Answer:
DK = 10.23 units (approx)
Step-by-step explanation:
(DK * (CK + KE))/2 = 29
DK * CK = 29
180 - 31 = 149
149/2 = 74.5 --> degree of other angles
tan 74.5 = DK/CK
CK * tan 74.5 = DK
CK * CK * tan 74.5 = 29
CK = 2.83591462
2.83591462 * tan 74.5 = DK
DK = 10.22597776
So DK is approximately 10.23 units.
Hope this helps!
BRAINLIEST HELP ME!!!
Which graph shows the solution to this system of linear Inequalities?
ys2x-3
A. Graph
B. Graph B
C. Graph A
D. Graph D
Samantha acored 15 points in her laat
basketball game. She made 3 free throwa
that are worth 1 point each. The rest of
her pointa came on 2 point field goala,
Write an equation that can be used to find
the number of 2 point field goals that
Samantha made
(uae p as your variable)
Help fasttt
Answer:
15=2p+3
Step-by-step explanation:
Two linear equations are shown in the graph.
#Brainliest award
What are the coordinates of the point where the two lines intersect?
A. (–2, 3)
B. (3, 3)
C. (3, 0)
D. (–3, 3)
Answer:
I am taking this graph because this question looked similar to this one.
Step-by-step explanation:
Answer should be B.
The intersection point is (3,3)
Ellis makes some biscuits. For every 200g of flour he uses, he needs 75g of butter
a. Write a ratio for the amount of flour to the amount of butter.
b. Write a formula forf, the amount of flour, in terms of the amount of butter, b.
c. Ellis makes 24 biscuits using 300g of flour.
How many biscuits can he make with 375g of butter?
Answer:
a) 8:3, b) no formula is there, c) 30
Step-by-step explanation:
because 200/75=8:3
because there formula being obtained
because 300/24=12.5
375/12.5=30
Two vectors and are given by and . If these two vectors are drawn starting at the same point, what is the angle between them
Answer: hello your question is incomplete below is the complete question
The Two vectors; A = 5i + 6j +7k and B = 3i -8j +2k.
answer;
angle = 102°
Step-by-step explanation:
multiplying the vectors
A.B = |A| * |B|* cosθ
hence : Cosθ = (Ai*Bi )+ (Aj*Bj) + ( Ak*Bk/ (√A^2 *√B^2 )
= 15 - 48 + 14 /(√25+26+29) * (√9+64+4)
= -0.206448454
θ = cos^-1 ( -0.206448454) = 101.9° ≈ 102°
A city has a population of 350,000 peopleSuppose that each year the population grows by 7.75%What will the population be after 6 years Use the calculator provided and round your answer to the nearest whole number
Answer:
547737
Step-by-step explanation:
So first when know that the equation for exponentinal growth is f(x)=a(1+r)^x
Then you need to substitue so it would be f(x)=350,000(1+0.0775)^6
So then you would add the 1 and 0.0775 to equal 1.0775
So now its f(x)=350,000(1.0775)^6
So after that following PEMDAS, you would basically do 1.0775 to the power of 6 and get 1.56496155465
After you would do 1.56496155465 times 350,000 and that would be 547736.544129 and since its to the nearest whole number the answer would be 547737
Hopefully, that helped. If I did end up making a mistake then just comment on my answer. :)
what is nine and three hundred twenty-one thousandths in decimal notation?
Answer:
Step-by-step explanation:
How do you solve this problem and what did you do to gain the answer 1/64+5/8-3/32=?
Answer:
the answer is 35/64(in fraction) but in decimals it's 0.55
2/5 e +4 = 9
Help please
Answer:
e=12.5 or e=25/2
Step-by-step explanation:
A box contains 5 orange pencils, 8 yellow pencils, and 4 green pencils.
Two pencils are selected, one at a time, with replacement.
Find the probability that the first pencil is green and the second pencil is yellow.
Express your answer as a decimal, rounded to the nearest hundredth.
Answer:
total pencil = 5 orange pencils + 8 yellow pencils + 4 green pencils
= 17 pencils
P (g n y) = 4/17 + 8/17
= 0.706
Step-by-step explanation:
1. first find the total number of pencils
2. since there is a replacement the demoinator remains the same
3. find the probability of each green and yellow
4. add the two probability
Use a linear approximation (or differentials) to estimate the given number. (Round your answer to five decimal places.) 3 217
Using a linear approximation, the estimated cube root of 217 is 6.00925.
