Answer:
v₂ = 63.62 m / s
Explanation:
For this exercise in fluid mechanics we will use Bernoulli's equation
P₁ + ρ g v₁² + ρ g y₁ = P₂ + ρ g v₂² + ρ g y₂
where the subscript 1 refers to the inside of the wing and the subscript 2 to the top of the wing.
We will assume that the distance between the two parts is small, so y₁ = y₂
P₁-P₂ = ρ g (v₂² - v₁²)
pressure is defined by
P = F / A
we substitute
ΔF / A = ρ g (v₂² - v₁²)
v₂² = [tex]\frac{\Delta F}{A \ \rho \ g} + v_1^2[/tex]
suppose that the area of the wing is A = 1 m²
we substitute
v₂² = [tex]\frac{1000}{1 \ 1.29 \ 9.8} + 63^2[/tex]
v₂² = 79.10 + 3969
v₂ = √4048.1
v₂ = 63.62 m / s
Hey, can a physics major help me?
I have been wondering about the exact difference between theories laws facts and hypothosis.
I know the general layout but I am still a bit confused.
100 points for answering and brainly if it is a good one.
Answer:
A hypothesis is a limited explanation of a phenomenon; a scientific theory is an in-depth explanation of the observed phenomenon. A law is a statement about an observed phenomenon or a unifying concept
Answer:
Explanation:
will try 2 explain fact, hypothesis, theory n law
fact is the starting pt: e.g. apple falls from tree
hypothesis tries 2 explain a fact: e.g. there is a force pulling down apple
theory is a complete explanation w/ equations n stuff: e.g. Newton came up w/ theory of gravitational attraction force
law is a theory dat has been proven right through tests n experiments: Newton's gravity theory had been proven right in many many tests.
A swift blow with the hand can break a pine board. As the hand hits the board, the kinetic energy of the hand is transformed into elastic potential energy of the bending board; if the board bends far enough, it breaks. Applying a force to the center of a particular pine board deflects the center of the board by a distance that increases in proportion to the force. Ultimately the board breaks at an applied force of 870 N and a deflection of 1.4 cm.
a. To break the board with a blow from the hand, how fast must the hand be moving? Use 0.50 kg for the mass of the hand.
b. If the hand is moving this fast and comes to rest in a distance of 1.2 cm, what is the average force on the hand?
Answer:
A. The hand must move with a velocity of 6.98 m/s to break the board.
B. Average force on the hand = 1025 N
Explanation:
A.To determine the speed the hand must move with to break the board, the force workdone in breaking the board is found first.
Workdone = force × distance
Minimum force required = 870 N;
Distance moved by board/Deflection in order to break = 1.4 cm = 0.014 M
Workd done = 870 N × 0.014 m = 12.18 Nm or 12.18 J
This work done = Kinetic energy of the hand
Kinetic energy = mv²/2 ; where m is mass and v is velocity
Mass of hand = 0.50 Kg, velocity = ?, K.E. = 12.18 J
v² = 2 KE/m
v = √2KE/m
v = √(2 × 12.18/0.50)
v = 6.98 m/s
Therefore, the hand must move with a velocity of 6.98 m/s to break the board.
B. Average force on the hand
This can be determined using the equation of motion, v² = u² + 2as to find acceleration, since force = mass × acceleration
From the equation of motion, a = v² - u²/2s
At rest, v = 0, u = 6.98, s = 1.2 cm = 0.012 m
a = 0² - 6.98²/ 2 × 0.012
a = -2030 m/s²
Force = 2030 m/s² × 0. 50 kg = 1015 N
Therefore, Average force on the hand = 1025 N
What innovation did jethro wood add to plows in the 1800s?
Built by 1800, it was the home of inventor Jethro Wood (1774-1834), whose 1819 invention of an iron moldboard plow revolutionized American agriculture.
A car on the roller coaster begins with 0j of kinetic energy and 12,928j of potential energy and finishes the track with 3,715j of potential energy. How much kinetic energy dose the car finish with????
