Answer:
A) P ( chicken is small ) = 0.3085, P ( chicken is medium ) = 0.6621
P (chicken is large ) = 0.0294
B) C = 3.9233
C) 0.1404
Step-by-step explanation:
A) Probabilities
i) P ( chicken is small )
P( w ≤ 3.5 ) = Fw ( 3 .5 )
= F ( 3.5 - 3.8 / 0.6 )
= F ( -0.5 ) = 1 - F( 0.5 ) [∵ F(-x) 1 - F(x) ]
= 1 - 0.6915 ( from Table )
= 0.3085
ii) P ( chicken is medium )
P ( 3.5 < w < 4.9 )
P ( w < 4.9 ) - P ( w < 3.5 )
= Fw ( 4.9 ) - Fw ( 3.5 )
= F ( 4.9 - 3.8 / 0.6 ) - 0.3085
= 0.9706 - 0.3085 = 0.6621
iii) P (chicken is large )
= P ( w > 4.9 )
= 1 - P ( w < 4.9 )
= 1 - Fw ( 4.9 ) = 1 - 0.9706 = 0.0294
B) Find c
Given: P( w < c ) = 0.6
Fw ( c ) = 0.6
F ( c - 3.8 / 0.6 ) = 0.6
c - 3.8 / 0.6 = 0.2055 ( from table )
∴C = 3.9233
C) P ( 3 out of 5 = small )
P ( 3 of 5 = small ) = 0.1404
attached below is a detailed solution
baby im jealous....
finish it
Ryder is building a workbench.
The top of the workbench is a rectangular piece of plywood that is 6.25 feet long and 1.83 feet wide.
Part A
Round the length and width to the nearest whole number.
Then estimate the perimeter of the workbench.
Which of the following equations models this estimate of the perimeter?
A. 6 + 6 + 2 + 2 = 16
B. 6 × 2 = 12
C. 7 + 7 + 2 + 2 = 18
D. 7 × 2 = 14
Part B
Round the length and width to the nearest tenth.
Then estimate the perimeter of the workbench.
Which of the following equations models this estimate of the perimeter?
A. 6.2 + 6.2 + 1.8 + 1.8 = 16
B. 6.2 × 1.8 = 11.16
C. 6.3 + 6.3 + 1.8 + 1.8 = 16.2
D. 6.3 × 1.8 = 11.34
Robin saved money during the months of July and August can some one help me
Step-by-step explanation:
(340*20)-3
HOPE IT HEPL U
Which absolute value equation represents the graph
Answer:
the first one
Step-by-step explanation:
Hope this helps!
F(x) = x3 + x2 -8x - 6
According to the Fundamental Theorem of Algebra, how many solutions/roots will there be?
According to Descartes' Rule of Signs, what are the possible combinations of positive, negative, and/or complex roots will there be?
Using the Rational Root Theorem, list all the possible rational roots.
Use a combination of Synthetic Division, Factoring, and/or the Quadratic Formula to find all the roots. PLEASE SHOW ALL WORK!
This is my 4th time posting this and no ones helping. Please someone who is smart help me out lol
Answer:
Given function:
f(x) = x³ + x² - 8x - 6This is the third degree polynomial, so it has total 3 roots.
Lets factor it and find the roots:
x³ + x² - 8x - 6 = x³ + 3x² - 2x² - 6x - 2x - 6 = x²(x + 3) - 2x(x + 3) - 2(x + 3) = (x + 3)(x² - 2x - 2) = (x + 3)(x² - 2x + 1 - 3) = (x + 3)((x - 1)² - 3) = (x + 3)(x - 1 + √3)(x - 1 - √3)The roots are:
x = -3x = 1 - √3x = 1 + √3It has highest degree 3 so 3 roots
1 positive and 2 negative rootsLets find
x³+x²-8x-6=0x²(x+3)-2x(x+3)-2(x+3)=0(x+3)(x²-2x-2)=0(x+3)(x-2.732)(x+0.732)=0Roots are
-3,2.732,-0.732Rounding in the calculation of monthly interest rates is discouraged. Such rounding can lead to answers different from those presented here. For long-term loans, the differences may be pronounced.