Given that the number is,
The cube root of 217
Now, for the cube root of 217 using a linear approximation, use differentials.
So, the derivative of the function [tex]f(x) = x^{(1/3)[/tex] at a known point.
Taking the derivative of [tex]f(x) = x^{(1/3)[/tex], we get:
[tex]f'(x) = (\dfrac{1}{3} )x^{-2/3[/tex]
Now, we can choose a point near 217 to evaluate the linear approximation.
Let's use x = 216, which is a perfect cube.
Substituting x = 216 into the derivative, we get:
[tex]f'(216) = (\dfrac{1}{3} )(216)^{-2/3[/tex]
[tex]= 0.00925[/tex]
Next, use the linear approximation formula:
Δy ≈ f'(a)Δx
Since our known point is a = 216 and we want to estimate the cube root of 217,
since 217 - 216 = 1
Hence, Δx = 1
Δy ≈ f'(216)
Δx ≈ 0.00925 × 1
≈ 0.00925
Finally, add this linear approximation to the known value at the known point to get our estimate:
Estimated cube root of 217 ;
f(216) + Δy = 6 + 0.00925
= 6.00925
Therefore, the estimated cube root of 217 is 6.00925.
To learn more about the linear approximation visit:
https://brainly.com/question/2272411
#SPJ4
Assume 10% of Berkeley students are left-handed. If you are in a class of 50 people, what is the probability that exactly 4 of them are left-handed? Round your answer to the nearest hundredth, and omit the leading zero. Enter your answer here.
Answer:
The answer is "0.18"
Step-by-step explanation:
[tex]10\% \ of \ 50= 5 \text{are left handed}\\\\45\ \text{are right handed}\\\\[/tex]
If the probability exactly 4 were heft handed
[tex]=^{50}_{C_4}\times (\frac{5}{50})^4 \times (\frac{45}{50})^{4b}\\\\=^{50}_{C_4} \times (0.1)^4 \times (0.9)^{4b}\\\\=230300 \times (0.1)^4 \times (0.9)^{4b}\\\\=0.181 \approx 0.18[/tex]
Help please and thanks !!
Answer:
4th option
Step-by-step explanation:
tanZ = [tex]\frac{opposite}{adjacent }[/tex] = [tex]\frac{XY}{ZY}[/tex]
The sum of two numbers is 44 . One number is 3 times as large as the other. What are the numbers?
Answer:
11 and 33
Step-by-step explanation:
The the smaller number be [tex]x[/tex]. Since the other number is 3 times as large as the other, we can represent the large number as [tex]3x[/tex]. Because they add up to 44, we have the following equation:
[tex]x+3x=44[/tex]
Combine like terms:
[tex]4x=44[/tex]
Divide both sides by 4:
[tex]x=\frac{44}{4}=\boxed{11}[/tex]
Substitute [tex]x=11[/tex] into [tex]3x[/tex] to find the larger number:
[tex]11\cdot 3=\boxed{33}[/tex]
Therefore, the two numbers are 11 and 33.
Find the distance between the two points in simplest radical form. (8,−8) and (−1,−5)
Answer:
Solution given:
[tex]x_{1},y_{1}=(8,-8)[/tex]
[tex]x_{2},y_{2}=(-1,-5)[/tex]
Now
Distance between them is:
d=[tex]\sqrt{(x_{2}-x_{1})²+(y_{2}-y_{1})²}[/tex]
d=[tex]\sqrt{(-1-8)²+(-5+8)²}=3\sqrt{10}[/tex]
Distance between them is [tex]\bold{3\sqrt{10}}[/tex]
In a class of 20 students, all but 4 of the students put their names on a typed assignment. If the teacher randomly guesses, what is the probability that she correctly guesses which paper belongs to each of the four remaining students
Answer:
4.17%
(1/4)(1/3)(1/2)(1)
alternative you can say that there are 24 permutations of
4 items and that you have to guess 1 of them 1/24 = 4.17%
Step-by-step explanation:
0.25
0.333333333
0.5
1
I need help with these questions
Answer:
1) 6m+8n
4) 21x+14y
7) 14c+16d
10) d+3e
Step-by-step explanation:
the All-star appliance shop sold 10 refrigerators, 8 ranges, 12 freezers, 12 washing machines, and 8 clothes dryers during January. Freezers made up what part of the appliances sold in January?
