Answer:
2.5 inches per year
Step-by-step explanation:
We can deduce the rate of change by obtaining the slope or gradient of thw points given :
Gradient = Rise / Run.
Point A (2, 5) ; point B (4, 10)
x1 = 2 ; y1 = 5 ;x2 = 4 ; y2 = 10
Rise = y2 - y1 = 10 - 5 = 5
Run = x2 - x1 = 4 - 2 = 2
Rate of change = Gradient = 5 /2 = 2.5
Which is 2.5 inches per year
Answer: 2.5
Step-by-step explanation: Took the assignment on edge
what is the formula for perimeter of a square
Answer: P = 4s
Step-by-step explanation:
P = 4s where s = the length of each side.
Since each side of a square is the same length, the side length is multiplied by 4.
29. Family income in the middle class: Bauer et al. (2011) identified the median income of a middle-class family in their sample to be $84,200 annually; the mean family income was $85,300 annually. In their data, the lowest family income reported in this group was $65,100 annually, and the highest family income reported was $103,400 annually. Based on the data given, was the mean an appropriate value to summarize these data
Answer:
No it is not
Step-by-step explanation:
The median is 84200
The mean is 85300
Low income is 65100
High income is 103400
From this information, we can see a skewed data. The mean would not be a good estimate value. Rather the center (median) would be more appropriate.
When we calculate the middle value for this data
65100+103400 = 168500/2 = 84250
84250 is closer to the median score of 84200. The median is best in the presence of outliers.
Compute ????×????, where ????=????−2????+5????, ????=2????+????+3????. (Write your solution using the standard basis vectors ????, ????, and ????. Use symbolic notation and fractions where needed.)
Given: ????=????−2????+5????
and ????=2????+????+3????
To find: We need to find the value of ????×????
Solution: Here given,
????=????−2????+5????
and ????=2????+????+3????
Therefore, solving these two we have, ????=0
So,????×????=0
debbie will be attending a concert at grand ole opry in nashville, tennessee. if the average number of songs performed there in a 10 day period is 167. approximately how many songs are performed there in a years time
Given:
The average number of songs performed there in a 10 day period is 167.
To find:
The number of songs performed there in a year time.
Solution:
We have,
Number of songs performed in 10 days = 167
Number of songs performed in 1 day = [tex]\dfrac{167}{10}[/tex]
= [tex]1.67[/tex]
We know that 1 year is equal to 365 days. So,
Number of songs performed in 365 day = [tex]1.67\times 365[/tex]
Number of songs performed in 1 year = [tex]609.55[/tex]
[tex]\approx 610[/tex]
Therefore, the number of songs performed there in a year time is about 610.
Plss help!!! Image included
Answer:
(-5,2)
Step-by-step explanation:
A function is a relation where each y-value has a unique x-value. That means that x's can never repeat. Therefore, to solve find the ordered pair that does not have the same x-value as one of the points on the graph. The x-values currently represented on the graph are -4, -2, 2, 3. So, the only coordinate pair that does not repeat an x-value is the last option, (-5, 2).
Change 9/3 to percentage
Answer:
300%
Step-by-step explanation:
because 9/3×100=900/3=300 so it is 300%
Answer:
300%
Step-by-step explanation:
9/3 * 100%
900%/3 = 300%
You get GPS units from two manufacturers, A and B. You get 43% of your units from A and 57% of your units from B. In the past, 2% of the units from A have been defective, and 1.5% of the units from B have been defective. Assuming this holds true, if a GPS unit is found to be defective what is the probability that it came from manufacturer A (think Bayes Theorem AND round to two decimal places)
Answer:
0.5015 = 50.15% probability that it came from manufacturer A.
Step-by-step explanation:
Conditional Probability
We use the conditional probability formula to solve this question. It is
[tex]P(B|A) = \frac{P(A \cap B)}{P(A)}[/tex]
In which
P(B|A) is the probability of event B happening, given that A happened.
[tex]P(A \cap B)[/tex] is the probability of both A and B happening.
P(A) is the probability of A happening.
In this question:
Event A: Defective
Event B: From manufacturer A.
