= 65.3

65.3 Inches.
12 (1 Foot) X 5= 60 + 5.3 = 65.3

Two waves are traveling in the same direction along a stretched string. The waves are 45.0° out of phase. Each wave has an amplitude of 7.00 cm. Find the amplitude of the resultant wave.

Answers

Answer:

The amplitude of the resultant wave is 12.93 cm.

Explanation:

The amplitude of resultant of two waves, y₁ and y₂, is given as;

Y = y₁ + y₂

Let y₁ = A sin(kx - ωt)

Since the wave is out phase by φ, y₂ is given as;

y₂ = A sin(kx - ωt + φ)

Y = y₁ + y₂ = 2A Cos (φ / 2)sin(kx - ωt + φ/2 )

Given;

phase difference, φ = 45°

Amplitude, A = 7.00 cm

Y = 2(7) Cos (45 /2) sin(kx - ωt + 22.5° )

Y = 12.93 cm

Therefore, the amplitude of the resultant wave is 12.93 cm.

A viewing screen is separated from a double slit by 5.20 m. The distance between the two slits is 0.0300 mm. Monochromatic light is directed toward the double slit and forms an interference pattern on the screen. The first dark fringe is 3.70 cm from the center line on the screen.

Required:
a. Determine the wavelength of light.
b. Calculate the distance between the adjacent bright fringes.

Answers

Answer:

The wavelength of this light is approximately [tex]427\; \rm nm[/tex] ([tex]4.27\times 10^{-7}\; \rm m[/tex].)The distance between the first and central maxima is approximately [tex]7.40\; \rm cm[/tex] (about twice the distance between the first dark fringe and the central maximum.)  

Explanation:

Wavelength

Convert all lengths to meters:

Separation of the two slits: [tex]0.0300\; \rm mm = 3.00\times 10^{-5}\; \rm m[/tex].Distance between the first dark fringe and the center of the screen: [tex]3.70\; \rm cm = 3.70\times 10^{-2}\; \rm m[/tex].

Refer to the diagram attached (not to scale.) Assuming that the screen is parallel to the line joining the two slits. The following two angles are alternate interior angles and should be equal to each other:

The angle between the filter and the beam of light from the lower slit, andThe angle between the screen and that same beam of light.

These two angles are marked with two grey sectors on the attached diagram. Let the value of these two angles be [tex]\theta[/tex].

The path difference between the two beams is approximately equal to the length of the segment highlighted in green. In order to produce the first dark fringe from the center of the screen (the first minimum,) the length of that segment should be [tex]\lambda / 2[/tex] (one-half the wavelength of the light.)

Therefore:

[tex]\displaystyle \cos \theta \approx \frac{\text{Path difference}}{\text{Slit separation}} = \frac{\lambda / 2}{3.00\times 10^{-5}\; \rm m}[/tex].

On the other hand:

[tex]\begin{aligned} \cot \theta &\approx \frac{\text{Distance between central peak and first minimum}}{\text{Distance between the screen and the slits}} \\ &= \frac{3.70\times 10^{-2}\; \rm m}{5.20\; \rm m} \approx 0.00711538\end{aligned}[/tex].

Because the cotangent of [tex]\theta[/tex] is very close to zero,

[tex]\cos \theta \approx \cot \theta \approx 0.00711538[/tex].

[tex]\displaystyle \frac{\lambda /2}{3.00\times 10^{-5}\; \rm m} \approx \cos\theta\approx 0.00711538[/tex].

[tex]\begin{aligned}\lambda &\approx 2\times 0.00711538 \times \left(3.00\times 10^{-5}\; \rm m\right) \\ &\approx 4.26 \times 10^{-7}\; \rm m = 426\; \rm nm\end{aligned}[/tex].

Distance between two adjacent maxima

If the path difference is increased by one wavelength, then the intersection of the two beams would move from one bright fringe to the next one.

The path difference required for the central maximum is [tex]0[/tex].The path difference required for the first maximum is [tex]\lambda[/tex].The path difference required for the second maximum is [tex]2\,\lambda[/tex].

On the other hand, if the distance between the maximum and the center of the screen is much smaller than the distance between the screen and the filter, then:

[tex]\begin{aligned}&\frac{\text{Distance between image and center of screen}}{\text{Distance between the screen and the slits}} \\ &\approx \cot \theta \\ &\approx \cos \theta \\ &\approx \frac{\text{Path difference}}{\text{Slit separation}}\end{aligned}[/tex].