Answer:
9213 J
Explanation:
Change in Kinetic energy = Change in Potential energy
= 12,928J - 3715J
=9213 J
For more assistance: +1 (304) 223-3136
Answer the following using equations, number substitution and keep units. 1. What is the speed of an object that travels 5m in 10s. 2. What force is on a 10kg mass that accelerates at 3m/s/s. 3. What is the potential energy of a 7kg object 4m off the ground *
show all your work please
Explanation:
1. Distance, d = 5 m
Time, t = 10 s
Speed = distance/time
[tex]v=\dfrac{5}{10}=0.5\ m/s[/tex]
2. Mass, m = 10 kg
Acceleration, a = 3 m/s³
Force, F = mass (m) × acceleration (a)
F = 10 × 3
= 20 N
3. Mass, m = 7 kg
Height, h = 4 m
Potential energy, E = mgh
E = 7 × 9.8 × 4
E = 274.4 J
Hence, this is the required solution.
HELP ME PLEASE!!!
Which 2 statements are true about this chemical reaction that forms acid rain?
Answer:
B.
Explanation:
HNO2 is less stable thus dissociates easily to HNO3 + NO + H2O while HNO3 is a strong acid. Thus when they react with H2O they form acid rain
Answer:
B
Explanation:
dont have one just trust me
A total positive charge of 12.00 mC is evenly distributed on a straight thin rod of length 6.00 cm.
A positive point charge, Q = 4.00 nC, is located a distance of 5.00 cm above the midpoint of the
rod. What will be the electrical force on the point charge?
what affects our utility
Answer:
Energy Bill fluctuations are inevitable and depend on a variety of different factors. Two of the most important are the current weather your home is experiencing and the current price per Kilowatt Hour (which fluctuates more than you might think).
who won the battle of Buxar
Answer:
British East India Company
The battle was fought at Buxar, a "small fortified town" within the territory of Bihar, located on the banks of the Ganga river about 130 kilometres (81 mi) west of Patna; it was a decisive victory for the British East India Company.
A 620 N physics student stands on a bathroom scale in an elevator that is supported by a cable. The combined mass of student plus elevator is 870 kg. As the elevator starts moving, the scale reads 450 N.
Required:
a. Find the acceleration of the elevator (magnitude and direction).
b. What is the acceleration if the scale reads 670 N?
c. If the scale reads zero, should the student worry? Explain.
d. What is the tension in the cable in parts (a) and (c)?
Answer:
(a) 9.28 m/s2
(b) 9.03 m/s2
(c) 9.8 m/s2
(d) 450 N, 670 N
Explanation:
mass of elevator + student, m = 870 kg
Reading of scale, R = 450 N
(a) When the elevator goes down, the weight decreases.
Let the acceleration is a.
By the Newton's second law
m g - R = m a
870 x 9.8 - 450 = 870 a
a = 9.28 m/s2
(b) R = 670 N
Let the acceleration is a.
870 x 9.8 - 670 = 870 a
a = 9.03 m/s2
(c) If the scale reads zero, it mean the elevator is falling freely. The acceleration is downwards and its value is 9.8 m/s2.
(d) Tension in cable is 450 N and 670 N.
Question 1 of 25
Which equation is an example of a synthesis reaction?
A. HNO3 + KOH → KCI + H20
B. 2Li+ CaCl2 - 2LiCl + Ca
O C. S+ 02 - S02
7
O D. CH4 + 202 - 2H2O + CO2
Answer:
C. S + 02 → S02
Explanation:
A synthesis or combination reaction is that reaction involving two elements as reactants to form a single compound as product.
In the reaction given below;
S + 02 → S02
Sulphur and oxygen are elemental substances that combine to synthesize sulfur IV oxide (SO2), and hence it is an example of synthesis reaction.
A 2.5-kg rock is dropped off a 32-m cliff and hits a spring, compressing it 57 cm. What is the spring constant? Round your answer to two significant figures.
The spring constant, k, is
StartFraction N over m EndFraction.