Probability a unit is defective:
2% of 43%(from manufacturer A)
1.5% of 57%(from manufacturer B). So
[tex]P(A) = 0.02*0.43 + 0.015*0.57 = 0.01715[/tex]
Probability a unit is defective and from manufacturer A:
2% of 43%. So
[tex]P(A \cap B) = 0.02*0.43 = 0.0086[/tex]
What is the probability that it came from manufacturer A?
[tex]P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{0.0086}{0.01715} = 0.5015[/tex]
0.5015 = 50.15% probability that it came from manufacturer A.
Point E is the midpoint of AB and point F is the midpoint
of CD.
Which statements about the figure must be true? Select
three options.
AB is bisected by CD.
A
CD is bisected by AB.
DAE = 2 AB
СЕ
F
D
EF = LED
B
CE + EF = FD
The options are;
1) AB is bisected by CD
2) CD is bisected by AB
3) AE = 1/2 AB
4) EF = 1/2 ED
5) FD= EB
6) CE + EF = FD
Answer:
Options 1, 3 & 6 are correct
Step-by-step explanation:
We are told that Point E is the midpoint of AB. Thus, any line that passes through point E will bisect AB into two equal parts.
The only line passing through point E is line CD.
Thus, we can say that line AB is bisected by pine CD. - - - (1)
Also, since E is midpoint of Line AB, it means that;
AE = EB
Thus, AE = EB = ½AB - - - (2)
Also, we are told that F is the mid-point of CD.
Thus;
CF = FD
Point E lies between C and F.
Thus;
CE + EF = CF
Since CF =FD
Thus;
CE + EF = FD - - - (3)
Find the maximum and the minimum value of the following objective function, and the value of x and y at which they occur. The function F=2x+16y subject to 5x+3y≤37, 3x+5y≤35, x≥0, y≥0
The maximum value of the objective function is ___ when x=___ and y=___
Answer:
The maximum value of the objective function is 112 when x = 0 and y = 7.
Step-by-step explanation:
Given the constraints:
5x+3y≤37, 3x+5y≤35, x≥0, y≥0
Plotting the above constraints using geogebra online graphing tool, we get the solution to the constraints as:
A(0, 7), B(7.4, 0), C(5, 4) and D(0, 0)
The objective function is given as E =2x+16y, therefore:
At point A(0, 7): E = 2(0) + 16(7) = 112
At point B(7.4, 0): E = 2(7.4) + 16(0) = 14.8
At point C(5, 4): E = 2(5) + 16(4) = 74
At point D(0, 0): E = 2(0) + 16(0) = 0
Therefore the maximum value of the objective function is at A(0, 7).
The maximum value of the objective function is 112 when x = 0 and y = 7.
Naval intelligence reports that 4 enemy vessels in a fleet of 17 are carrying nuclear weapons. If 9 vessels are randomly targeted and destroyed, what is the probability that more than 1 vessel transporting nuclear weapons was destroyed
Answer:
0.7588 = 75.88% probability that more than 1 vessel transporting nuclear weapons was destroyed
Step-by-step explanation:
The vessels are destroyed without replacement, which means that the hypergeometric distribution is used to solve this question.
Hypergeometric distribution:
The probability of x successes is given by the following formula:
[tex]P(X = x) = h(x,N,n,k) = \frac{C_{k,x}*C_{N-k,n-x}}{C_{N,n}}[/tex]
In which:
x is the number of successes.
N is the size of the population.
n is the size of the sample.
k is the total number of desired outcomes.
Combinations formula:
[tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
In this question:
Fleet of 17 means that [tex]N = 17[/tex]
4 are carrying nucleas weapons, which means that [tex]k = 4[/tex]
9 are destroyed, which means that [tex]n = 9[/tex]
What is the probability that more than 1 vessel transporting nuclear weapons was destroyed?