Under that assumption, the distance between the maximum and the center of the screen is approximately proportional to the path difference. The distance between the image (the first minimum) and the center of the screen is [tex]3.70\; \rm cm[/tex] when the path difference is [tex]\lambda / 2[/tex]. The path difference required for the first maximum is twice as much as that. Therefore, the distance between the first maximum and the center of the screen would be twice the difference between the first minimum and the center of the screen: [tex]2 \times 3.70\; \rm cm = 7.40\; \rm cm[/tex].

You plan to take your hair blower to Europe, where the electrical outlets put out 240 V instead of the 120 V seen in the United States. The blower puts out 1700 W at 120 V.Required:a. What could you do to operate your blower via the 240V line in Europe? which one is it?b. What current will your blower draw from a European outlet?c. What resistance will your blower appear to have when operated at 240 ?

Answers

Answer:

a) Connect a series resistance of 8,47 ohms

b)14,16 [A]

c) r = 10,96 ohms

Explanation:

My blower requires 120 (v) then, I have to connect a series resistor to make the nominal 240 (v) of the European voltage outlet drop to 120 (V) but at the same time keep the level of current to operate my blower

In America

P = V*I

1700 (w) = 120*I

I = 1700/120 [A]

I = 14,16 [A]        current needed for the blower

In Europe

120 (v)  (the drop of voltage I need) when a current of 14,16 passes through to series  resistor is

V = I*R          120 = 14,16* R         R = 8,47 ohms

c) P = I*r²

1700 (w) = 14,16 (A) * r²

r² = 120,06

r = 10,96 ohms

A toroidal solenoid has 590 turns, cross-sectional area 6.20 cm^2 , and mean radius 5.00 cm .Part A. Calcualte the coil's self-inductance.Part B. If the current decreases uniformly from 5.00 A to 2.00 A in 3.00 ms, calculate the self-induced emf in the coil.Part C. The current is directed from terminal a of the coil to terminal b. Is the direction of the induced emf froma to b or from b to a?

Answers

Complete Question

A toroidal solenoid has 590 turns, cross-sectional area 6.20 cm^2 , and mean radius 5.00 cm .

Part A. Calculate  the coil's self-inductance.

Part B. If the current decreases uniformly from 5.00 A to 2.00 A in 3.00 ms, calculate the self-induced emf in the coil.

Part C. The current is directed from terminal a of the coil to terminal b. Is the direction of the induced emf from a to b or from b to a?

Answer:

Part A  

       [tex]L = 0.000863 \ H[/tex]

Part B  

       [tex]\epsilon = 0.863 \ V[/tex]

Part C

    From terminal a to terminal b

Explanation:

From the question we are told that

      The  number of turns is  [tex]N = 590 \ turns[/tex]

      The cross-sectional area is  [tex]A = 6.20 cm^2 = 6.20 *10^{-4} \ m[/tex]

      The  radius is [tex]r = 5.0 \ cm = 0.05 \ m[/tex]

       

Generally the coils self -inductance is mathematically represented as

              [tex]L = \frac{ \mu_o N^2 A }{2 \pi * r }[/tex]

Where [tex]\mu_o[/tex] is the permeability of  free space with value [tex]\mu_o = 4\pi * 10^{-7} N/A^2[/tex]

substituting values

             [tex]L = \frac{ 4\pi * 10^{-7} * 590^2 6.20 *10^{-4} }{2 \pi * 0.05 }[/tex]

             [tex]L = \frac{ 2 * 10^{-7} * 590^2 6.20 *10^{-4} }{ 0.05 }[/tex]

             [tex]L = 0.000863 \ H[/tex]

Considering the Part B

      Initial current is [tex]I_1 = 5.00 \ A[/tex]

      Current at time t is [tex]I_t = 3.0 \ A[/tex]

       The  time taken is  [tex]\Delta t = 3.00 ms = 0.003 \ s[/tex]

The self-induced emf is mathematically evaluated as

          [tex]\epsilon = L * \frac{\Delta I}{ \Delta t }[/tex]          

=>         [tex]\epsilon = L * \frac{ I_1 - I_t }{ \Delta t }[/tex]

substituting values

             [tex]\epsilon = 0.000863 * \frac{ 5- 2 }{ 0.003 }[/tex]  

             [tex]\epsilon = 0.863 \ V[/tex]

The direction of the induced emf is  from a to b because according to Lenz's law the induced emf moves in the same direction as the current

This question involves the concepts of the self-inductance, induced emf, and Lenz's Law

A. The coil's self-inductance is "0.863 mH".

B. The self-induced emf in the coil is "0.58 volts".

C. The direction of the induced emf is "from b to a".

A.