Assume that you take out a $3000 loan for 30 months at 8.5% APR. What is the monthly payment? (Round your answer to the nearest cent.)
$
Answer:
111.35
Step-by-step explanation:
effective rate: .085/12= .007083333333333333
payment=x
[tex]3000=x(\frac{1-(1+.007083333333333333)^{-30}}{.007083333333333333})\\x=111.35[/tex]
Step-by-step explanation:
111.35
Step-by-step explanation:
effective rate: .085/12= .007083333333333333
payment=x
\begin{gathered}3000=x(\frac{1-(1+.007083333333333333)^{-30}}{.007083333333333333})\\x=111.35\end{gathered}
3000=x(
.007083333333333333
1−(1+.007083333333333333)
−30
)
x=111.35
A man is walking down a very long flight of
steps in a stairwell. He begins at 136 feet
above ground level. He walks down with a
steady rate such that he gets closer to the
ground floor at a rate of 2.8 feet per second.
The man is going to exit the stairwell at the
4th floor, which is the height of 42 feet above
ground level. Let t be equal to the number of
seconds it takes for him to get to the 4th floor.
Set up and solve the equation to find the value
of t. Round your answer to the nearest tenth
of a second.
Answer:
33.6 seconds
Step-by-step explanation:
if he begins at 136 feet and wants to go to 42 feet, the distance is 94 feet
d = 94
r = 2.8
d = rt; solving this formula for 't':
t = d/r
t = 94/2.8
t = 33.6 seconds
two thirds of a number is negative six. find the number
Answer:
-9
Step-by-step explanation:
Two-thirds of a number is negative six. The number is -9. Let the number is x, 2/3x =-6, x=-6x3/2=-9.
write a rational number between root2 and root3
Answer:
prational number between root2
Chris was given 1/3 of the 84 cookies in the cookie jar. He ate 3/4 of the cookies that he was given. How many cookies did Chris eat?
Answer:
21 cookies
Step-by-step explanation:
First we know that Chris was given a third of 84 cookies so we can start working on this problem by figuring out what a third of 84 is. We can do this by multiplying 84 by 1/3 or just dividing by 3, which gives us: 84/3 = 28
So now we know that Chris was given 28 cookies, we can figure out what 3/4 of that is to work out how many cookies he ate. 28 x (3/4) = 21 cookies.
Chris ate 21 cookies.
Hope this helped!
Answer:
21 cookies
Step-by-step explanation:
1/3 × 84 = 28
3/4 × 28 = 21
A bag with 12 marbles has 5 red marbles, 3 yellow marbles, and 4blue marbles. A marble is chosen from the bag at random. What is the probability that it is red? Write your answer as a fraction in simplest form.
Answer:
5/12 is already in simplest form
Step-by-step explanation:
12m = 5r + 3y + 4b
red is chosen = 5r / 12 = 5/12
Step-by-step explanation:
the answer is 5/12. It's quite simple
Must the quadrilateral be a parallelogram?
A. Yes, both pairs of opposite sides are parallel.
B. No, both pairs of opposite sides are parallel but not congruent
C. No, both pair of opposite sides are congruent but not parallel.
D. Yes, both pairs of opposite sides are congruent.
which statement is true?
Answer:
A. The slope of Function A is greater than the slope of Function B.
Step-by-step explanation:
The slope of a function can be defined as rise/run. In Function A, the rise/run is 4. The slope in Function B is much easier to see: it is 2. Because 4 is greater than 2, Function A has a greater slope than Function B.
Gravel is being dumped from a conveyor belt at a rate of 40 ft3/min, and its coarseness is such that it forms a pile in the shape of a cone whose base diameter and height are always equal. How fast is the height of the pile increasing when the pile is 11 ft high? (Round your answer to two decimal places.)