This is:
[tex]P(X > 1) = 1 - P(X \leq 1)[/tex]
In which
[tex]P(X \leq 1) = P(X = 0) + P(X = 1)[/tex]
So
[tex]P(X = x) = h(x,N,n,k) = \frac{C_{k,x}*C_{N-k,n-x}}{C_{N,n}}[/tex]
[tex]P(X = 0) = h(0,17,9,4) = \frac{C_{4,0}*C_{13,9}}{C_{17,9}} = 0.0294[/tex]
[tex]P(X = 1) = h(1,17,9,4) = \frac{C_{4,1}*C_{13,8}}{C_{17,9}} = 0.2118[/tex]
Then
[tex]P(X \leq 1) = P(X = 0) + P(X = 1) = 0.0294 + 0.2118 = 0.2412[/tex]
[tex]P(X > 1) = 1 - P(X \leq 1) = 1 - 0.2412 = 0.7588[/tex]
0.7588 = 75.88% probability that more than 1 vessel transporting nuclear weapons was destroyed
ABCD-EFGH what does y=?
Answer:
y = 3
Step-by-step explanation:
Given that the shapes are similar then the ratios of corresponding sides are equal, that is
[tex]\frac{AB}{EF}[/tex] = [tex]\frac{CD}{GH}[/tex] , substitute values
[tex]\frac{3}{2}[/tex] = [tex]\frac{4.5}{y}[/tex] ( cross- multiply )
3y = 9 ( divide both sides by 3 )
y = 3
2/3 - 10/9and5/3 and 7/9
Step-by-step explanation:
always Pythagoras with the coordinate differences as sides and the distance the Hypotenuse.
c² = (2/3 - 5/3)² + (-10/9 - -7/9)² = (-3/3)² + (-10/9 + 7/9)² =
= (-1)² + (-3/9)² = 1 + (-1/3)² = 1 + 1/9 = 10/9
c = sqrt(10)/3
Answer:
Step-by-step explanation:
Point 1 ([tex]\frac{2}{3}[/tex] , [tex]\frac{-10}{9}[/tex]) in the form (x1,y1)
Point 2 ( [tex]\frac{5}{3}[/tex] , [tex]\frac{-7}{9}[/tex]) in the form (x2,y2)
use the distance formula
dist = sqrt[ (x2-x1)^2 + (y2-y1)^2 ]
dist = sqrt [ [tex]\frac{5}{3}[/tex] -[tex]\frac{2}{3}[/tex])^2 + ( [tex]\frac{-7}{9}[/tex] - ( [tex]\frac{-10}{9}[/tex] ) )^2 ]
dist = sqrt [ ([tex]\frac{3}{3}[/tex])^2 + ([tex]\frac{3}{9}[/tex])^2 ]
dist = sqrt [ 1 + ([tex]\frac{1}{3}[/tex])^2 ]
dist = sqrt [ [tex]\frac{9}{9}[/tex] + [tex]\frac{1}{9}[/tex] ]
dist = [tex]\sqrt{\frac{10}{9} }[/tex]
dist = [tex]\sqrt{10}[/tex] *[tex]\sqrt{\frac{1}{9} }[/tex]
dist = [tex]\sqrt{10}[/tex] * [tex]\frac{1}{3}[/tex]
dist = [tex]\frac{\sqrt{10} }{3}[/tex]
PLESE HELp ANYONE. SOLVE ABC. ROUND YOUR ANSWERS TO THE NEAREST HUNDREDTH IF NECESSARY
Answer:
C=25°
a=11
b=12
Step-by-step explanation:
Find angle c,since angles in a triangle add up to 180 and we know angleA andB angle C will be
65+90+C=180
C=180-155
C=25°
To find a
use trig ratios
tanA=opposite/adjacent
tan65=a/5
a=tan65×5
a=10.72 round off to 11
To find b
sinC=opposite/hypotenuse
sin25=5/b
sin25 b=5
b=11.8 or rather 12
Answer:
Step-by-step explanation:
First find side a and to find this calculate tan 65
Tan 65 = [tex]\frac{opposite \ side}{adjacent\ side}=\frac{a}{5}\\\\[/tex]
2.144 = a/5
a = 2.144 * 5
b² = a² + c²
= 121+25
= 146.
b = √146 = 12.08 = 12
a = 10.72 = 11
Now find Tan C
[tex]Tan \ C = \frac{5}{10.72}\\\\Tan \ C = 0.4664\\[/tex]
C = tan⁻¹ 0.4664
C = 25°
Combine these radicals. 8 square root 5 + 2 square root 45
Answer
14√5
Step-by-step explanation:
8√5 + 2√45
= 8√5 + 6√5
= 14√5
Hope this helps
Answer:
[tex]\boxed {\boxed {\sf 14 \sqrt{5}}}[/tex]
Step-by-step explanation:
We are asked to combine the radicals. We have the following expression:
[tex]8 \sqrt{5} + 2 \sqrt{45}[/tex]
Currently, we cannot combine these radicals. The value under the square root is not the same for both terms.