Answer:
Freezers made up [tex]\frac{6}{25}[/tex] = 24% of the appliances sold in January.
Step-by-step explanation:
We have that:
10 + 8 + 12 + 12 + 8 = 50 parts were sold in January.
Freezers made up what part of the appliances sold in January?
12 of those were freezers, so:
[tex]\frac{12}{50} = \frac{6}{25} = 0.24[/tex]
Freezers made up [tex]\frac{6}{25}[/tex] = 24% of the appliances sold in January.
In a randomly selected sample of 100 students at a University, 81 of them had access to a computer at home. Give the value of the standard error for the point estimate.
Answer:
The value of the standard error for the point estimate is of 0.0392.
Step-by-step explanation:
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]
In a randomly selected sample of 100 students at a University, 81 of them had access to a computer at home.
This means that [tex]n = 100, p = \frac{81}{100} = 0.81[/tex]
Give the value of the standard error for the point estimate.
This is s. So
[tex]s = \sqrt{\frac{0.81*0.19}{100}} = 0.0392[/tex]
The value of the standard error for the point estimate is of 0.0392.
What are all the values of w such that|-W | = 5?
Hi there!
»»————- ★ ————-««
I believe your answer is:
[tex]w = 5, -5[/tex]
»»————- ★ ————-««
Here’s why:
⸻⸻⸻⸻
Absolute value is simply how far a digit is from zero.The digits '-5' and '5' are 5 away from zero.Therefore:
[tex]w =\pm5[/tex]
⸻⸻⸻⸻
»»————- ★ ————-««
Hope this helps you. I apologize if it’s incorrect.
Addison drove 960 miles in 16 hours what was her speed in miles per hour
Answer:
60 miles/hour
Step-by-step explanation:
960÷16
=60 hours
. Which equation represents y = −x2 + 4x − 1 in vertex form?
Answer:
Rewrite in vertex form and use this form to find the vertex
(
h
,
k
)
.
(
2
,
3
)
Step-by-step explanation:
Question 20 only plz and thanks
PLEASE HELP! Don’t know how to solve this or where to start. I tried multiplying and dividing but still got the wrong answer. How do I solve this problem?
Answer:
306 square meters.
Step-by-step explanation:
Divide the shape into 2 rectangles.
Lets do the one that is sticking to the top first.
The area is 6 * 15, which is 90.
Lets do the second rectangle. The area is:
27 * 8, which is 216.
Add them all up (90 + 216), which is 306.
Answer:
306m²
Step-by-step explanation:
Split the shape into two rectangles with the accureate lengths
The top-most of the two rectangles with length 6m and width 15m:
6 x 15 = 90 m² (area of rectangle A)
The bottom rectangle:
27(full length) x 8m(full width) = 216m²
Add the two areas together for the full shape
216 + 90 = 306m²
A manufacturer of nails claims that only 4% of its nails are defective. A random sample of 20 nails is selected, and it is found that two of them, 10%, are defective. Is it fair to reject the manufacturer's claim based on this observation?
Answer:
The p-value of the test is 0.0853 > 0.05, which means that there is not enough evidence to reject the manufacturer's claim based on this observation.
Step-by-step explanation:
A manufacturer of nails claims that only 4% of its nails are defective.
At the null hypothesis, we test if the proportion is of 4%, that is:
[tex]H_0: p = 0.04[/tex]
At the alternative hypothesis, we test if the proportion is more than 4%, that is:
[tex]H_a: p > 0.04[/tex]
The test statistic is:
[tex]z = \frac{X - \mu}{\frac{\sigma}{\sqrt{n}}}[/tex]
In which X is the sample mean, [tex]\mu[/tex] is the value tested at the null hypothesis, [tex]\sigma[/tex] is the standard deviation and n is the size of the sample.
4% is tested at the null hypothesis
This means that [tex]\mu = 0.04, \sigma = \sqrt{0.04*0.96}[/tex]
A random sample of 20 nails is selected, and it is found that two of them, 10%, are defective.
This means that [tex]n = 20, X = 0.1[/tex]
Value of the test statistic:
[tex]z = \frac{X - \mu}{\frac{\sigma}{\sqrt{n}}}[/tex]
[tex]z = \frac{0.1 - 0.04}{\frac{\sqrt{0.04*0.96}}{\sqrt{20}}}[/tex]
[tex]z = 1.37[/tex]
P-value of the test and decision:
Considering an standard significance level of 0.05.