Answer:
0.42ft/mn
Step-by-step explanation:
we have the following information to answer this question
dv/dt = 40 feet
height = 11 ft
volume = 1/3πr²h
= 1/3π(h/2)²h
= 1/3πh³/4
= πh³/12
dv/dt = π3h²/12
= πh²/4
dh/dt = 4/πh²dv/dt
= 4(40)÷22/7(11)²
= 160/380.29
= 0.42 ft/min
The height of the pile is therefore increasing by 0.42ft/min at a height of 11 feets
Find z such that 3.8% of the standard normal curve lies to the left of z. (Round your answer to two decimal places.)
Answer:
z = 1.77.
Step-by-step explanation:
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X, which is also the area of the normal curve to the left of Z. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Find z such that 3.8% of the standard normal curve lies to the left of z
Thus, z with a z-score of 0.038. Looking at the z-table, this is z = 1.77.
URGENT PLEASE ANSWER
Three friends, Cleopatra, Dalila, and ebony fo shopping. The money they have each is in the ratio
Cleopatra : Dalila : Ebony =
5 : 7 : 8
A) How many dollars do they have in total?
B) Dalila spends 12$ on a hat, how many dollars does she have left?
Answer:
A)$60
B)$9
Step-by-step explanation:
THIS IS THE COMPLETE QUESTION BELOW
Three friends, Cleopatra, Dalila, and ebony fo shopping. The money they have each is in the ratio
Cleopatra : Dalila : Ebony =
5 : 7 : 8
Cleopatra has $15.
A) How many dollars do they have in total?
B) Dalila spends 12$ on a hat, how many dollars does she have left?
A)
Total ratio=(5 +7 +8)= 20
Cleopatra has $15.
Let X = total money
Ratio of Cleopatra= 5/20 ×X=15
5X /20 = 15
5X= (15×20)
X= $60
They have $60 in total
B) ratio of Dalila= 7/20 × 60 = $21
But 12$ was spent by Dalila on a hat
Then Dalila will have ($21 - 12$) Left
= $9
A printer has a contract to print 100,000 posters for a political candidate. He can run the posters by using any number of plates from 1 to 30 on his press. If he uses x metal plates, they will produce x copies of the poster with each impression of the press. The metal plates cost $20.00 to prepare, and it costs $125.00 per hour to run the press. If the press can make 1000 impressions per hour, how many metal plates should the printer make to minimize costs
Answer:
25
Step-by-step explanation:
From the given information;
Numbers of posters that can be printed in an hour = no of impression/hour × no of plate utilized in each impression.
= 1000x
Thus, the required number of hours it will take can be computed as:
[tex]\implies \dfrac{100000}{1000x} \\ \\ =\dfrac{100}{x}[/tex]
cost per hour = 125
If each plate costs $20 to make, then the total number of plate will equal to 40x
∴
The total cost can be computed as:
[tex]C(x) = (\dfrac{100}{x}) \times 125 + 20 x --- (1)[/tex]
[tex]C'(x) = (-\dfrac{12500}{x^2}) + 20 --- (2)[/tex]
At C'(x) = 0
[tex]\dfrac{12500}{x^2} = 20[/tex]
[tex]\dfrac{12500}{20} = x^2[/tex]
[tex]x^2= 625[/tex]
[tex]x = \sqrt{625}[/tex]
x = 25
[tex]C'' (x) = -12500 \times \dfrac{-2}{x^3} +0[/tex]
[tex]C'' (x) = \dfrac{25000}{x^3}[/tex]
where; x = 25
[tex]C'' (x) = \dfrac{25000}{25^3}[/tex]
C''(x) = 1.6
Thus, at x = 25, C'' > 0
As such, to minimize the cost, the printer needs to make 25 metal plates.
The manager of The Cheesecake Factory in Boston reports that on six randomly selected weekdays, the number of customers served was 175, 125, 180, 220, 240, and 245. She believes that the number of customers served on weekdays follows a normal distribution. Construct the 99% confidence interval for the average number of customers served on weekdays.