However, we can simplify the radical 2 √45 because the value under the radical is divisible by a perfect square.
45 can be divided by 9 (the perfect square) for a quotient of 5. So, we can simplify the radical using this information.
Break the radical into 2 radicals: 9 and 5.
[tex]8 \sqrt{5}+ 2 \sqrt{9}\sqrt{5}[/tex]
Notice that a perfect square is under the radical. √9 can be simplifed to 3.
[tex]8 \sqrt{5}+ 2 *3 \sqrt{5}[/tex]
Multiply 2 and 3.
[tex]8 \sqrt{3} + 6 \sqrt{5}[/tex]
Now the value under the radical is the same for both terms, and we can add the numbers in front of the radicals.
[tex]14 \sqrt{5}[/tex]
The radicals combined is equal to 14√5
The number of chocolate chips in a bag of chocolate chip cookies is approximately normally distributed with mean of 1262 and a standard deviation of 118. Determine the 26th percentile for the number of chocolate chips in a bag. (b) Determine the number of chocolate chips in a bag that make up the middle 95% of bags. (c) What is the interquartile range of the number of chocolate chips in a bag of chocolate chip cookies?
Answer:
a) 1186
b) Between 1031 and 1493.
c) 160
Step-by-step explanation:
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Normally distributed with mean of 1262 and a standard deviation of 118.
This means that [tex]\mu = 1262, \sigma = 118[/tex]
a) Determine the 26th percentile for the number of chocolate chips in a bag.
This is X when Z has a p-value of 0.26, so X when Z = -0.643.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]-0.643 = \frac{X - 1262}{118}[/tex]
[tex]X - 1262 = -0.643*118[/tex]
[tex]X = 1186[/tex]
(b) Determine the number of chocolate chips in a bag that make up the middle 95% of bags.
Between the 50 - (95/2) = 2.5th percentile and the 50 + (95/2) = 97.5th percentile.
2.5th percentile:
X when Z has a p-value of 0.025, so X when Z = -1.96.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]-1.96 = \frac{X - 1262}{118}[/tex]
[tex]X - 1262 = -1.96*118[/tex]
[tex]X = 1031[/tex]
97.5th percentile:
X when Z has a p-value of 0.975, so X when Z = 1.96.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]1.96 = \frac{X - 1262}{118}[/tex]
[tex]X - 1262 = 1.96*118[/tex]
[tex]X = 1493[/tex]
Between 1031 and 1493.
(c) What is the interquartile range of the number of chocolate chips in a bag of chocolate chip cookies?
Difference between the 75th percentile and the 25th percentile.
25th percentile:
X when Z has a p-value of 0.25, so X when Z = -0.675.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]-0.675 = \frac{X - 1262}{118}[/tex]
[tex]X - 1262 = -0.675*118[/tex]
[tex]X = 1182[/tex]
75th percentile:
X when Z has a p-value of 0.75, so X when Z = 0.675.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]0.675 = \frac{X - 1262}{118}[/tex]
[tex]X - 1262 = 0.675*118[/tex]
[tex]X = 1342[/tex]
IQR:
1342 - 1182 = 160
Mark looked at the statistics for his favorite baseball player, Jose Bautista. Mark looked at seasons
when Bautista played 100 or more games and found that Bautista's probability of hitting a home run
in a game is 0.173
If Mark uses the normal approximation of the binomial distribution, what will be the variance of
the number of home runs Bautista is projected to hit in 100 games? Answer choices are rounded
to the tenths place.
O 0.8
O 14.3
0 3.8
O 17.3
⭕ 17.3
#CARRYONLEARNING
[tex]{hope it helps}}[/tex]
Suppose you have $1750 in your savings account at the end of a certain period of time. You invested $1500 at a 3.72% simple annual interest rate. How long, in years, was your money invested?