The self-inductance of the coil is given by the following formula:

[tex]L=\frac{\mu_oN^2A}{2\pi r}[/tex]

where,

L = self-inductance = ?

[tex]\mu_o[/tex] = permeability of free space = 4π x 10⁻⁷ N/A²

N = No. of turns = 590

A = Cross-sectional area = 6.2 cm² = 6.2 x 10⁻⁴ m²

r = radius = 5 cm = 0.05 m

Therefore,

[tex]L=\frac{(4\pi\ x\ 10^{-7}\ N/A^2)(590)^2(6.2\ x\ 10^{-4}\ m^2)}{2\pi(0.05\ m)}[/tex]

L = 0.863 x 10⁻³ H = 0.863 mH

B.

The self-induced emf is given by the following formula:

[tex]E=L\frac{\Delta I}{\Delta t}\\\\[/tex]

where,

E = self-induced emf = ?

ΔI = change in current = 2 A

Δt = change in time = 3 ms = 0.003 s

Therefore,

[tex]E=(0.000863\ H)\frac{2\ A}{0.003\ s}[/tex]

E = 0.58 volts

C.

According to Lenz's Law, the direction of the induced emf always opposes the change in flux that causes it. Hence, the direction of the induced emf will be from b to a.

Learn more about Lenz's Law here:

https://brainly.com/question/12876458?referrer=searchResults

A small omnidirectional stereo speaker produces waves in all directions that have an intensity of 8.00 at a distance of 4.00 from the speaker.

At what rate does this speaker produce energy?

What is the intensity of this sound 9.50 from the speaker?

What is the total amount of energy received each second by the walls (including windows and doors) of the room in which this speaker is located?

Answers

Answer:

A. We have that radius r = 4.00m intensity I = 8.00 W/m^

total power = power/ Area ( 4πr2)= 8.00 w/m^2( 4π ( 4.00 m)2=1607.68 W

b) I = total power/ 4πr2= 8.00 W/m2 ( 4.00 m/ 9.5 m)2= 1.418 W/m2

c) E = total power x time= 1607 . 68 W x 1s= 1607.68 J

A lamp in a child's Halloween costume flashes based on an RC discharge of a capacitor through its resistance. The effective duration of the flash is 0.220 s, during which it produces an average 0.520 W from an average 3.00 V.
A. How much charge moves through the lamp (C)?
B. Find the capacitance (F).
C. What is the resitance of the lamo?

Answers

Answer:

A. 0.0374C

B. 0.012F

C. 18 ohms

Explanation:

See attached file

A string of holiday lights has 15 bulbs with equal resistances. If one of the bulbs
is removed, the other bulbs still glow. But when the entire string of bulbs is
connected to a 120-V outlet, the current through the bulbs is 5.0 A. What is the
resistance of each bulb?

Answers

Answer:

Resistance of each bulb = 360 ohms

Explanation:

Let each bulb have a resistance r .

Since, even after removing one of the bulbs, the circuit is closed and the other bulbs glow. Therfore, the bulbs are connected in Parallel connection.

[tex] \frac{1}{r(equivalent)} = \frac{1}{r1} + \frac{1}{r2} + + + + \frac{1}{r15} [/tex]

[tex] \frac{1}{r(equivalent)} = \frac{15}{r} [/tex]

R(equivalent) = r/15

Now, As per Ohms Law :

V = I * R(equivalent)

120 V = 5 A * r/15

r = 360 ohms

An air-filled capacitor consists of two parallel plates, each with an area of 7.60 cm^2, separated by a distance of 1.70 mm. A 25.0-V potential difference is applied to these plates. Calculate: a. the electric field between the plates b. the surface charge density c. the capacitance d. the charge on each plate.

Answers

Answer:

(a) 1.47 x 10⁴ V/m

(b) 1.28 x 10⁻⁷C/m²

(c) 3.9 x 10⁻¹²F

(d) 9.75 x 10⁻¹¹C

Explanation:

(a) For a parallel plate capacitor, the electric field E between the plates is given by;

E = V / d               -----------(i)

Where;

V = potential difference applied to the plates

d = distance between these plates

From the question;

V = 25.0V

d = 1.70mm = 0.0017m

Substitute these values into equation (i) as follows;

E = 25.0 / 0.0017

E = 1.47 x 10⁴ V/m

(c) The capacitance of the capacitor is given by

C = Aε₀ / d

Where

C = capacitance

A = Area of the plates = 7.60cm² = 0.00076m²

ε₀ = permittivity of free space =  8.85 x 10⁻¹²F/m

d = 1.70mm = 0.0017m

C = 0.00076 x  8.85 x 10⁻¹² / 0.0017

C = 3.9 x 10⁻¹²F

(d) The charge, Q, on each plate can be found as follows;

Q = C V

Q =  3.9 x 10⁻¹² x 25.0

Q = 9.75 x 10⁻¹¹C

Now since we have found other quantities, it is way easier to find the surface charge density.