Answer: 4800 N/m
Explanation:
Given
mass of rock [tex]m=2.5\ kg[/tex]
Height of cliff [tex]h=32\ m[/tex]
compression in the spring [tex]x=57\ cm[/tex]
Here, potential energy is converted into kinetic energy which in turn converts to elastic potential energy of the spring
[tex]\Rightarrow mgh=\dfrac{1}{2}kx^2\\\\\Rightarrow k=\dfrac{2mgh}{x^2}\\\\\Rightarrow k=\dfrac{1568}{0.3249}\\\\\Rightarrow k=4826.100\approx 4800\ N/m[/tex]
Answer:
480
Explanation:
2021
You are packing for a trip to another star, and on your journey you will be traveling at a speed of 0.99c. Can you sleep in a smaller cabin than usual, because you will be shorter when you lie down? Explain your answer.
Explanation:
No. From your own reference frame, nothing will change. Everything will look the same to you even if you're traveling at 99% speed of light. However, an outside observer will see you shrink to about 14% of your original length along the direction of your motion according to the Lorentz contraction predicted by special relativity:
[tex]L=L_{0} \sqrt{1 - \frac{v^2 }{c^2 }}[/tex]
You take your pulse and observe 80 heartbeats in a minute. What is the period of your heartbeat? What is the frequency of your heartbeat?
Answer:
120 beats per minute.
Explanation:
If I take your pulse and observe 80 heartbeats in a minute. Then the period of your heartbeat is 0.8 s and frequency is 1.3Hz.
What is Heartbeat ?A pulse is the term used in medicine to describe the tactile arterial palpation of the cardiac cycle (heartbeat) by skilled fingertips. Any location where an artery can be compressed close to the surface of the body, such as the carotid artery in the neck, the radial artery in the wrist, the femoral artery in the groyne, the popliteal artery behind the knee, the posterior tibial artery near the ankle joint, and on the foot, can be used to palpate the pulse (dorsalis pedis artery). Heart rate may be determined by monitoring pulse, or the number of arterial pulses per minute. Auscultation, which is the process of counting the heartbeats while listening to the heart using a stethoscope, is another way to determine the heart rate. Typically, three fingers are used to gauge the radial pulse.
Given,
heart beat = 80 beats/min = 1.3 beats/s
Frequency is nothing but how much beats is heart having in one second and that is 1.3 beats/s. Hence frequency of heart is 1.3Hz.
The Period is reciprocal of frequency,
T = 1/f = 0.8 s
To know more about frequency :
https://brainly.com/question/29739263
#SPJ2.
a brick of mass 0.8 kg is accidentally dropped from a high scaffolding. it reaches the ground with a kinetic energy of 240 J. How high is scaffolding ?(Take acceleration due to gravity g be 10 m s-¹)
Answer:
30 m
General Formulas and Concepts:
Energy
Gravitational Potential Energy: [tex]\displaystyle U_g = mgh[/tex]
m is mass (in kg)g is gravityh is height (in m)Kinetic Energy: [tex]\displaystyle KE = \frac{1}{2}mv^2[/tex]
m is mass (in kg)v is velocity (in m/s²)Law of Conservation of Energy
Explanation:
Step 1: Define
Identify variables
[Given] m = 0.8 kg
[Given] g = 10 m/s²
[Given] U = 240 J
[Solve] h
Step 2: Solve for h
[LCE] Substitute in variables [Gravitational Potential Energy]: (0.8 kg)(10 m/s²)h = 240 JMultiply: (8 kg · m/s²)h = 240 JIsolate h [Cancel out units]: h = 30 man object falls freely from rest the total distance covered by it in 2s will be
Answer:
Distance, S = 19.6 meters
Explanation:
Given the following data;
Time = 2 seconds
We know that acceleration due to gravity is equal to 9.8 m/s².
Also, the initial velocity of the object is equal to zero because it's starting from rest.