The p-value of the test is the probability of finding a sample proportion above 0.1, which is 1 subtracted by the p-value of z = 1.37.
Looking at the z-table, z = 1.37 has a p-value of 0.9147
1 - 0.9147 = 0.0853
The p-value of the test is 0.0853 > 0.05, which means that there is not enough evidence to reject the manufacturer's claim based on this observation.
Answer:
Considering an standard significance level of 0.05.
The p-value of the test is the probability of finding a sample proportion above 0.1, which is 1 subtracted by the p-value of z = 1.37.
Looking at the z-table, z = 1.37 has a p-value of 0.9147
1 - 0.9147 = 0.0853
The p-value of the test is 0.0853 > 0.05, which means that there is not enough evidence to reject the manufacturer's claim based on this observation.
Step-by-step explanation:
Marty's barber shop has one barber. Customers arrive at a rate of 2.2 per hour and haircuts are given at a rate of 5 customers per hour. Assume a Poisson arrival rate and an Exponential service time distribution.
Required:
a. What is the probability that one customer is receiving a haircut and one customer is waiting?
b. What is the probability that one customer is receiving a haircut and two customers are waiting?
c. What is the probability that more than two customers are waiting?
Answer:
Step-by-step explanation:
Arrival rate = ∧ = 2.2 customers per hour
Service rate = u = 5 customers per hour
1. Probability that one customer is receiving a haircut and one customer is waiting
P(2 customers)=(∧/u)^2 * (1-∧/u)=(2.2/5)^2 * (1-2.2/5)=0.1936*0.56= 0.108416
2. Probability that one customer is receiving a haircut and two customers are waiting
P(3 customers)= (∧/u)^3 * (1-∧/u)=(2.2/5)^3 * (1-2.2/5)= 0.085184
* 0.56= 0.04770304
3. Probability that more than two customers are waiting
P(more than 3 customers)=1- P(less than 3 customers) =
1- [P(0)+P(1)+P(2)+P(3)]=
= 1- [(1-2.2/5) +2.2/5*(1- 2.2/5) + 0.108416+0.04770304]=1-0.9625=0.0375
Which graph represents the function below?
y= { -x if x > -3
x+6, if x<(or equal to)3
Answer:
second option
Step-by-step explanation:
I'm not sure how to explain but if you really need an explanation please message me
The function that represents the absolute function will be y = -|x + 3| + 3. Then the function is represented by graph A.
What is an absolute function?The absolute function is also known as the mode function. The value of the absolute function is always positive.
If the vertex of the absolute function is at (h, k). Then the absolute function is given as
f(x) = | x - h| + k
The function is given below.
y = -x, if x > -3
y = x + 6, if x ≤ -3
The value of the functions at x = -3 is calculated as,
y = - (-3)
y = 3
y = -3 + 6
y = 3
The capability that addresses the outright capability will be y = - |x + 3| + 3. Then the capability is addressed by diagram A.
The graph is given below.
More about the absolute function link is given below.
https://brainly.com/question/10664936
#SPJ2
Someone please help thanks
Answer:
By similar triangles: BE/20 = 18/25 BE 14.4
Also, (ED + 26) / 26 = 18/14.4
ED = 6.5 and AD = 32.5
30 students in grade 8 finished their summer packet before August 15.
This was 12% of all the students. How many students are in grade 8?
Step-by-step explanation:
12/100=30/x
12x=3000
x=250
hiii! !!
HELP HELP HELPPPP
ILL GIVE BRAINLIEST HELPPPPPPPPP
100 POINTSSS
Answer:
C. 0.48
Step-by-step explanation:
Probability = number of required outcome
_______________________
number of possible outcome
= total volleyball game events
_______________________
total sophomore + junior
= 66/137
= 0.48
Answer: D) 0.31
Step-by-step explanation:
Let A denote the event that a person is a sophomore.
Let B denote the event that a person has attended volleyball game.
A∩B denote the event that a person is a sophomore and attend volleyball game.
Let P denote the probability of an event.
We are asked to find:
P(A∩B)
From the table provided to us we see that:
A∩B=42
Hence,
P(A∩B)=42/137=0.3065 which is approximately equal to 0.31. Therefore ur answer will be 0.31.