(b) The surface charge density, σ, is the ratio of the charge Q on each plate to the area A of the plates. i.e

σ = Q / A

σ = 9.75 x 10⁻¹¹ /  0.00076

σ = 1.28 x 10⁻⁷C/m²

A wire of 5.8m long, 2mm diameter carries 750ma current when 22mv potential difference is applied at its ends. if drift speed of electrons is found then:_________.
(a) The resistance R of the wire(b) The resistivity p, and(c) The number n of free electrons per unit volume.​

Answers

Explanation:

According to Ohms Law :

V = I * R

(A) R (Resistance) = 0.022 / 0.75 = 0.03 Ohms

Also,

[tex]r = \alpha \frac{length}{area} = \alpha \frac{5.8}{3.14 \times 0.001 \times 0.001} [/tex]

(B)

[tex] \alpha(resistivity) = 1.62 \times {10}^{ - 8} [/tex]

Drift speed is missing. It is given as;

1.7 × 10^(-5) m/s

A) R = 0.0293 ohms

B) ρ = 1.589 × 10^(-8)

C) n = 8.8 × 10^(28) electrons

This is about finding, resistance and resistivity.

We are given;

Length; L = 5.8 m

Diameter; d = 2mm = 0.002 m

Radius; r = d/2 = 0.001 m

Voltage; V = 22 mv = 0.022 V

Current; I = 750 mA = 0.75 A

Area; A = πr² = 0.001²π

Drift speed; v_d = 1.7 × 10^(-5) m/s

A) Formula for resistance is;

R = V/I

R = 0.022/0.75

R = 0.0293 ohms

B) formula for resistivity is given by;

ρ = RA/L

ρ = (0.0293 × 0.001²π)/5.8

ρ = 1.589 × 10^(-8)

C) Formula for current density is given by;

J = n•e•v_d

Where;

J = I/A = 0.75/0.001²π A/m² = 238732.44 A/m²

e is charge on an electron = 1.6 × 10^(-19) C

v_d = 1.7 × 10^(-5) m/s

n is number of free electrons per unit volume

Thus;

238732.44 = n(1.6 × 10^(-19) × 1.7 × 10^(-5))

238732.44 = (2.72 × 10^(-24))n

n = 238732.44/(2.72 × 10^(-24))

n = 8.8 × 10^(28)

Read more at; brainly.com/question/17005119

If one could transport a simple pendulum of constant length from the Earth's surface to the Moon's, where acceleration due to gravity is one-sixth (1/6) that on the Earth, by what factor would be the pendulum frequency be changed

Answers

Answer:

The frequency will change by a factor of 0.4

Explanation:

T = 2(pi)*sqrt(L/g)

Since g(moon) = (1/6)g(earth), the period would change by sqrt[1/(1/6)] = sqrt(6) ~ 2.5 times longer on the moon. Since the period & frequency are inverses, the frequency would be 1/2.5 or 0.4 times shorter on the moon.


A load of 1 kW takes a current of 5 A from a 230 V supply. Calculate the power factor.

Answers

Answer:

Power factor = 0.87 (Approx)

Explanation:

Given:

Load = 1 Kw = 1000 watt

Current (I) = 5 A

Supply (V) = 230 V

Find:

Power factor.

Computation:

Power factor = watts / (V)(I)

Power factor = 1,000 / (230)(5)

Power factor = 1,000 / (1,150)

Power factor = 0.8695

Power factor = 0.87 (Approx)

A string is stretched and fixed at both ends, 200 cm apart. If the density of the string is 0.015 g/cm, and its tension is 600 N, what is the wavelength (in cm) of the first harmonic?

Answers

Answer:

200cm

Explanation:

Answer:

100cm

Explanation:

Using

F= ( N/2L)(√T/u)

F1 will now be (0.5*2)( √600/0.015)

=> L( wavelength)= 200/2cm = 100cm

You're conducting an experiment on another planet. You drop a rock from a height of 1 m and it hits the ground 0.4 seconds later. What is acceleration due to gravity on the planet ?