To find the total distance covered by the object, we would use the second equation of motion;
[tex] S = ut + \frac {1}{2}at^{2}[/tex]
Where;
S represents the displacement or height measured in meters. u represents the initial velocity measured in meters per seconds. t represents the time measured in seconds. a represents acceleration measured in meters per seconds square.Substituting into the equation, we have;
[tex] S = 0*2 + \frac {1}{2}*(9.8)*2^{2}[/tex]
[tex] S = 0 + 4.9*4[/tex]
[tex] S = 4.9*4 [/tex]
Distance, S = 19.6 meters
Therefore, the total distance covered by the object is 19.6 meters.
what is effort arm
don't say the answer of gogle
Answer:
effort arm mean the use of any work by using your hand force motion or by hand power
A 2.7 kg mass is connected to a spring (k=159 N/m) and is sliding on a horizontal frictionless surface. The mass is given an initial displacement of +19 cm and released with an initial velocity of -13 cm/s. Determine the acceleration of the spring at t=3.4 seconds.
Answer:
The acceleration of the spring at [tex]t = 3.4\,s[/tex] is -29339.947 centimeters per square second.
Explanation:
The mass-spring system experiments a Simple Harmonic Motion, whose kinematic expression is the following:
[tex]x(t) = A\cdot \cos \left(\sqrt{\frac{k}{m} }\cdot t + \phi\right)[/tex] (1)
Where:
[tex]x(t)[/tex] - Position, in centimeters.
[tex]A[/tex] - Amplitude, in centimeters.
[tex]k[/tex] - Spring constant, in newtons per meter.
[tex]m[/tex] - Mass, in kilograms.
[tex]\phi[/tex] - Phase, in radians.
By Differential Calculus, we derive expression for the velocity and acceleration of the mass-spring system:
[tex]v(t) = -\sqrt{\frac{k}{m} }\cdot A\cdot \sin \left(\sqrt{\frac{k}{m} }\cdot t +\phi\right)[/tex] (2)
[tex]a(t) = -\frac{k\cdot A}{m}\cdot \cos \left(\sqrt{\frac{k}{m} }\cdot t +\phi\right)[/tex] (3)
Where [tex]v(t)[/tex] and [tex]a(t)[/tex] are the velocity and acceleration of the system, in centimeters per second and centimeters per square second, respectively.
If we know [tex]m = 2.7\,kg[/tex], [tex]k = 159\,\frac{N}{m}[/tex], [tex]t = 0\,s[/tex], [tex]x(t) = 19\,cm[/tex] and [tex]v(t) = -13\,\frac{cm}{s}[/tex], then we have the following system of nonlinear equations:
[tex]A \cdot \cos \phi = 19[/tex] (1)
[tex]-7.674\cdot A \cdot \sin \phi = - 13[/tex] (2)
If we divide (2) by (1):
[tex]-7.674\cdot \tan \phi = -0.684[/tex]
[tex]\tan \phi = 0.089[/tex]
[tex]\phi = \tan^{-1} 0.089[/tex]
[tex]\phi \approx 0.028\,rad[/tex]
By (1), we get the value of the amplitude:
[tex]A = \frac{19}{\cos \phi}[/tex]
[tex]A = 19.075\,cm[/tex]
If we know that [tex]A = 19.075\,cm[/tex], [tex]k = 159\,\frac{N}{m}[/tex], [tex]m = 2.7\,kg[/tex], [tex]t = 3.4\,s[/tex] and [tex]\phi \approx 0.028\,rad[/tex], then the acceleration of the spring is:
[tex]a(t) = -29339.947\,\frac{cm}{s^{2}}[/tex]
The acceleration of the spring at [tex]t = 3.4\,s[/tex] is -29339.947 centimeters per square second.
In addition to acceleration, what else will be a maximum at the amplitude for SHM?
A. Potential energy
B. Kinetic energy
C. Nuclear energy
D. Chemical energy
It is Potential energy's
Ocean waves of wavelength 22 m are moving directly toward a concrete barrier wall at 4.6 m/s . The waves reflect from the wall, and the incoming and reflected waves overlap to make a lovely standing wave with an antinode at the wall. (Such waves are a common occurrence in certain places.) A kayaker is bobbing up and down with the water at the first antinode out from the wall.