Answer:
4.48 years
Step-by-step explanation:
The formula for simple interest is
A = P(1+r*t), with A being the final amount, P being the initial amount, r being the interest rate, and t being the time. Plugging our values in, we get
1750 = 1500(1+0.0372 * t)
Note that 3.72 was translated into 0.0372 as changing percents to decimals requires dividing by 100
Expanding our equation, we get
1750 = 1500 + 55.8 * t
subtract 1500 from both sides to isolate the t and its coefficient
250 = 55.8 * t
divide both sides by 55.8 to get t
t = 4.48
Two groups were moving from one campsite to another. The first group traveled the distance in 5 hours. The second group finished in 7 hours. Find the distance between the campsites if the first group was going 4mph faster than the second group.
Answer:
The distance between the campsites was 70 miles.
Step-by-step explanation:
Since two groups were moving from one campsite to another, and the first group traveled the distance in 5 hours while the second group finished in 7 hours, to find the distance between the campsites if the first group was going 4mph faster than the second group, the following calculation must be performed:
X + 4 = 5
X = 7
4 x 7 = 28
(4 + 4) x 5 = 40
10 x 7 = 70
(10 + 4) x 5 = 70
Therefore, the distance between the campsites was 70 miles.
The average defect rate on a 2010 Volkswagen vehicle was reported to be 1.33 defects per vehicle. Suppose that we inspect 100 Volkswagen vehicles at random. (a) What is the approximate probability of finding at least 157 defects
Answer:
0.0207 = 2.07% approximate probability of finding at least 157 defects
Step-by-step explanation:
Poisson distribution:
In a Poisson distribution, the probability that X represents the number of successes of a random variable is given by the following formula:
[tex]P(X = x) = \frac{e^{-\lambda}*\lambda^{x}}{(x)!}[/tex]
In which
x is the number of sucesses
e = 2.71828 is the Euler number
[tex]\lambda[/tex] is the mean in the given interval.
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
n instances of a Poisson distribution can be approximated to a normal distribution, with [tex]\mu = n\lambda, \sigma = \sqrt{\lambda}\sqrt{n}[/tex]
The average defect rate on a 2010 Volkswagen vehicle was reported to be 1.33 defects per vehicle.
This means that [tex]\lambda = 1.33[/tex]
Suppose that we inspect 100 Volkswagen vehicles at random.
This means that [tex]n = 100[/tex]
Mean and standard deviation:
[tex]\mu = n\lambda = 100*1.33 = 133[/tex]
[tex]\sigma = \sqrt{\lambda}\sqrt{n} = \sqrt{1.33}\sqrt{100} = 11.53[/tex]
What is the approximate probability of finding at least 157 defects?
Using continuity correction(Poisson is a discrete distribution, normal continuous), this is [tex]P(X \geq 157 - 0.5) = P(X \geq 156.5)[/tex], which is 1 subtracted by the p-value of Z when X = 156.5. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{156.5 - 133}{11.53}[/tex]
[tex]Z = 2.04[/tex]
[tex]Z = 2.04[/tex] has a p-value of 0.9793.
1 - 0.9793 = 0.0207
0.0207 = 2.07% approximate probability of finding at least 157 defects
For the problem I tried dividing but my answers were not correct. How can I solve this problem then? Can someone help me out here please?
Answer:
8
Step-by-step explanation:
5 = 40
1 = x
Then we multiply by the rule of crisscrossing
5 x X = 40 x 1
5x = 40 then divide both by 5
X = 8
Put -3.0-3.45, -15, and -3.15 in order from least to greatest.
Answer:
-15 -3.45 -3.15 -3.0
Step-by-step explanation:
Here is the setup for a non-traditional casino game: You draw a card from a well shuffled full deck and if the card is a king you win $100. The game costs $2 to play and you decide to play the game until you win the $100. Each time you draw a card you pay $2, and if the card is not a king, the card is put back in the deck, and the deck is reshuffled. How much money should you expect to spend on this game?
Answer:
$26
4/52 = 1/13.. the king will appear one in 13 tries... 13 tries is $26
Step-by-step explanation:
You should expect to spend $26 to win $100 playing this game.
What is probability?It is the chance of an event to occur from a total number of outcomes.
The formula for probability is given as:
Probability = Number of required events / Total number of outcomes.
Example:
The probability of getting a head in tossing a coin.
P(H) = 1/2
We have,
To calculate the expected cost of playing this game until you win $100, we need to determine the probability of drawing a king on any given turn, as well as the number of times you are expected to play the game before you win.
So,
The probability of drawing a king on any given turn is 4/52, or 1/13 since there are 4 kings in a standard deck of 52 cards.
To determine the number of times you are expected to play the game before you win, we can use the geometric distribution, which models the number of trials it takes to achieve success in a sequence of independent trials, where the probability of success remains constant across trials.
The probability of winning on any given trial is 1/13, and the probability of losing is 12/13.
The expected number of trials until the first success (drawing a king) is:
= 1 / (1/13) = 13
This means that on average, you can expect to play the game 13 times before drawing a king and winning the $100 prize.
Now,
Since each game costs $2 to play, the total cost of playing the game 13 times is:
13 x $2 = $26
Therefore,
You should expect to spend $26 to win $100 playing this game.
Learn more about probability here:
https://brainly.com/question/14099682
#SPJ2
Solve by using matrices. 2x – y +2 + w = -3 x + 2y – 3z + w = 12 3x - y - + 2w = 3 -2x + 3y + 2 – 3w = -3
Some symbols and numbers are missing. I assume the system is supposed to read
2x - y + 2z + w = -3
x + 2y - 3z + w = 12
3x - y - z + 2w = 3
-2x + 3y + 2z - 3w = -3
In matrix form, this is
[tex]\begin{bmatrix}2&-1&2&1\\1&2&-3&1\\3&-1&-1&2\\-2&3&2&-3\end{bmatrix}\begin{bmatrix}x\\y\\z\\w\end{bmatrix}=\begin{bmatrix}-3\\12\\3\-3\end{bmatrix}[/tex]
which we can strip down to the augmented matrix,
[tex]\left[\begin{array}{cccc|c}2&-1&2&1&-3\\1&2&-3&1&12\\3&-1&-1&2&3\\-2&3&2&-3&-3\end{array}\right][/tex]
Now for the row operations:
• swap rows 1 and 2
[tex]\left[\begin{array}{cccc|c}1&2&-3&1&12\\2&-1&2&1&-3\\3&-1&-1&2&3\\-2&3&2&-3&-3\end{array}\right][/tex]
• add -2 (row 1) to row 2, -3 (row 1) to row 3, and 2 (row 1) to row 4
[tex]\left[\begin{array}{cccc|c}1&2&-3&1&12\\0&-5&8&-1&-27\\0&-7&8&-1&-33\\0&7&-4&-1&21\end{array}\right][/tex]
• add 7 (row 2) to -5 (row 3), and row 3 to row 4
[tex]\left[\begin{array}{cccc|c}1&2&-3&1&12\\0&-5&8&-1&-27\\0&0&16&-2&-24\\0&0&4&-2&-12\end{array}\right][/tex]
• multiply through rows 3 and 4 by 1/2
[tex]\left[\begin{array}{cccc|c}1&2&-3&1&12\\0&-5&8&-1&-27\\0&0&8&-1&-12\\0&0&2&-1&-6\end{array}\right][/tex]
• add -4 (row 4) to row 3
[tex]\left[\begin{array}{cccc|c}1&2&-3&1&12\\0&-5&8&-1&-27\\0&0&0&3&12\\0&0&2&-1&-6\end{array}\right][/tex]
• swap rows 3 and 4
[tex]\left[\begin{array}{cccc|c}1&2&-3&1&12\\0&-5&8&-1&-27\\0&0&2&-1&-6\\0&0&0&3&12\end{array}\right][/tex]
• multiply through row 4 by 1/3
[tex]\left[\begin{array}{cccc|c}1&2&-3&1&12\\0&-5&8&-1&-27\\0&0&2&-1&-6\\0&0&0&1&4\end{array}\right][/tex]
• add row 4 to row 3
[tex]\left[\begin{array}{cccc|c}1&2&-3&1&12\\0&-5&8&-1&-27\\0&0&2&0&-2\\0&0&0&1&4\end{array}\right][/tex]
• multiply through row 3 by 1/2
[tex]\left[\begin{array}{cccc|c}1&2&-3&1&12\\0&-5&8&-1&-27\\0&0&1&0&-1\\0&0&0&1&4\end{array}\right][/tex]
• add -8 (row 3) and row 4 to row 2
[tex]\left[\begin{array}{cccc|c}1&2&-3&1&12\\0&-5&0&0&-15\\0&0&1&0&-1\\0&0&0&1&4\end{array}\right][/tex]
• multiply through row 2 by -1/5
[tex]\left[\begin{array}{cccc|c}1&2&-3&1&12\\0&1&0&0&3\\0&0&1&0&-1\\0&0&0&1&4\end{array}\right][/tex]
• add -2 (row 2) and 3 (row 3) and -1 (row 4) to row 1
[tex]\left[\begin{array}{cccc|c}1&0&0&0&-1\\0&1&0&0&3\\0&0&1&0&-1\\0&0&0&1&4\end{array}\right][/tex]
Then the solution to the system is (x, y, z, w) = (-1, 3, -1, 4).
Plzzzz Help
The cost (in dollars) of buying x pounds of a party product is given by the function
C(x) = 10x + 300.
Suppose, for budgetary reasons; you can't spend more than $2100 on this product. You can spend less, but you have to buy at least 50 pounds.
In this situation, what is the domain of this function?
Answer:
180
Step-by-step explanation:
Given the cost (in dollars) of buying x pounds of a party product is given by the function
C(x) = 10x + 300.
Suppose, for budgetary reasons; you can't spend more than $2100 on this product. You can spend less, but you have to buy at least 50 pounds.
To get the domain of the function, substitute C(x) =2100 and find x
2100 = 10x + 300
10x = 2100 - 300
10x = 1800
x = 1800/10
x = 180
Hence the domain of the function is 180
6. Convert 3−i into polar form and hence evaluate
[tex] {(3 - i)}^{7} [/tex]
9514 1404 393
Answer:
≈ 1000√10∠-129.04464° = -1992 -2456i
Step-by-step explanation:
3 -i = √(3³+(-1)²)∠arctan(-1/3) ≈ √10∠-18.4349°
Then (3-i)^7 = 10^(7/2)∠(7×-18.4349°) = 1000√10∠-129.04464°
= 1000√10(cos(-129.04464°) +i·sin(-129.04464°))
= -1992 -2456i
can someone help with this
Answer:
[tex]\frac{8}{45}[/tex]
Step-by-step explanation:
'of' means 'multiply'
4/5 × 2/9 = 8/45
PLEASE HELP!!!! WILL GIVE BRAINLIEST!!!!
Answer:
9
[tex]3^{\frac{4}{2} }[/tex] = [tex]3^{2} =9[/tex]
Step-by-step explanation:
suppose you have a bank account earning 6% annual interest rate compounded monthly, and you want to put in enough money so that you can withdraw $100 at the end of each month over a time frame of ten years. calculate how much money you need to start with. show work.
Answer:
maybe 10000
Step-by-step explanation:
Answer:
9007.35
Step-by-step explanation:
First find the effective rate: .06/12= .005
let x= amount
[tex]x=100\frac{1-(1+.005)^{-12*10}}{.005}\\100*\frac{1-.549632733}{.005}\\9007.345333[/tex]
Applying for a loan. What separates me from other applicants applying for this money?
Answer:
Step-by-step explanation:
You could have a good credit score and good credit history.
The following data were collected from a simple random sample from an infinite population.
13 15 14 16 12
The point estimate of the population standard deviation is _____.
a. 1.581
b. 2.500
c. 2.000
d. 1.414
Answer:
1.581
Step-by-step explanation:
Given the data:
13 15 14 16 12
The point estimate of the standard deviation will be :
√Σ(x - mean)²/n-1
Mean = Σx / n = 70 / 5 = 14
√[(13 - 14)² + (15 - 14)² + (14 - 14)² + (16 - 14)² + (12 - 14)² / (5 - 1)]
The point estimate of standard deviation is :
1.581