Answers

Answer:

Here,

v (final velocity) = 0

u (initial velocity) = u

a = ?

s = 1m

t = 0.4s

using the first equation of motion,

0 = u + 0.4a

= -0.4a = u

using the second equation of motion:

1 = 0.4u + 0.08a

from the bold equation

1 = 0.4(-0.4a) + 0.08a

1 = -0.16a + 0.08a

1 = -0.08a

a = -1/0.08

a = -100/8

a = -12.5 m/s/s

please make me brainly, i am 1 brainly away from the next rank

g Two point sources emit sound waves of 1.0-m wavelength. The source 1 is at x = 0 and source 2 is at x = 2.0 m along x-axis. The sources, 2.0 m apart, emit waves which are in phase with each other at the instant of emission. Where, along the line between the sources, are the waves out of phase with each other by π radians?

Answers

Answer:

constructive interferencia  0, 1 , 2 m

destructive inteferencia   1/4, 3/4. 5/4, 7/4 m

Explanation:

This exercise is equivalent to the double slit experiment, the two sources are in phase and separated by a distance, therefore the waves observed in the line between them have an optical path difference and a phase difference, given by the expression

            Δr / λ = Φ / 2π

            Δr = Φ/2π   λ

let's apply this expression to our case

λ = 1 m

            Δr = Φ 1 / 2π

We have constructive interference for angle of  Φ = 0, 2π, ...

let's find the values ​​where they occur

  Φ         Δr

   0          0

  2π         1

  4π        2

Destructive interference occurs by    Φ = π /2, 3π / 2, ...

 Φ          Δr

 π/2       ¼ m

 3π /2    ¾ m

5π /2     5/4 m

7π /2      7/4 m


Somebody please help it’s urgent!!!!

In the tug of war game, none of the teams won. What can you conclude about the forces of the two teams ? Write all the evidence to support your answer.

Answers

Answer:

Explanation:

We can conclude that the forces of the two teams are equal and opposite and hence they cancel each other. Therefore none of the teams won as the rope did not move.

hope this helps

plz mark as brainliest!!!!!!!

Suppose you exert a force of 185 N tangential to the outer edge of a 1.73-m radius 76-kg grindstone (which is a solid disk).

Required:
a. What torque is exerted?
b. What is the angular acceleration assuming negligible opposing friction?
c. What is the angular acceleration if there is an opposing frictional force of 20.0 N exerted 1.50 cm from the axis?

Answers

Answer:

a. 320.06 Nm b. 2.814 rad/s² c. 2.811 rad/s².

Explanation:

a. The torque exerted τ = Frsinθ where F = tangential force exerted = 185 N, r = radius of grindstone = 1.73 m and θ = 90° since the force is tangential to the grindstone.

τ = Frsinθ

= 185 N × 1.73 m × sin90°

= 320.05 Nm

So, the torque τ = 320.05 Nm

b. Since torque τ = Iα where I = moment of inertia of grindstone = 1/2MR² where M = mass of grindstone = 76 kg and R = radius of grindstone = 1.73 m

α = angular acceleration of grindstone

τ = Iα

α = τ/I = τ/(MR²/2) = 2τ/MR²

substituting the values of the variables, we have

α = 2τ/MR²

= 2 × 320.05 Nm/[76 kg × (1.73 m)²]

= 640.1 Nm/227.4604 kgm²

= 2.814 rad/s²

So, the angular acceleration α = 2.814 rad/s²

c. The opposing frictional force produces a torque τ' = F'r' where F' = frictional force = 20.0 N and r' = distance of frictional force from axis = 1.50 cm = 0.015 m.

So  τ' = F'r' = 20.0 N × 0.015 m = 0.3 Nm

The net torque on the grindstone is thus τ'' = τ - τ' = 320.05 Nm - 0.3 Nm = 319.75 Nm

Since τ'' = Iα

α' = τ''/I where α' = its new angular acceleration

α' = 2τ/MR²

= 2 × 319.75 Nm/[76 kg × (1.73 m)²]

= 639.5 Nm/227.4604 kgm²

= 2.811 rad/s²

So, the angular acceleration α' = 2.811 rad/s²

A circular coil of wire 8.40 cm in diameter has 17.0 turns and carries a current of 3.20 A . The coil is in a region where the magnetic field is 0.610 T.Required:a. What orientation of the coil gives the maximum torque on the coil ?b. What is this maximum torque in part (A) ?c. For what orientation of the coil is the magnitude of the torque 71.0 % of the maximum found in part (B)?