Required:
a. How far from the wall is she?
b. What is the period of her up-and-down motion?
Answer:
a) [tex]d=11m[/tex]
b) [tex]T=4.68s[/tex]
Explanation:
From the question we are told that:
Wavelength [tex]\lambda=22m[/tex]
Velocity [tex]v=4.6m/s[/tex]
a)
Generally the equation for distance between her and the wall d is mathematically given by
Since
The First Anti node distance is [tex]\frac{\lambda}{2}[/tex]
Therefore
[tex]d= \frac{\22}{2}[/tex]
[tex]d=11m[/tex]
b)
Generally the equation for her up-and-down motion is mathematically given by
[tex]T=\frac{22}{4.7}[/tex]
[tex]T=4.68s[/tex]
Part A What will be the equilibrium temperature when a 227 g block of copper at 283 °C is placed in a 155 g aluminum calorimeter cup containing 844 g of water at 14.6°C?
Answer:
T = 20.84°C
Explanation:
From the law of conservation of energy:
Heat Lost by Copper Block = Heat Gained by Aluminum Calorimeter + Heat Gained by Water
[tex]m_cC_c\Delta T_c = m_wC_w\Delta T_w + m_aC_a\Delta T_a[/tex]
where,
[tex]m_c[/tex] = mass of copper = 227 g
[tex]m_w[/tex] = mass of water = 844 g
[tex]m_a[/tex] = mass of aluminum = 155 g
[tex]C_c[/tex] = specific heat capacity of calorimeter = 385 J/kg.°C
[tex]C_w[/tex] = specific heat capacity of water = 4200 J/kg.°C
[tex]C_a[/tex] = specific heat capacity of aluminum = 890 J/kg.°C
[tex]\Delta T_c[/tex] = change in temperature of copper = 283°C - T
[tex]\Delta T_w[/tex] = change in temperature of water = T - 14.6°C
[tex]\Delta T_a[/tex] = change in temperature of aluminum = T - 14.6°C
T = equilibrium temperature = ?
Therefore,
[tex](227\ g)(385\ J/kg.^oC)(283^oC-T)=(844\ g)(4200\ J/kg.^oC)(T-14.6^oC)+(155\ g)(890\ J/kg.^oC)(T-14.6^oC)\\\\24732785\ J - (87395\ J/^oC) T = (3544800\ J/^oC) T - 51754080\ J+ (137950\ J/^oC) T-2014070\ J\\\\24732785\ J +51754080\ J+2014070\ J = (3544800\ J/^oC) T+(137950\ J/^oC+(87395\ J/^oC) T\\\\78560935\ J = (3770145\ J/^oC) T\\\\T = \frac{78560935\ J}{3770145\ J/^oC}[/tex]
T = 20.84°C
The position of an object of
mass 5 kg as a function of
time is giving by r = (20m/s4)t4
i + (12 m/s3)t3 j. Find the
force acting on the object as a
function of time. Express the
force in unit vectors. Hint:
Remember that Newton's
second Law relates the force
to the acceleration
Answer:
[tex]F=5(240t^2i+72tj)\ N[/tex]
Explanation:
Given that,
The mass of the object, m = 5 kg
The position vector is, [tex]r=20t^4i+12t^3j[/tex]
Velocity, [tex]v=\dfrac{dr}{dt}=80t^3i+36t^2j[/tex]
Acceleration, [tex]a=\dfrac{dv}{dt}=240t^2i+72tj[/tex]
Newton's second law of motion is given as follows:
F = ma
Put all the values,
[tex]F=5(240t^2i+72tj)\ N[/tex]
Hence, this is the required solution.
calculate the work function that requires a 455 nm photon to eject an electron of a value 0.73 eV
Answer:
W = 2 eV
Explanation:
Given that,
The wavelength of a photon = 455 nm
The kinetic energy of a photon, K = 0.73 eV
We need to find the work function of the electron. It can be solved using Einstein's equation such that,
[tex]W=E-K[/tex]
E is the energy of the photon
So,
[tex]W=\dfrac{hc}{\lambda}-K\\\\W=\dfrac{6.63\times 10^{-34}\times 3\times 10^8}{455\times 10^{-9}\times 1.6\times 10^{-19}}-0.73\\\\W= 2.73\ eV-0.73\ eV\\\\W=2\ eV[/tex]
So, the work function of the metal is 2 eV.