Answer:
(121.576 ; 273.424)
Step-by-step explanation:
Given the data:
175, 125, 180, 220, 240, 245
We can calculate the mean and standard deviation
Mean = Σx/ n = 1185 / 6 = 197.5
Standard deviation = 46.125 (calculator)
The confidence interval :
Mean ± margin of error
Margin of Error = Tcritical * s/sqrt(n)
Tcritical at 99%, df = n - 1 ; 6 - 1 = 5
Tcritical = 4.032
Margin of Error = 4.032 * 46.125/√6
Margin of error = 75.924
Confidence interval :
197.5 ± 75.924
Lower boundary = 197.5 - 75.924 = 121.576
Upper boundary = 197.5 + 75.924 = 273.424
(121.576 ; 273.424)
Derive the equation of the parabola with a focus at (0, 1) and a directrix of y = -1.
Answer:
The equation of the parabola is y = x²/4
Step-by-step explanation:
The given focus of the parabola = (0, 1)
The directrix of the parabola is y = -1
A form of the equation of a parabola is presented as follows;
(x - h)² = 4·p·(y - k)
We note that the equation of the directrix is y = k - p
The focus = (h, k + p)
Therefore, by comparison, we have;
k + p = 1...(1)
k - p = -1...(2)
h = 0...(3)
Adding equation (1) to equation (2) gives;
On the left hand side of the addition, we have;
k + p + (k - p) = k + k + p - p = 2·k
On the right hand side of the addition, we have;
1 + -1 = 0
Equating both sides, gives;
2·k = 0
∴ k = 0/2 = 0
From equation (1)
k + p = 0 + 1 = 1
∴ p = 1
Plugging in the values of the variables, 'h', 'k', and 'p' into the equation of the parabola, (x - h)² = 4·p·(y - k), gives;
(x - 0)² = 4 × 1 × (y - 0)
∴ x² = 4·y
The general form of the equation of the parabola, y = a·x² + b·x + c, is therefore;
y = x²/4.
If f(x) = 5x - 3 and g(x) = 3x - 3, find f(x) - g(x).
A 2x
B. 8x - 6W
C2x-6
D. 8x
Replace f(x) to 5x-3 and g(x) to 3x-3 then subtract f(x) by g(x).
[tex] \large{f(x) - g(x) = (5x - 3) - (3x - 3)}[/tex]
Cancel the brackets, remember that multiplying or expanding the negative symbol will switch the sign. From plus to minus and minus to plus.
[tex] \large{ f(x) - g(x)= 5x - 3 - 3x + 3 }[/tex]
Combine like terms.
[tex] \large{f(x) - g(x) = 2x + 0 \longrightarrow \boxed{2x}}[/tex]
Answer
f(x)-g(x) = 2xAnswer:
5x-3-(3x-3)
5x-3-3x+3
5x-3x
2x
BE is a midsegment, Find the value of x. Please
Answer:
x10
Step-by-step explanation:
BE=1/2 * CD
x=CB/2
x=20/2
x=10
Solve the system using substitution.
y = 4x – 8
y = 2x + 10
Answer:
9,28
Step-by-step explanation:
see image below:)
When too many variables are categorized in an analysis, several potential issues may occur. Which of the following is not one of the issues that may occur?
A. model performance suffers.
B. rarely occurring categories may not be captured accurately.
C.difficulty in differentiating among observations.
D. an increase in the number of categories as the data set becomes larger.
Answer: D. an increase in the number of categories as the data set becomes larger.
Step-by-step explanation:
When too many variables are categorized in an analysis, there are different potential issues may occur, some of these issues include:
• model performance suffers.
• rarely occurring categories may not be captured accurately.
• difficulty in differentiating among observations.