Answers

Answer:

a) for the torque to be maximum, sin should be maximum

i.e (sinФ)maximum = 1

b) therefore the Maximum torque is

Tmax = 0.1838 × 1 = 0.1838  N.m

c) Given the torque is 71.0% of its maximum value; Ф  = 45.24⁰ ≈ 45⁰

Explanation:

Given that; Diameter is 8.40 cm,

Radius (R) = D/2 = 8.40/2 = 4.20 cm = 0.042 m

Number of turns (N) = 17

Current in the loop (I) = 3.20 A

Magnetic field (B) = 0.610 T

Let the angle between the loop's area vector A and the magnetic field B be

Now. the area of the loop is;

A = πR²

A = 3.14 ( 0.042 )²

A =  0.005539 m²

Torque on the loop (t) = NIABsinФ

t = 17 × 3.20 ×0.005539 × 0.610 × sinФ

t = 0.1838sinФ N.m

for the torque to be maximum, sin should be maximum

i.e (sinФ)maximum = 1

therefore the Maximum torque is

Tmax = 0.1838 × 1 = 0.1838  N.m

Given the torque is 71.0% of its maximum value

t = 0.71 × tmax

t = 0.71 × 0.1838

t = 0.1305

Now

0.1305 N.m =  0.1838 sinФ N.m

sinФ = 0.1305 / 0.1838

sinФ = 0.71001

Ф = sin⁻¹ 0.71001

Ф  = 45.24⁰ ≈ 45⁰

What will be the nature of the image formed from both a convex lens and a concave
lens of 20 centimeter focus distance, when the object is placed at a distance of
10 centimeters?​

Answers

Answer:

Explanation:

Using the lens formula

1//f = 1/u+1/v

f is the focal length of the lens

u is the object distance

v is the image distance

For convex lens

The focal length of a convex lens is positive and the image distance can either be negative or positive.

Given f = 20cm and u = 10cm

1/v = 1/f - 1/u

1/v = 1/20-1/10

1/v = (1-2)/20

1/V = -1/20

v = -20/1

v = -20 cm

Since the image distance is negative, this shows that the nature of the image formed by the convex lens is a virtual image

For concave lens

The focal length of a concave lens is negative and the image distance is negative.

Given f = -20cm and u = 10cm

1/v = 1/f - 1/u

1/v = -1/20-1/10

1/v = (-1-2)/20

1/V = -3/20

v = -20/3

v = -6.67 cm

Since the image distance is negative, this shows that the nature of the image formed by the concave lens is a virtual image

What is the thinnest soap film (excluding the case of zero thickness) that appears black when illuminated with light with a wavelength of 580 nm

Answers

Answer:

Explanation:

In case of soap film , light gets reflected from denser medium , hence interference takes place between two waves , one reflected from upper and second from lower surface . For destructive interference the condition is

2μt = nλ where μ is refractive index of water , t is thickness , λ is wavelength of light and n is an integer .

2 x 1.34 x t = 1  x 580

t = 216.42 nm .

Thickness must be 216.42 nm .

A person can see clearly up close but cannot focus on objects beyond 75.0 cm. She opts for contact lenses to correct her vision.
(a) Is she nearsighted or farsighted?
(b) What type of lens (converging or diverging) is needed to correct her vision?
(c) What focal length contact lens is needed, and what is its power in diopters?

Answers

Answer:

(a) nearsighted

(b) diverging

(c) the lens strength in diopters is 1.33 D, and considering the convention for divergent lenses normally prescribed as: -1 33 D

Explanation:

(a) The person is nearsighted because he/she cannot see objects at distances larger than 75 cm.

(b) the type of correcting lens has to be such that it counteracts the excessive converging power of the eye of the person, so the lens has to be diverging (which by the way carries by convention a negative focal length)

(c) the absolute value of the focal length (f) is given by the formula:

[tex]f=\frac{1}{d} =\frac{1}{0.75} = 1.33\,D[/tex]

So it would normally be written with a negative signs in front indicating a divergent lens.

In a double‑slit interference experiment, the wavelength is lambda=487 nm , the slit separation is d=0.200 mm , and the screen is D=48.0 cm away from the slits. What is the linear distance Δx between the eighth order maximum and the fourth order maximum on the screen?

Answers

Answer:

Δx = 4.68 x 10⁻³ m = 4.68 mm

Explanation:

The distance between the consecutive maxima, in Young's Double Slit Experiment is given bu the following formula:

Δx = λD/d

So, the distance between the eighth order maximum and the fourth order maximum on the screen will be given as:

Δx = 4λD/d

where,

Δx = distance between eighth order maximum and fourth order maximum=?