A ball is launched from the ground with a horizontal speed of 30 m/s and a vertical speed of 30 m/s. What will the horizontal speed be right before it hits the ground?
A. 15 m/s
B. 0 m/s
C. 30 m/s
D. 40 m/s
Answer:
C
Explanation:
horizintal speed stays same
only vertical speed changes
so H speed will stay 30 m/s
To a man running east at the rate of 3m/s vain appears to fall vertically with a speed of 4m/s. Find the actual speed and direction of rain...
Answer:
The actual speed of the rain is 5 m/s and its direction is -53.13°
Explanation:
The actual speed of the rain V = speed of man, v + speed of rain relative to man, v'.
V = v + v'
We add these vectorially.
Since the man's speed is 3 m/s east, in the positive x - direction, we have v = 3i and the rain's speed is falling vertically at 4 m/s, in the negative y- direction, we have v' = -4j
So, V = v + v'
V = 3i + (-4j)
V = 3i - 4j
So, the magnitude of V which is its speed is V = √(3² + (-4)²) = √(9 + 16) = √25 = 5 m/s
The direction of V, Ф = tan⁻¹(vertical component/horizontal component) = tan⁻¹(-4/3) = tan⁻¹(-4/3) = tan⁻¹(-1.333) = -53.13°
So, the actual speed of the rain is 5 m/s and its direction is -53.13°
planet smaller than earth but larger than mercury
Answer:
venus......................
Fiber optic (FO) cables are based upon the concept of total internal reflection (TIR), which is achieved when the FO core and cladding have the same refractive indices.
a. True
b. False
Answer:
False
Explanation:
Though fiber active cable is based on the concept of internal reflection but it is achieved by refractive index which transmit data through fast traveling pulses of light. It has a layer of glass and insulating casing called “cladding,”and this is is wrapped around the central fiber thereby causing light to continuously bounce back from the walls of the Cable.
Use a scientific calculator to perform the operation below.
5.92 x 107 + 2.11 x 106
A. 6.13 x 107
B. 2.81 x 101
C. 1.25 x 1014
D. 5.71 x 107
SUBMIT
Answer:
A. 6.13 x 107
Explanation:
Given the expression
5.92 x 10^7 + 2.11 x 10^6
First, we need to convert to the whole number
5.92 x 10^7 = 59200000
2.11 x 10^6 = 2110000
Add both values
59200000 + 2110000
= 61,310,000
Express in standard form
= 6.13 * 10^7
This gives the required result
If distance between two charges increased by 2 times then force
Explanation:
The size of the force varies inversely as the square of the distance between the two charges. Therefore, if the distance between the two charges is doubled, the attraction or repulsion becomes weaker, decreasing to one-fourth of the original value.
An empty parallel plate capacitor is connected between the terminals of a 8.85-V battery and charges up. The capacitor is then disconnected from the battery, and the spacing between the capacitor plates is doubled. As a result of this change, what is the new voltage between the plates of the capacitor
Answer:
The new voltage is 17.7 V.
Explanation:
Voltage, V = 8.85 V
The spacing is doubled.
When it is disconnected, the charge remains same,
q = C V ..... (1)
where, C is the capacitance, V is the voltage.
The capacitance is inversely proportional to the distance between the two plates.
So, when the spacing is doubled, the capacitance is halved.
Let the new voltage is V'.
C V = C' V'
C x 8.85 = C/2 x V'
V' = 17.7 V