It should be noted that an increase in the number of categories as the data set becomes larger isn't one of the issues. Therefore, the correct option is D.
translate into algebraic expression " the sum of five times m and n
The following set of data represents the ages of the women who won the Academy Award for Best Actress from 1980 - 2003:
31 74 33 49 38 61 21 41 26 80 42 29
33 35 45 49 39 34 26 25 33 35 35 28
Make frequency table using # of classes as per the following criteria:
i) if you are born in Jan, Feb, Mar: No of classes = 5
ii) if you are born in Apr, May, Jun: No of classes = 6
Answer:
Step-by-step explanation:
Given the data :
Using 6 classes :
Class interval ____ Frequency
21 - 30 _________ 6
31 - 40 _________ 10
41 - 50 _________ 5
51 - 60 _________ 0
61 - 70 _________ 1
71 - 80 _________ 2
Match the vocabulary word to its correct definition
1. arithmetic sequence
an individual quantity or number in
a sequence
the fixed amount added on to get
2. common difference
to the next term in an arithmetic
sequence
a sequence in which a fixed
3. sequence
amount is added on to get the next term
a set of numbers that follow a
4 term
pattern, with a specific first number
Answer:
1. Term.
2. Common difference.
3. Arithmetic sequence.
4. Sequence.
Step-by-step explanation:
1. Term: an individual quantity or number in a sequence. For example, 1, 2, 3, 5, 6. The first term is 1 while 5 is the fourth term.
2. Common difference: the fixed amount added on to get to the next term in an arithmetic sequence. For example, 2, 4, 6, 8 have a common difference of 2 i.e (6 - 4 = 2).
3. Arithmetic sequence: a sequence in which a fixed amount such as two (2) is added on to get the next term. For example, 0, 2, 4, 6, 8, 10, 12.... is an arithmetic sequence.
4. Sequence: a set of numbers that follow a pattern, with a specific first number. For example, 1, 2, 3, 4, 5, 6 is a sequence.
Select the correct answer
Consider event A and event 8. What is the probability that event Boccurs, given that event A has already occurred?
OA
PB n A)
PLA). P(8)
Ов,
P(BA)
P(A)
OC. P(BA)
P(8)
OD
PIBUA)
P(B)
Reset
Next
Answer:
[tex]P(B|A)[/tex]
Step-by-step explanation:
Probability notation:
Suppose that we have two events, event A and event B. The probability of event B occuring, considering that event A has occurred, is given by:
[tex]P(B|A)[/tex], which is the answer to this question.
The diameter of a circle is 15 in. Find its circumference in terms of \piπ
Answer:
15π in
Step-by-step explanation:
In order to solve this, we need to know that the circumference of a circle can be found by using the following formula...
Circumference = dπ (where d is the diameter of the circle)
Therefore the circumference equals...
Circumference = dπ = 15π in
[tex]\boxed{Given:}[/tex]
Diameter of the circle "[tex]d[/tex]" = 15 in.
[tex]\boxed{To\:find:}[/tex]
The circumference of the circle (in terms of π).
[tex]\boxed{Solution:}[/tex]
[tex]\sf\orange{The\:circumference \:of\:the\:circle\:is\:15\:π\:in.}[/tex]
[tex]\large\mathfrak{{\pmb{\underline{\red{Step-by-step\:explanation}}{\red{:}}}}}[/tex]
We know that,
[tex]\sf\purple{Circumference\:of\:a\:circle \:=\:πd }[/tex]
[tex] = \pi \times 15 \: in \\ \\ = 15 \: \pi \: in[/tex]
Therefore, the circumference of the circle is 15 π in.
[tex]\huge{\textbf{\textsf{{\orange{My}}{\blue{st}}{\pink{iq}}{\purple{ue}}{\red{35}}{\green{♡}}}}}[/tex]
identify a transformation of a function f(x)=x^2 by observing the equation of the function g(x)=5(x)^2
Answer:
Thus the function g is the function f stretched vertically by a factor 5.
Step-by-step explanation:
Multiplication of a function by a constant:
When a function is multiplied by a constant a > 1, the function is stretched vertically by a factor of 5.
In this question:
f(x) = x^2
g(x) = 5x^2
Thus the function g is the function f stretched vertically by a factor 5.
1. p-4= -9+p
2. 4m-4= 4m
Extra Credit, need help
Answer:
1. No solution
2. No solution
Step-by-step explanation:
1. p-4=-9+p
-4=-9
No solution
2. 4m-4=4m
-4=0
No solution
If this helps please mark as brainliest