λ = wavelength = 487 nm = 4.87 x 10⁻⁷ m

d = slit separation = 0.2 mm = 2 x 10⁻⁴ m

D = Distance between slits and screen = 48 cm = 0.48 m

Therefore,

Δx = (4)(4.87 x 10⁻⁷ m)(0.48 m)/(2 x 10⁻⁴ m)

Δx = 4.68 x 10⁻³ m = 4.68 mm

A competitive diver leaves the diving board and falls toward the water with her body straight and rotating slowly. She pulls her arms and legs into a tight tuck position. What happens to her rotational kinetic energy

Answers

Answer: her rotational kinetic energy increases

Warm blooded animals are homeothermic; that is, they maintain an approximately constant body temperature. (Forhumans it's about 37 oC.) When they are in an environment that is below their optimum temperature, they use energy derived from chemical reactions within their bodies to warm them up. One of the ways that animals lose energy to their environment is through radiation. Every object emits electromagnetic radiation that depends on its temperature. For very hot objects like the sun, that radiation is visible light. For cooler objects, like a house or a person, that radiation is in the infrared and is invisible. Nonetheless, it still carries energy. Other ways that energy is lost by a warm animal to a cool environment includes conduction (direct touching of a cooler object) and convection (cooler air moving and carrying thermal energy away). See Heat Transfer for a discussion of all three.

For this problem, we'll just consider how much energy an animal needs to burn (obtain from internal chemical reactions) in order to stay warm just from radiation losses. The rate at which an object loses energy through radiation is given by the Stefan-Boltzmann equation:

Rate of energy loss = AεσT4



where T is the absolute (Kelvin) temperature, A is the area of the object, ε is the emissivity (unitless and =1 for a perfect emitter, less for anything else), and σ is the Stefan-Boltzmann constant:

σ = 5.67 x 10-8 J/(s m2 K4)



Consider a patient trying to sleep naked in a cool room (55 oF = 13 oC). Assume that the person being considered is a perfect emitter and absorber of radiation (ε = 1), has a surface area of about 2.5 m2, and a mass of 80 kg.

a. A person emits thermal radiation at a rate corresponding to a temperature of 37 oC and absorbs radiation at a rate (from the air and walls) corresponding to a temperature of 13 oC. Calculate the individual's net rate of energy loss due to radiation (in Watts = Joules/second).
net rate of energy loss = Watts

b. Assume the patient produces no energy to keep warm. If they have a specific heat about equal to that of water (1 Cal/kg-oC) how much would their temperature fall in one hour? (1 Cal = 1kcal = 103 cal)
ΔT = oC

c. Given that the energy density of fat is about 9 Cal/g, how many grams of fat would the person have to utilize to maintain their body temperature in that environment for one hour?
amount of fat needed = g

Answers

Answer:

a) 360.7 J/s

b) 16.23 °C

c) 34.48 g

Explanation:

The mass of the person = 80 kg

The person is a perfect emitter, ε = 1

surface area of the person = 2.5 m^2

a) If he emits radiation at 37 °C, [tex]T_{out}[/tex] = 37 + 273 = 310 K

and receives radiation at 13 °C, [tex]T_{in}[/tex] = 13 + 273 = 286 K

Rate of energy loss E = Aεσ([tex]T^{4} _{out}[/tex] - [tex]T^{4} _{in}[/tex] )

where σ = 5.67 x 10^-8 J/(s m^2 K^4)

substituting values, we have

E = 2.5 x 1 x 5.67 x 10^-8 x ([tex]310^{4}[/tex] - [tex]286^{4}[/tex]) = 360.7 J/s

b) If they have specific heat about equal to that of water = 1 Cal/kg-°C

but 1 Cal = 1 kcal = 10^3 cal

specific heat of person is therefore = 10^3 cal/kg-°C

heat loss = 360.7 J/s = 360.7 x 3600 = 1298520 J/hr

heat lost in 1 hour = 1 x 1298520 = 1298520 J

This heat lost = mcΔT

where ΔT is the temperature fall

m is the mass

c is the specific heat equivalent to that of water

the specific heat is then = 10^3 cal/kg-°C

equating, we have

1298520 = 80 x 10^3 x ΔT

1298520 = 80000ΔT

ΔT = 1298520/80000 = 16.23 °C

c) 1298520 J = 1298520/4184 = 310.35 Cal

density of fat = 9 Cal/g

gram of fat = 310.35/9 = 34.48 g

How much energy is required to accelerate a spaceship with a rest mass of 121 metric tons to a speed of 0.509 c?

Answers

Answer

1.07E22 Joules

Explanation;

We know that mass expands by a factor

=>>1/√[1-(v/c)²]

But v= 0.509c

So

1/√(1 - 0.509²)

=>>> 1/√(1 - 0.2591)

= >> 1/√(0.7409) = 1.16

But given that 121 tons is rest mass so 121- 1.16= 119.84 tons is kinetic energy

And we know that rest mass-energy equivalence is 9 x 10^19 joules per ton.

So Multiplying by 119.84

Kinetic energy will be 1.07x 10^22 joules

Other Questions
Please help me with this!!! In response to the financial crisis, the Fed and the U.S. Treasury took all of the following policy actions except _______.a. lowering tax rates on commercial bank profitsb. The Troubled Asset Relief Program Read the passage and answer the question: Leonard Zachary Bartholomew is the greatest cat who ever lived. When he lounges on the windowsill and watches birds and joggers, the entire neighborhood is filled with his benevolent presence. Which term best describes the passage? A. Situational irony B. Hyperbole C. Understatement D. Imagery Which of the following is NOT a product of the electrolysis of NaCl? A. Chlorine gas B. None of these C. Hydrogen gas D. Oxygen gas Consider population data with = 30 and = 3. (a) Compute the coefficient of variation. (b) Compute an 88.9% Chebyshev interval around the population mean. Lower Limit Upper Limit A newly licensed nurse is attending the hospital orientation training class. Which statement made by the newly licensed nurse indicates understanding of the term "point of care"?a. "Point of care refers to interventions or testing that takes place using a transportable, portable, or a handheld device near or at the bedside of the client."b. "Point of care refers to the name of the handheld device."c. "Point of care interventions and testing do not include any type of specimen testing."d. "Point of care refers only to testing that takes place using a handheld device near the client." (ab-c)(ab+c)simplify Find the lateral area of this cone Max believes that the sales of coffee at his coffee shop depend upon the weather. He has taken a sample of 5 days. Below you are given the results of the sample. Cups of Coffee Sold Temperature 350 50 200 60 210 70 100 80 60 90 40 100 A. Which variable is the dependent variable? B. Compute the least squares estimated line. C. Compute the correlation coefficient between temperature and the sales of coffee. D. Predict sales of a 90 degree day. During an extravagant banquet Belshazzar saw a divine handwritten message that appeared on the plaster wall of the palace. This message indicated that his kingdom had been numbered, weighted, and divided.a. Trueb. False I need help with five math questions please help A research center claims that % of adults in a certain country would travel into space on a commercial flight if they could afford it. In a random sample of adults in that country, % say that they would travel into space on a commercial flight if they could afford it. At , is there enough evidence to reject the research The dot plot represents a sampling of ACT scores: dot plot titled ACT Scores with Score on the x axis and Number of Students on the y axis with 1 dot over 24, 3 dots over 26, 3 dots over 27, 5 dots over 28, 3 dots over 30, 3 dots over 32, 1 dot over 35 Which box plot represents the dot plot data? box plot titled ACT Score with a minimum of 24, quartile 1 of 25, median of 26, quartile 3 of 29, and maximum of 35 box plot titled ACT Score with a minimum of 23, quartile 1 of 25, median of 26, quartile 3 of 29, and maximum of 36 box plot titled ACT Score with a minimum of 23, quartile 1 of 27, median of 30, quartile 3 of 34, and maximum of 36 box plot titled ACT Score with a minimum of 24, quartile 1 of 27, median of 28, quartile 3 of 30, and maximum of 35 Could someone clarrify this for me Factor completely 3x^2 + 2x 1. (3x + 1)(x 1) (3x + 1)(x + 1) (3x 1)(x + 1) (3x 1)(x 1) find the area of square whose side is 2.5 cm How many solutions does the nonlinear system of equations graphed belowhave?y10+-1010-10A. OneB. Two0OC. FourOD. Zero Choose the word showing the correct stress/accent. The syllable written in uppercase letters is the accented syllable. The students (survey) the island where they will conduct their case studies. a. survey b. SURvey c. surVEY d. SURVEY please help! :)As a student who appreciates the importance of the carbon and oxygen cycles, suggest ways to ensure a balance of carbon dioxide and oxygen content in the air. Find the interest on a Principal Balance of $10,000 over the course of eight years with an interest rate of 5.5%. Do this for: Simple Interest. Budgeted variable overhead for the year is $150,000. Expected activity is 30,000 standard direct labor hours. The actual hours worked were 15,000 and the standard hours allowed for actual production were 18,000. The variable overhead efficiency variance is: