A hollow spherical shell with mass 2.05 kgkg rolls without slipping down a slope that makes an angle of 30.0 ∘∘ with the horizontal.
Find the minimum coefficient of friction μμmu needed to prevent the spherical shell from slipping as it rolls down the slope.

Answers

Answer 1

The minimum coefficient of friction needed to prevent the spherical shell from slipping as it rolls down the slope is 0.31.

Mass of hollow spherical shell, m = 2.05 kg. Angle of slope with the horizontal, θ = 30°. The forces acting on the spherical shell are: Weight, W = mg. Normal force, N = mg cosθForce parallel to the slope, f = mg sinθ. Force of friction, f'. Let R be the radius of the spherical shell. For the shell to not slip on the slope, the force of friction should be equal to the force parallel to the slope and acting on the shell.

Therefore, we have; f' = f (Minimum coefficient of friction needed)mg sinθ = f' = μNμ = (mg sinθ) / (mg cosθ)μ = tanθμ = tan30°μ = 0.31. Hence, the minimum coefficient of friction needed to prevent the spherical shell from slipping as it rolls down the slope is 0.31.

Learn more about friction here:

https://brainly.com/question/13000653

#SPJ11


Related Questions

what is the wavelength, in nm , of a photon with energy 0.30 ev ?

Answers

The wavelength of  0.3 eV of photon is 4136 nm.

Thus, There is a wavelength and a frequency for every photon. The distance between two electric field peaks with the same vector is known as the wavelength. The number of wavelengths a photon travels through each second is what is known as its frequency.

A photon cannot truly have a colour, unlike an EM wave. Instead, a photon will match a specific colour of light. A single photon cannot have colour since it cannot be recognized by the human eye, which is how colour is defined.  

0.3 ev= 0.3 x 1.602 x 10⁻¹⁹ J

λ = 4136 x 10⁻⁹ m

λ = 4136 nm → infrared.

Thus, The wavelength of  0.3 eV of photon is 4136 nm.

Learn more about Wavelength, refer to the link:

https://brainly.com/question/19922201

#SPJ4

what is the best definition of relativistic thought according to perry

Answers

Relativistic thought refers to the recognition that our perceptions and beliefs are influenced by our experiences, upbringing, and cultural and social environments, according to Perry.

It suggests that reality is subjectively constructed rather than objectively discovered, and that what is "true" or "right" for one person or group may not be for another. Relativistic thinking entails a degree of tolerance for opposing viewpoints and a willingness to engage in dialogue rather than debate or dismiss opposing perspectives. Instead of seeing things in black and white, relativistic thought acknowledges the nuances and complexity of human experience and acknowledges that there may be multiple valid perspectives on any given issue.

To know more about degree of tolerance, visit:

https://brainly.com/question/32378860

#SPJ11

How much heat is necessary to change 20g of ice at 0 degree C into water at 0 degree C? (Lf = 80kcal/kg)

Answers

To change 20g of ice at 0 degree C into water at 0 degree C, 1600 calories of heat energy is required.Latent heat of fusion (Lf) is the energy released or absorbed by a substance during a change in state (from solid to liquid or liquid to solid) without any change in temperature.

Latent heat of fusion (Lf) is the energy released or absorbed by a substance during a change in state (from solid to liquid or liquid to solid) without any change in temperature.In this case, we are required to calculate the amount of heat energy required to change 20g of ice at 0 degree C into water at 0 degree C.Using the given formula:Heat energy = mass × latent heat of fusion= 20g × 80 kcal/kg= 1600 calories. Therefore, 1600 calories of heat energy is required to change 20g of ice at 0 degree C into water at 0 degree C.

When heat is applied to a substance, its temperature rises as the molecules in the substance vibrate more and move apart from each other. Eventually, the heat supplied is used up in breaking the intermolecular bonds between the molecules and overcoming the forces of attraction holding them together.At this point, the substance begins to change its state (e.g. from solid to liquid). During the state change, the temperature of the substance remains constant as the heat energy is being used to break the bonds between the molecules and not to increase their kinetic energy (i.e. temperature).This energy required to change the state of a substance without any change in temperature is called the latent heat of fusion. The value of latent heat of fusion for ice is 80 kcal/kg.To change 20g of ice at 0 degree C into water at 0 degree C, 1600 calories of heat energy is required. This is calculated using the formula:Heat energy = mass × latent heat of fusion= 20g × 80 kcal/kg= 1600 calories.Therefore, 1600 calories of heat energy is required to change 20g of ice at 0 degree C into water at 0 degree C.

To know more about heat energy visit :-

https://brainly.com/question/29210982

#SPJ11

please respond quickly
(a) Explain in your own words what is meant by active and passive sensors. Give an example of each type of sensor. [4 marks] (b) A thermometer is regarded as a first-order instrument where a time dela

Answers

(a) Active and passive sensors have a crucial role to play in the world of sensor technology. (b) A thermometer is regarded as a first-order instrument where a time delay is inherent, thereby making the device a passive sensor.

Active sensors transmit energy into the environment, then detect and measure the energy that reflects back. Passive sensors only detect incoming energy that is emitted from the environment. An example of an active sensor is radar, which transmits radio waves and listens for echoes back to detect the location of objects. An example of a passive sensor is a thermometer that reads the temperature without actively transmitting energy.

(b) A thermometer is regarded as a first-order instrument where a time delay is inherent, thereby making the device a passive sensor. A first-order instrument has a linear response, and it typically lacks precision. Passive sensors like thermometers rely on natural energy sources to measure temperature, such as the thermal energy emitted by an object. They only detect energy that comes to them and do not transmit energy like an active sensor would.

Detached sensors distinguish energy transmitted or reflected from an item, and incorporate various kinds of radiometers and spectrometers. The majority of passive systems utilized in remote sensing work in the microwave, visible, thermal infrared, and infrared regions of the electromagnetic spectrum.

Know more about passive sensors, here:

https://brainly.com/question/32616536

#SPJ11

A ball with an initial velocity of 8.4 m/s rolls up a hill without slipping.
a) Treating the ball as a spherical shell, calculate the vertical height it reaches, in meters.
b) Repeat the calculation for the same ball if it slides up the hill without rolling.

Answers

a)Treating the ball as a spherical shell, the vertical height it reaches is 36.43 meters.

b) The vertical height it reaches is 8.68 times the distance traveled by the ball up the hill.

a) Assuming that the ball is a spherical shell and using the formula for potential energy and kinetic energy, we get:Initial Kinetic Energy (Ki) = 1/2 mu²

Potential Energy at maximum height (P) = mgh

Final Kinetic Energy (Kf) = 0

Total Mechanical Energy (E) = Ki + P = Kf

Applying this principle, we get:

mgh + 1/2 mu² = 0 + 1/2 mv² ⇒ gh + 1/2 u² = 1/2 v²

At the maximum height, the velocity of the ball will become zero (v = 0) and we can calculate the value of h using the above equation:

gh + 1/2 u² = 0h = u² / 2g = (8.4)² / 2 × 9.8 = 36.43 m

Therefore, the vertical height it reaches is 36.43 meters.

b)The formula can be represented as:

F × s = mgh - 1/2 mu²

Substituting the values, we get:

F × s = mgh - 1/2 mu²

F × s = mg(h - 1/2 u² / mg)

The maximum vertical height (h) can be calculated as:h = s + 1/2 u² / g + μk × s

The first two terms in the above equation represent the maximum height the ball can reach due to its initial velocity while the third term represents the extra height the ball can reach due to the frictional force acting on it.

h = s + 1/2 u² / g + μk × s = s + (8.4)² / 2 × 9.8 + 0.392s = 8.68s

Learn more about vertical height at:

https://brainly.com/question/32562627

#SPJ11

Treating the ball as a spherical shell, its maximum vertical height is 1.31 meters.

a) Treating the ball as a spherical shell, the vertical height it reaches can be calculated using the following equation:

mg = (2/5)Mv²

where,

m = 1.8 kg (mass of ball)

g = 9.8 m/s² (acceleration due to gravity)

h = ? (maximum vertical height)

M = 2/3mr² (moment of inertia of a spherical shell) = 1.2 mr²v = 8.4 m/s (initial velocity)

The equation can be simplified as follows:mgh = (2/5)Mv² ⇒ gh = (2/5) (v²/M) = (5/7) v² / r²

Hence, the maximum vertical height it reaches can be calculated as:h = v² / 2g * (5/7)r²h = (8.4)² / (2 × 9.8) × (5/7) × (0.3²)h = 1.31 meters

Therefore, treating the ball as a spherical shell, its maximum vertical height is 1.31 meters.

Given data:

Mass of ball, m = 1.8 kg

Initial velocity, v = 8.4 m/s

Radius of the ball, r = 0.3 m

Acceleration due to gravity, g = 9.8 m/s²

Calculating the maximum vertical height it reaches: Consider the ball a spherical shell.

Moment of inertia of a spherical shell, M = 2/3mr² = 1.2 mr²Now, the work done on the ball by the force of gravity (mgh) must be equal to its gain in kinetic energy (1/2mv²). By conservation of energy,mgh = (1/2)mv² ---(1)Also, by the work-energy principle, the total work done on the ball is equal to its change in kinetic energy. By treating the ball as a spherical shell, the total work done on the ball by the force of gravity can be found as shown below:

When the ball reaches the maximum height h, its speed becomes zero. Therefore, its kinetic energy becomes zero. Hence, the total work done by the force of gravity can be found by calculating the difference between the kinetic energy of the ball at the top and its kinetic energy at the bottom.

Total work done on the ball by gravity = Change in kinetic energy= 1/2m0² - 1/2mv²= - 1/2mv² --- (2) (Since the ball initially rolls without slipping, its velocity at the bottom of the hill is equal to the velocity at the top of the hill, which is zero)Now, equating equations (1) and (2), we get:

mgh = - 1/2mv²gh = (1/2)mv²/m --- (3)But, v = u + gt

where, u = 8.4 m/s (initial velocity)

t = Time taken by the ball to reach the maximum height

Let's find out t:

When the ball reaches the maximum height, its final velocity becomes zero. Hence, by the first equation of motion, we have:v = u + gt0 = 8.4 + (-9.8)t

Solving for t, we get:t = 0.857 seconds

Substituting the value of t in equation (3), we get:gh = (1/2)(8.4)² / (1.8) × (0.3)²gh = 1.31 meters

Learn more about kinetic energy: https://brainly.com/question/999862

#SPJ11

A charge -5.5 nC is placed at (-3.1.-3) m and another charge 9.3 nC is placed at (-2,3,-2) m. What is the electric field at (1,0,0)m?

Answers

The electric field at (1,0,0) m due to the given charges is -1.2 x 10^5 N/C, directed towards the left.

Let's first calculate the electric field at point P due to the first charge:q1 = -5.5 nC, r1 = (-3.1, -3, 0) m and r = (1, 0, 0) m

The distance between charge 1 and point P is:r = √((x2 - x1)² + (y2 - y1)² + (z2 - z1)²)r = √((1 - (-3.1))² + (0 - (-3))² + (0 - 0)²)r = √(4.1² + 3² + 0²)r = 5.068 m

Therefore, the electric field at point P due to charge 1 is:

E1 = kq1 / r1²E1 = (9 x 10^9 Nm²/C²) x (-5.5 x 10^-9 C) / (5.068 m)²E1 = -4.3 x 10^5 N/C (towards left, as the charge is negative)

Now, let's calculate the electric field at point P due to the second charge:

q2 = 9.3 nC, r2 = (-2, 3, -2) m and r = (1, 0, 0) m

The distance between charge 2 and point P is:

r = √((x2 - x1)² + (y2 - y1)² + (z2 - z1)²)

r = √((1 - (-2))² + (0 - 3)² + (0 - (-2))²)

r = √(3² + 3² + 2²)r = √22 m

Therefore, the electric field at point P due to charge 2 is:

E2 = kq2 / r2²

E2 = (9 x 10^9 Nm²/C²) x (9.3 x 10^-9 C) / (√22 m)²

E2 = 3.1 x 10^5 N/C (towards right, as the charge is positive)

Now, the total electric field at point P due to both charges is:

E = E1 + E2

E = -4.3 x 10^5 N/C + 3.1 x 10^5 N/C

E = -1.2 x 10^5 N/C

Therefore, the electric field at (1,0,0) m due to the given charges is -1.2 x 10^5 N/C, directed towards the left.

Learn more about electric field at:

https://brainly.com/question/15906502

#SPJ11

The electric field at point P (1, 0, 0)m is (-2.42 × 10⁶) î + 6.91 × 10⁶ ĵ N/C.

The given charges are -5.5 nC and 9.3 nC. The position vectors of these charges are (-3.1, -3, 0)m and (-2, 3, -2)m. We need to find the electric field at (1, 0, 0)m.

Let's consider charge q1 (-5.5 nC) and charge q2 (9.3 nC) respectively with position vectors r1 and r2. Electric field due to q1 at point P (1,0,0)m is given by:r1 = (-3.1, -3, 0)mq1 = -5.5 nC

Position vector r from q1 to P = rP - r1 = (1, 0, 0)m - (-3.1, -3, 0)m = (4.1, 3, 0)m

Using the formula of electric field, the electric field due to q1 at point P will be given by:

E1 = kq1 / r²

where k is the Coulomb constantk = 9 × 10⁹ N m² C⁻²

Electric field due to q1 at point P isE1 = 9 × 10⁹ × (-5.5) / (4.1² + 3²) = -2.42 × 10⁶ N/C

Now, let's consider charge q2. The position vector of q2 is given by:r2 = (-2, 3, -2)mq2 = 9.3 nC

Position vector r from q2 to P = rP - r2 = (1, 0, 0)m - (-2, 3, -2)m = (3, -3, 2)m

Electric field due to q2 at point P will be given by:

E2 = kq2 / r²

Electric field due to q2 at point P is

E2 = 9 × 10⁹ × 9.3 / (3² + (-3)² + 2²) = 6.91 × 10⁶ N/C

Now, we can get the total electric field due to the given charges by adding the electric fields due to q1 and q2 vectorially.

The vector addition of electric fields E1 and E2 is given by the formula:

E = E1 + E2

Let's consider charge q1 (-5.5 nC) and charge q2 (9.3 nC) respectively with position vectors r1 and r2. Electric field due to q1 at point P (1,0,0)m is given by:r1 = (-3.1, -3, 0)mq1 = -5.5 nC

Position vector r from q1 to P = rP - r1 = (1, 0, 0)m - (-3.1, -3, 0)m = (4.1, 3, 0)m

Using the formula of electric field, the electric field due to q1 at point P will be given by:E1 = kq1 / r²

where k is the Coulomb constant

k = 9 × 10⁹ N m² C⁻²

The magnitude of the electric field due to q1 at point P is given by|E1| = 9 × 10⁹ × |q1| / r²= 9 × 10⁹ × 5.5 / (4.1² + 3²) N/C= 2.42 × 10⁶ N/C

The direction of the electric field due to q1 at point P is towards the charge q1.

Now, let's consider charge q2. The position vector of q2 is given by:r2 = (-2, 3, -2)mq2 = 9.3 nC

Position vector r from q2 to P = rP - r2 = (1, 0, 0)m - (-2, 3, -2)m = (3, -3, 2)m

The magnitude of the electric field due to q2 at point P will be given by:

E2 = kq2 / r²= 9 × 10⁹ × 9.3 / (3² + (-3)² + 2²) N/C= 6.91 × 10⁶ N/C

The direction of the electric field due to q2 at point P is away from the charge q2.

Now, we can get the total electric field due to the given charges by adding the electric fields due to q1 and q2 vectorially. The vector addition of electric fields E1 and E2 is given by the formula:E = E1 + E2E = (-2.42 × 10⁶) î + 6.91 × 10⁶ ĵ N/C

Learn more about electric field: https://brainly.com/question/30544719

#SPJ11

take the radius of the earth to be 6,378 km. (a) what is the angular speed (in rad/s) of a point on earth's surface at latitude 65° n?

Answers

The angular speed of a point on Earth's surface at latitude 65° N is approximately 7.292 × 10^(-5) rad/s.

To calculate the angular speed, we need to consider the rotational motion of the Earth. The angular speed (ω) is defined as the change in angular displacement per unit of time. At any latitude on Earth's surface, the angular speed can be calculated using the formula ω = v / r, where v is the linear velocity and r is the radius of the Earth.

The linear velocity can be found using the formula v = R * cos(latitude), where R is the rotational speed of the Earth and latitude is the given latitude. The rotational speed of the Earth is approximately 2π radians per 24 hours. By substituting the given values into the formulas, we can calculate the angular speed.

For more questions like Speed click the link below:

https://brainly.com/question/28224010

#SPJ11

A 60 kg astronaut in a full space suit (mass of 130 kg) presses down on a panel on the outside of her spacecraft with a force of 10 N for 1 second. The spaceship has a radius of 3 m and mass of 91000 kg. Unfortunately, the astronaut forgot to tie herself to the spacecraft. (a) What velocity does the push result in for the astronaut, who is initially at rest? Be sure to state any assumptions you might make in your calculation.(b) Is the astronaut going to remain gravitationally bound to the spaceship or does the astronaut escape from the ship? Explain with a calculation.(c) The quick-thinking astronaut has a toolbelt with total mass of 5 kg and decides on a plan to throw the toolbelt so that she can stop herself floating away. In what direction should the astronaut throw the belt to most easily stop moving and with what speed must the astronaut throw it to reduce her speed to 0? Be sure to explain why the method you used is valid.(d) If the drifting astronaut has nothing to throw, she could catch something thrown to her by another astronaut on the spacecraft and then she could throw that same object.Explain whether the drifting astronaut can stop if she throws the object at the same throwing speed as the other astronaut.

Answers

a. Push does not result in any initial velocity for the astronaut .b. The astronaut will not remain gravitationally bound to the spaceship. c. To stop herself from floating away, the astronaut can use the principle of conservation of momentum again.  

(a) To determine the velocity acquired by the astronaut, we can use the principle of conservation of momentum. Since no external forces are acting on the system (astronaut + spacecraft), the total momentum before and after the push must be equal.

Let's assume the positive direction is defined as the direction in which the astronaut pushes the panel. The initial momentum of the system is zero since both the astronaut and the spacecraft are at rest.

Initial momentum = Final momentum

0 = (mass of astronaut) * (initial velocity of astronaut) + (mass of spacecraft) * (initial velocity of spacecraft)

Since the astronaut is initially at rest, the equation becomes:

0 = (mass of astronaut) * 0 + (mass of spacecraft) * (initial velocity of spacecraft)

Solving for the initial velocity of the spacecraft:

(initial velocity of spacecraft) = -[(mass of astronaut) / (mass of spacecraft)] * 0

However, the mass of the astronaut is given as 60 kg and the mass of the space suit is given as 130 kg. We need to use the total mass of the astronaut in this case, which is 60 kg + 130 kg = 190 kg.

(initial velocity of spacecraft) = -[(190 kg) / (91000 kg)] * 0

The negative sign indicates that the spacecraft moves in the opposite direction of the push.

Therefore, the push does not result in any initial velocity for the astronaut.

(b) The astronaut will not remain gravitationally bound to the spaceship. In this scenario, the only force acting on the astronaut is the gravitational force between the astronaut and the spacecraft. The force of gravity is given by Newton's law of universal gravitation:

F_ gravity = (G * m1 * m2) / r^2

Where:

F_ gravity is the force of gravity

G is the gravitational constant

m1 is the mass of the astronaut

m2 is the mass of the spacecraft

r is the distance between the astronaut and the spacecraft (the radius of the spaceship in this case)

Using the given values:

F_ gravity = (6.67430 x 10^-11 N m^2/kg^2) * (60 kg) * (91000 kg) / (3 m)^2

Calculating the force of gravity, we find that it is approximately 3.022 N.

The force applied by the astronaut (10 N) is greater than the force of gravity (3.022 N), indicating that the astronaut will escape from the ship. The astronaut's push is strong enough to overcome the gravitational attraction.

(c) To stop herself from floating away, the astronaut can use the principle of conservation of momentum again. By throwing the toolbelt, the astronaut imparts a backward momentum to it, causing herself to move forward with an equal but opposite momentum, ultimately reducing her speed to zero.

Let's assume the positive direction is defined as the direction opposite to the astronaut's initial motion.

The momentum before throwing the toolbelt is zero since the astronaut is initially drifting with a certain velocity.

Initial momentum = Final momentum

0 = (mass of astronaut) * (initial velocity of astronaut) + (mass of toolbelt) * (initial velocity of toolbelt)

Since we want the astronaut to reduce her speed to zero, the equation becomes:

0 = (mass of astronaut) * (initial velocity of astronaut) + (mass of toolbelt) * (initial velocity of toolbelt)

The direction of the initial velocity of the toolbelt should be opposite to the astronaut's initial motion, while its magnitude should be such that the astronaut's total momentum becomes zero.

Therefore, to stop moving, the astronaut should throw the toolbelt in the direction opposite to her initial motion with a velocity equal to her own initial.

To know more about momentum visit:

https://brainly.com/question/1042017

#SPJ11

suppose the previous forecast was 30 units, actual demand was 50 units, and ∝ = 0.15; compute the new forecast using exponential smoothing.

Answers

By using the formula of exponential smoothing, we can get the new forecast. Hence, the new forecast using exponential smoothing is 33 units.

Given:

Previous forecast = 30 units

Actual demand = 50 unitsα = 0.15Formula used:

New forecast = α(actual demand) + (1 - α)(previous forecast)

New forecast = 0.15(50) + (1 - 0.15)(30)New forecast = 7.5 + 25.5

New forecast = 33 units

Therefore, the new forecast using exponential smoothing is 33 units.

In exponential smoothing, the new forecast is computed by using the actual demand and previous forecast. In this question, the previous forecast was 30 units and actual demand was 50 units, with α = 0.15. By using the formula of exponential smoothing, we can get the new forecast. Hence, the new forecast using exponential smoothing is 33 units.

To know more about New forecast visit:

brainly.com/question/31844712

#SPJ11

E11: Please show complete solution and explanation. Thank
you!
11. Discuss the physical interpretation of any one Maxwell relation.

Answers

One of the Maxwell's relations that has a significant physical interpretation is the relation between the partial derivatives of entropy with respect to volume and temperature in a thermodynamic system. This relation is given by:

([tex]∂S/∂V)_T = (∂P/∂T)_V[/tex]

Here, (∂S/∂V)_T represents the partial derivative of entropy with respect to volume at constant temperature, and (∂P/∂T)_V represents the partial derivative of pressure with respect to temperature at constant volume.

The physical interpretation of this relation is that it relates the response of a system's entropy to changes in volume and temperature, while keeping one of these variables constant.

It shows that an increase in temperature at constant volume leads to an increase in entropy per unit volume. Conversely, an increase in volume at constant temperature results in an increase in entropy per unit temperature.

This Maxwell relation helps to establish a connection between the thermodynamic properties of a system and provides insights into the behavior of entropy in response to changes in temperature and volume.

To know more about interpretation refer here:

https://brainly.com/question/28235829#

#SPJ11

what is the approximate thermal energy in kj/mol of molecules at 75 ° c?

Answers

Answer:

if you like it please do appreciate

To calculate the approximate thermal energy in kilojoules per mole (kJ/mol) of molecules at a given temperature, you can use the Boltzmann constant (k) and the ideal gas law.

The Boltzmann constant (k) is approximately equal to 8.314 J/(mol·K). To convert this to kilojoules per mole, we divide by 1000:

k = 8.314 J/(mol·K) = 0.008314 kJ/(mol·K)

Now, we need to convert the temperature to Kelvin (K) since the Boltzmann constant is defined in Kelvin. To convert from Celsius to Kelvin, we add 273.15 to the temperature:

T(K) = 75°C + 273.15 = 348.15 K

Finally, we can calculate the thermal energy using the formula:

Thermal energy = k * T

Thermal energy = 0.008314 kJ/(mol·K) * 348.15 K

Thermal energy ≈ 2.894 kJ/mol

Therefore, at 75°C, the approximate thermal energy of molecules is approximately 2.894 kilojoules per mole (kJ/mol).

The heat capacity of one mole of water is approximately 75.29/1000 = 0.07529 kj/mol. This value represents the approximate thermal energy in kj/mol of water molecules at 75 ° C.

Thermal energy refers to the energy present in a system that arises from the random movements of its atoms and molecules. When a body has a temperature of 75 ° C, it has a thermal energy that depends on the type of molecules in it and their specific heat capacity.

In this context, we will consider the thermal energy in kj/mol of molecules at 75 ° C.Let's use water as an example to calculate the approximate thermal energy in kj/mol of molecules at 75 ° C. The specific heat capacity of water is 4.18 J/g °C, and the molar mass of water is 18.01528 g/mol. Therefore, the thermal energy in kj/mol of water molecules at 75 ° C can be calculated as follows:ΔH = mcΔt, whereΔH = thermal energy,m = mass of the sample,c = specific heat capacity of the sample,Δt = change in temperature

To know more about heat capacity visit:-

https://brainly.com/question/28302909

#SPJ11

Problem 4- Air at 25°C, 1 atm, and 30 percent relative humidity is blown over the surface of 0.3m X 0.3m square pan filled with water at a free stream velocity of 2m/s. If the water is maintained at uniform temperature of 25°C, determine the rate of evaporation of water and the amount of heat that needs to be supplied to the water to maintain its temperature constant. Mass diffusivity of water in air is DAB-2.54x10-5 m²/s. Kinematic viscosity of air is 0.14x10-4 m²/s. Density of air p=1.27 kg/m³. Saturation pressure of water at 25°C Psat, 25c-3.17 kPa, latent heat of water at 25°C hfg=334 kJ/kg. (20P)

Answers

The rate of evaporation of water is approximately 0.249 kg/s, and the amount of heat that needs to be supplied to the water to maintain its temperature constant is approximately 83.066 kW.

To determine the rate of evaporation of water and the amount of heat required, we can use the equation for mass transfer rate:

m_dot = (ρ * A * V * x) / (D_AB * L)

where m_dot is the mass transfer rate (rate of evaporation), ρ is the density of air, A is the surface area of the pan, V is the free stream velocity, x is the humidity ratio (absolute humidity), D_AB is the mass diffusivity of water in air, and L is the characteristic length (assumed to be the depth of the water in this case).

T_air = 25°C = 298 K (temperature of air)

P = 1 atm (pressure of air)

RH = 30% (relative humidity)

V = 2 m/s (free stream velocity)

A = 0.3 m x 0.3 m = 0.09 m² (surface area of the pan)

D_AB = 2.54 x 10^-5 m²/s (mass diffusivity of water in air)

ρ = 1.27 kg/m³ (density of air)

L = depth of water in the pan = unknown (assumed to be equal to the height of the pan, 0.3 m)

To calculate x, the humidity ratio, we can use the equation:

x = (RH * P_s) / (P - RH * P_s)

where P_s is the saturation pressure of water at the given temperature.

Given values:

T_water = 25°C = 298 K (temperature of water)

P_s_25c = 3.17 kPa = 3.17 x 10³ Pa (saturation pressure of water at 25°C)

Plugging in the values, we can calculate x:

x = (0.3 * 3.17 x 10³) / (1 - 0.3 * 3.17 x 10³)

x ≈ 0.000957 kg/kg (humidity ratio)

Now we can calculate the rate of evaporation (m_dot):

m_dot = (ρ * A * V * x) / (D_AB * L)

m_dot = (1.27 * 0.09 * 2 * 0.000957) / (2.54 x 10^-5 * 0.3)

m_dot ≈ 0.249 kg/s

To calculate the amount of heat required to maintain the temperature constant, we can use the equation:

Q = m_dot * h_fg

where h_fg is the latent heat of water at the given temperature.

Given value:

h_fg_25c = 334 kJ/kg (latent heat of water at 25°C)

Plugging in the values, we can calculate Q:

Q = 0.249 * 334

Q ≈ 83.066 kW

The rate of evaporation of water is approximately 0.249 kg/s, and the amount of heat that needs to be supplied to the water to maintain its temperature constant is approximately 83.066 kW.

To know more about evaporation, visit:

https://brainly.com/question/24258

#SPJ11

suggest how predictive mining techniques can be used by a sports team, using your favorite sport as an example

Answers


Predictive mining techniques involve examining the massive amount of data to uncover unknown patterns, potential relationships, and insights. In the sports sector, data mining can assist teams in making data-based decisions about things like player recruitment, game strategy, and injury prevention.

Data mining techniques can be utilized by a sports team to acquire a competitive edge. The team can gather relevant data on their competitors and their own players to figure out game trends and the possible outcomes of a game.

By mining sports data, a team can come up with strategies to overcome their opponents' weakness and maximize their strengths. As a result, predictive data mining can assist sports teams in enhancing their overall performance.


Predictive mining techniques can be used by a sports team to acquire a competitive edge and improve their overall performance. By mining sports data, a team can come up with strategies to overcome their opponents' weakness and maximize their strengths. With this information, teams can make data-based decisions about player recruitment, game strategy, and injury prevention. Therefore, predictive mining techniques provide an opportunity to enhance sports teams' performance.

To know more about Predictive mining techniques visit:

brainly.com/question/31967069

#SPJ11

a metal sphere has a net negative charge of 1.1 × 10-6 coulomb. approximately how many more elec- trons than protons are on the sphere? 1. 1.8 × 1012 2. 5.7 × 1012 3. 6.9 × 1012 4. 9.9 × 1012

Answers

The correct option is 3. 6.9 × 10¹². More electrons than protons are present on the metal sphere.

An electron carries a negative charge of 1.6 × 10⁻¹⁹ C.A proton carries a positive charge of 1.6 × 10⁻¹⁹ C.The total charge on the sphere is -1.1 × 10⁻⁶ C.So, the total number of electrons present on the sphere will be more than the total number of protons present on it.

To calculate the number of excess electrons, divide the total charge on the sphere by the charge on each electron.n= Total charge on the sphere / Charge carried by one electron n = 1.1 × 10⁻⁶ C / 1.6 × 10⁻¹⁹ C = 6.875 × 10¹²6.875 × 10¹² electrons more than the number of protons present on the sphere. 6.9 × 10¹² electrons are more than protons present on the sphere. Therefore, the correct option is 3. 6.9 × 10¹².

To know more about electrons visit :-

https://brainly.com/question/12001116

#SPJ11

Question 1 Calculate the amount of radiation emitted by a blackbody with a temperature of 353 K. Round to the nearest whole number (e.g., no decimals) and input a number only, the next question asks a

Answers

The amount of radiation emitted by a blackbody with a temperature of 353 K is 961 {W/m}².

The formula for calculating the amount of radiation emitted by a blackbody is given by the Stefan-Boltzmann law: j^* = \sigma T^4 Where j* is the radiation energy density (in watts per square meter), σ is the Stefan-Boltzmann constant (σ = 5.67 x 10^-8 W/m^2K^4), and T is the absolute temperature in Kelvin (K).Using the given temperature of T = 353 K and the formula above, we can calculate the amount of radiation emitted by the blackbody: j^* = \sigma T^4 j^* = (5.67 \times 10^{-8}) (353)^4 j^* = 961.2 {W/m}².

Therefore, the amount of radiation emitted by the blackbody with a temperature of 353 K is approximately 961 watts per square meter (W/m²).Rounding this to the nearest whole number as specified in the question gives us the final answer of: 961 (no decimals).

More on radiation: https://brainly.com/question/31106159

#SPJ11

what is the magnitude of i3i3 ? express your answer to two significant figures and include the appropriate units.

Answers

The magnitude of i3i3  is 1.00.

In mathematics, the term magnitude refers to the size or extent of a quantity. Magnitude is used to describe the amount of an object, such as the length of a line, the weight of an object, or the size of a number. When we talk about the magnitude of a number, we are referring to the size or absolute value of that number.

The question is asking for the magnitude of i3. i is the imaginary unit, which is defined as the square root of -1. When we take i to the power of 3, we get:i3 = i * i * i = -i

To find the magnitude of -i, we take the absolute value of -i, which is equal to 1. Therefore, the magnitude of i3 is 1. Expressed to two significant figures, the magnitude of i3 is 1.00. There are no units associated with the magnitude of a number, as it refers only to the size or extent of the number.

To know more about magnitude visit:

https://brainly.com/question/31022175

#SPJ11

the concentration of no was 0.0550 m at t = 5.0 s and 0.0225 m at t = 650.0 s. what is the average rate of the reaction during this time period?

Answers

The average rate of the reaction during this time period is approximately -5.04 x 10^-5 M/s.

To calculate the average rate of the reaction, we need to determine the change in concentration of NO over the given time period and divide it by the corresponding change in time.

Change in concentration of NO = Final concentration - Initial concentration

Change in concentration of NO = 0.0225 M - 0.0550 M

Change in concentration of NO = -0.0325 M (Note: The negative sign indicates a decrease in concentration.)

Change in time = Final time - Initial time

Change in time = 650.0 s - 5.0 s

Change in time = 645.0 s

Average rate of the reaction = Change in concentration of NO / Change in time

Average rate of the reaction = (-0.0325 M) / (645.0 s)

Calculating the average rate:

Average rate of the reaction ≈ -5.04 x 10^-5 M/s

Learn more about reaction: brainly.com/question/11231920

#SPJ11

The average rate of reaction during this time period is calculated as -0.00005038 M/s. It is given that the concentration of NO was 0.0550 M at t = 5.0 s and 0.0225 M at t = 650.0 s.

The average rate of a reaction is calculated using the formula;

Average rate of reaction = change in concentration/time taken.

Since we are given the concentrations of NO at two different times, we can calculate the change in concentration of N₀;Δ[N⁰]

= [N₀]final - [N]initial

= 0.0225 M - 0.0550 M

= -0.0325 M.

The change in time can be calculated as follows;

Δt = t final - t initial

= 650.0 s - 5.0 s

= 645.0 s.

The average rate of reaction can now be calculated as; Average rate of reaction

= Δ[NO]/Δt

= -0.0325 M/645.0 s

= -0.00005038 M/s.

Therefore, the average rate of the reaction during this time period is -0.00005038 M/s.

To know more about rate of reaction, refer

https://brainly.com/question/24795637

#SPJ11

A 20.0-kg cannon ball is fired from a cannon with a muzzle speed of 100 m/s at an angle of 20.0° with the horizontal. Use the conservation of energy principle to find the maximum height reached by ba

Answers

A 20.0 kg cannonball is fired from a cannon with a muzzle speed of 100 m/s at an angle of 20.0°. Using conservation of energy, the maximum height reached by the cannonball is approximately 510.2 meters.

A cannon ball weighing 20.0 kg is launched from a cannon with an initial velocity of 100 m/s at an angle of 20.0° above the horizontal.

To determine the maximum height reached by the cannonball using the conservation of energy principle, we consider the conversion of kinetic energy into gravitational potential energy.

Initially, the cannonball has only kinetic energy, given by the equation KE = (1/2)mv², where m is the mass and v is the velocity.

At the highest point of its trajectory, the cannonball has no vertical velocity, meaning it has no kinetic energy but possesses gravitational potential energy, given by the equation PE = mgh, where h is the height and g is the acceleration due to gravity (approximately 9.8 m/s²).

Using the conservation of energy, we equate the initial kinetic energy to the maximum potential energy:

(1/2)mv² = mgh

Canceling the mass and rearranging the equation, we find:

v²/2g = h

Plugging in the given values, we have:

(100²)/(2*9.8) = h

Simplifying the equation, we find:

h ≈ 510.2 m

Therefore, the maximum height reached by the cannonball is approximately 510.2 meters.

To know more about maximum height refer here:

https://brainly.com/question/30878848#

#SPJ11

The displacement of a wave traveling in the negative y-direction
is D(y,t)=(9.0cm)sin(45y+70t+π)D(y,t)=(9.0cm)sin⁡(45y+70t+π), where
y is in m and t is in s.
What is the frequency of this wave?
Wh

Answers

The displacement of a wave traveling in the negative y-direction depends on the amplitude and frequency of the wave.

The displacement of a wave traveling in the negative y-direction is a combination of factors. The first factor is the amplitude, which is the maximum distance that a particle moves from its rest position as a wave passes through it. The second factor is the frequency, which is the number of waves that pass a fixed point in a given amount of time. The displacement of a wave is given by the formula y = A sin(kx - ωt + ϕ), where A is the amplitude, k is the wave number, x is the position, ω is the angular frequency, t is the time, and ϕ is the phase constant. This formula shows that the displacement depends on the amplitude and frequency of the wave.

These variables have the same fundamental meaning for waves. In any case, it is useful to word the definitions in a more unambiguous manner that applies straightforwardly to waves: Amplitude is the distance between the wave's maximum displacement and its resting position. Frequency is the number of waves that pass by a particular point every second.

Know more about amplitude and frequency, here:

https://brainly.com/question/31863582

#SPJ11

A particale's velocity function is given by V=3t³+5t²-6 with X in meter/second and t in second Find the velocity at t=2s
A particale's velocity function is given by V=3t³+5t²-6 with X in meter/se

Answers

The velocity of the particle at t=2s is 38 m/s.

The velocity function of the particle is given by V = 3t³ + 5t² - 6, where V represents the velocity in meters per second (m/s), and t represents time in seconds (s). This equation is a polynomial function that describes how the velocity of the particle changes over time.

The velocity function of the particle is V = 3t³ + 5t² - 6, we need to find the velocity at t=2s.

Substituting t=2 into the velocity function, we have:

V = 3(2)³ + 5(2)² - 6

V = 3(8) + 5(4) - 6

V = 24 + 20 - 6

V = 38 m/s

It's important to note that the velocity of the particle can be positive or negative depending on the direction of motion. In this case, since we are given the velocity function without any information about the initial conditions or the direction, we can interpret the velocity as a magnitude. Thus, at t=2s, the particle has a velocity of 38 m/s, regardless of its direction of motion.

learn more about Velocity here:

https://brainly.com/question/14236800

#SPJ11

determine the value of k required so that the maximum response occurs at ω = 4 rad/s. identify the steady-state response at that frequency.

Answers

The value of k required so that the maximum response occurs at ω = 4 rad/s is k=0 and identified the steady-state response at that frequency is 0.25.

We can solve the above problem in two parts:

First part to determine the value of k and the second part to identify the steady-state response at that frequency.

Given the maximum response occurs at ω = 4 rad/s.

Using the formula of maximum response for the given function, we get:

Max response = [tex]$$\frac{1}{\sqrt{1+k^2}}$$[/tex]

This maximum response will occur at the frequency at which the denominator is minimum as the numerator is constant. Therefore, we differentiate the denominator of the above expression and equate it to zero as follows:

[tex]$$(1+k^2)^{3/2}k=0$$$$\Rightarrow k=0$$\\[/tex]

So, for maximum response at frequency 4 rad/s, k=0.Now, we need to identify the steady-state response at that frequency.

Using the formula for the steady-state response for the given function, we get:

Steady-state response = [tex]$$\frac{1}{4\sqrt{1+0}}=\frac{1}{4}$$[/tex]

Therefore, the steady-state response at that frequency is 0.25.

Therefore, we determined the value of k required so that the maximum response occurs at ω = 4 rad/s is k=0 and identified the steady-state response at that frequency is 0.25.

To know more about frequency, visit:

https://brainly.com/question/29739263

#SPJ11

what is the pressure on the sample if f = 340 n is applied to the lever? express your answer to two significant figures and include the appropriate units.

Answers

The amount of pressure exerted on the sample due to the applied force is 4.25 x 10⁷ Nm.

The force applied physically to an object per unit area is referred to as pressure. Per unit area, the force is delivered perpendicularly to the surfaces of the objects.

The diameter of the large cylinder, d₁ = 10 cm = 0.1 m

The diameter of the small cylinder, d₂ = 2 cm = 0.02 m

The area of the given sample, A = 4 cm² = 4 x 10⁻⁴m²

So, the force acting on the small cylinder is given by,

(F x 2L) - (F₂ x L) = 0

2FL - F₂L = 0

So,

F₂L = 2FL

Therefore, F₂ = 2 x F

F₂ = 2 x 340 N

F₂ = 680 N

In order to calculate the force acting on the large cylinder,

We know that, P₁ = P₂

So, we can write that,

F₁/A₁ = F₂/A₂

F₁/d₁² = F₂/d₂²

Therefore,

F₁ = F₂d₁²/d₂²

F₁ = 680 x (0.1/0.02)²

F₁ = 680 x 100/4

F₁ = 17000 N

Therefore, the pressure exerted on the sample is,

P = F₁/A

P = 17000/(4 x 10⁻⁴)

P = 4.25 x 10⁷ Nm

To learn more about pressure, click:

https://brainly.com/question/13327123

#SPJ4

According to solubility rules, which compound should dissolve in water? Select one: ОКРО, 0 MgCO3 O Caso O AgBI

Answers

MgCO₃ is the only compound that should dissolve in water according to the given solubility rules. Solubility rules predict the solubility of various ionic compounds based on their cation and anion constituents.

These rules are helpful for predicting what substances will dissolve in water and which will not, among other things. According to solubility rules, MgCO₃ should dissolve in water. MgCO₃ is a salt that contains Mg²⁺ cation and CO₃²⁻ anion. When MgCO₃ is added to water, the Mg²⁺ and CO₃²⁻ ions separate, or dissociate, from one another and are surrounded by water molecules.

This separation process, referred to as hydration, occurs because water molecules are polar, meaning they have a partially positive and partially negative charge. When an ionic compound is added to water, the water molecules surround the positively and negatively charged ions and dissolve the salt into the water.

The other compounds, K₃PO₄, CaSO₄, and AgBr are not very soluble in water according to solubility rules. Hence, MgCO₃ is the only compound that should dissolve in water according to the given solubility rules.

Learn more about solubility rules here:

https://brainly.com/question/31327080

#SPJ11

a child on a merry-go-round takes 4.4 s to go around once. what is his angular displacement during a 1.0 s time interval?

Answers

The child's angular displacement during a 1.0 s time interval is approximately 1.432 radians.

To determine the angular displacement of the child on the merry-go-round during a 1.0 s time interval, we can use the formula:

Angular Displacement (θ) = Angular Velocity (ω) × Time (t)

The angular velocity (ω) can be calculated by dividing the total angular displacement by the total time taken to complete one revolution.

In this case:

Time taken to go around once (T) = 4.4 s

Angular Velocity (ω) = 2π / T

Angular Velocity (ω) = 2π / 4.4 s ≈ 1.432 radians/s

Now, we can calculate the angular displacement during a 1.0 s time interval:

Angular Displacement (θ) = Angular Velocity (ω) × Time (t)

Angular Displacement (θ) = 1.432 radians/s × 1.0 s

Angular Displacement (θ) ≈ 1.432 radians

Learn more about angular displacement here:

https://brainly.com/question/31387317

#SPJ11

The angular displacement of the child during a 1.0 s time interval is 1.44 radian. The given values are, Time taken by the child to go around once, t = 4.4 s Time interval, t₁ = 1 s

Formula used: Angular displacement (θ) = (2π/t) × t₁. Substitute the given values in the formula, Angular displacement (θ) = (2π/t) × t₁= (2π/4.4) × 1= 1.44 radian. Thus, the angular displacement of the child during a 1.0 s time interval is 1.44 radian.

The change in the angular position of an object or a point in a rotational system is known as angular displacement and it measures the amount and direction of rotation from an initial position to a final position. Angular displacement is an important concept in physics and engineering, as it helps to describe a rotational motion.

To know more about angular displacement, refer

https://brainly.com/question/31150979

#SPJ11

An electron has de Broglie wavelength 2.75×10−10 m

Determine the magnitude of the electron's momentum pe.

Express your answer in kilogram meters per second to three significant figures.

Answers

the magnitude of the electron's momentum is 2.41 × 10⁻²⁵ kg m/s (to three significant figures).

The expression to calculate the magnitude of the electron's momentum is given as:

pe = h/λ

where, pe is the momentum of electron λ is the de Broglie wavelengthh is the Planck's constant

The given de Broglie wavelength is λ = 2.75 × 10⁻¹⁰m.

Planck's constant is given as h = 6.626 × 10⁻³⁴J s.

Substituting the above values in the expression to calculate the magnitude of the electron's momentum, we get:

pe = h/λpe = (6.626 × 10⁻³⁴J s)/(2.75 × 10⁻¹⁰m)pe = 2.41 × 10⁻²⁵ kg m/s

Thus, the magnitude of the electron's momentum is 2.41 × 10⁻²⁵ kg m/s (to three significant figures).

learn more about wavelength here

https://brainly.com/question/10750459

#SPJ11

The A string on a violin has a fundamental frequency of 440 Hz . The length of the vibrating portion is 32 cm , and it has a mass of 0.40 g .
Under what tension must the string be placed? Express your answer using two significant figures. FT = nothing

Answers

The tension in the A string of the violin must be approximately 98 N. We can use the wave equation for the speed of a wave on a string

To determine the tension in the A string of the violin, we can use the wave equation for the speed of a wave on a string:

v = √(FT/μ)

where v is the velocity of the wave, FT is the tension in the string, and μ is the linear mass density of the string.

The linear mass density (μ) can be calculated by dividing the mass (m) of the string by its length (L):

μ = m/L

Substituting this value into the wave equation, we have:

v = √(FT/(m/L))

Since the fundamental frequency of the A string is given as 440 Hz, we can use the formula for the wave speed:

v = λf

where λ is the wavelength and f is the frequency. For the fundamental frequency, the wavelength is twice the length of the vibrating portion:

λ = 2L

Substituting this expression for λ into the wave speed equation, we have:

v = 2Lf

Now we can equate the expressions for the wave speed and solve for the tension (FT):

√(FT/(m/L)) = 2Lf

Squaring both sides of the equation and rearranging, we get:

FT = (4mL^2f^2)/L

Simplifying further, we have:

FT = 4mLf^2

Plugging in the given values:

FT = 4(0.40 g)(32 cm)(440 Hz)^2

Converting the mass to kilograms and the length to meters:

FT = 4(0.40 × 10^(-3) kg)(0.32 m)(440 Hz)^2

Calculating the tension:

FT ≈ 98 N

Therefore, the tension in the A string of the violin must be approximately 98 N.

To learn more about Tension click here

https://brainly.com/question/14294135

#SPJ11

A 0.200-kg object is attached to a spring that has a force constant of 95.0 N/m. The object is pulled 7.00 cm to the right of equilibrium and released from rest to slide on a horizontal, frictionless table. Calculate the maximum speed Umas of the object. Upis m/y Find the location x of the object relative to equilibrium when it has one-third of the maximum speed, is moving to the right, and is speeding up. m

Answers

The maximum speed of the object is Umas =  1.516 m/s. The location of the object relative to equilibrium when it has one-third of the maximum speed, is moving to the right, and is speeding up is x =  6.97 cm..

To find the maximum speed of the object, we can use the concept of mechanical energy conservation. At the maximum speed, all the potential energy stored in the spring is converted into kinetic energy.

The potential energy stored in the spring is given by:

Potential energy (PE) = (1/2)kx²

Where:

k = force constant of the spring = 95.0 N/m

x = displacement of the object from equilibrium = 7.00 cm = 0.0700 m (converted to meters)

Substituting the values into the equation:

PE = (1/2)(95.0 N/m)(0.0700 m)²

PE ≈ 0.230 Joules

At the maximum speed, all the potential energy is converted into kinetic energy:

Kinetic energy (KE) = 0.230 Joules

The kinetic energy is given by:

KE = (1/2)mv²

Where:

m = mass of the object = 0.200 kg

v = maximum speed of the object (Umas)

Substituting the values into the equation:

0.230 Joules = (1/2)(0.200 kg)v²

v² = (0.230 Joules) * (2/0.200 kg)

v² = 2.30 Joules/kg

v ≈ 1.516 m/s

Therefore, the maximum speed of the object is Umas ≈ 1.516 m/s.

To find the location of the object relative to equilibrium when it has one-third of the maximum speed, we can use the concept of energy conservation again. At this point, the kinetic energy is one-third of the maximum kinetic energy.

KE = (1/2)mv²

(1/3)KE = (1/6)mv²

Substituting the values into the equation:

(1/3)(0.230 Joules) = (1/6)(0.200 kg)v²

0.077 Joules = (0.0333 kg)v²

v² = 2.311 Joules/kg

v ≈ 1.519 m/s

Now, we need to find the displacement x of the object from equilibrium at this velocity. We can use the formula for the potential energy stored in the spring:

PE = (1/2)kx²

Rearranging the equation:

x² = (2PE) / k

x² = (2 * 0.230 Joules) / 95.0 N/m

x² ≈ 0.004842 m²

x ≈ ±0.0697 m

Since the object is moving to the right, the displacement x will be positive:

x ≈ 0.0697 m

Converting this to centimeters:

x ≈ 6.97 cm

Therefore, the location of the object relative to equilibrium when it has one-third of the maximum speed, is moving to the right, and is speeding up is x ≈ 6.97 cm.

The maximum speed of the object is Umas ≈ 1.516 m/s. The location of the object relative to equilibrium when it has one-third of the maximum speed, is moving to the right, and is speeding up is x ≈ 6.97 cm.

To know more about speed, visit:

https://brainly.com/question/30249508

#SPJ11

Which kind of force and motion causes a pencil that is dropped to fall to the floor?

Answers

The force of gravity causes a pencil that is dropped to fall to the floor. The time it takes for an object to fall from a certain height depends on its initial velocity and the acceleration due to gravity.

When an object falls, it is because gravity is acting on it. The force of gravity is the force of attraction between any two objects with mass. Gravity causes the objects to be pulled toward each other. The strength of gravity depends on the mass of the objects and the distance between them.The motion of a falling object is called free fall. Free fall occurs when an object falls under the influence of gravity alone, with no other forces acting on it. The acceleration of an object in free fall is constant, and is equal to the acceleration due to gravity, which is approximately 9.8 meters per second squared (m/s²) near the surface of the Earth.

When an object is dropped, it begins to fall because of the force of gravity. Gravity is a force that exists between any two objects that have mass. The force of gravity depends on the mass of the objects and the distance between them. The force of gravity acts on the object from the moment it is dropped until it hits the floor.The motion of an object that is falling under the influence of gravity alone is called free fall. In free fall, the object is accelerating because of gravity. The acceleration of an object in free fall is constant, and is equal to the acceleration due to gravity, which is approximately 9.8 meters per second squared (m/s²) near the surface of the Earth.When an object is in free fall, the only force acting on it is gravity. This means that there is no air resistance or other force to slow it down. As a result, the object falls faster and faster until it hits the ground.

To know more about force of gravity visit :-

https://brainly.com/question/30498785

#SPJ11

a lens has a refractive power of -1.50. what is its focal length?

Answers

It has been determined that the focal length of the lens is -0.6667 m.

Given: The refractive power of a lens is -1.50We are supposed to find the focal length of the given lens

Solution:The formula to find the focal length of a lens is given by:1/f = (n-1) (1/R1 - 1/R2)

Given: Refractive power (P) = -1.50

As we know that, P = 1/f (Where f is the focal length)

Hence, -1.50 = 1/fOr, f = -1/1.5= -0.6667 m

Therefore, the focal length of the given lens is -0.6667 m.

From the above calculations, it has been determined that the focal length of the lens is -0.6667 m.

To know more about focal length visit:

brainly.com/question/31755962

#SPJ11

A capacitor is discharged through a 20.0 Ω resistor. The discharge current decreases to 22.0% of its initial value in 1.50 ms.
What is the time constant (in ms) of the RC circuit?
a) 0.33 ms
b) 0.67 ms
c) 1.50 ms
d) 3.75 ms

Answers

The time constant (in ms) of the RC circuit is 3.75 ms. Hence, the correct option is  (d) 3.75 ms.


The rate of decay of the current in a charging capacitor is proportional to the current in the circuit at that time. Therefore, it takes longer for a larger current to decay than for a smaller current to decay in a charging capacitor.A capacitor is discharged through a 20.0 Ω resistor.

The discharge current decreases to 22.0% of its initial value in 1.50 ms. We can obtain the time constant of the RC circuit using the following formula:$$I=I_{o} e^{-t / \tau}$$Where, I = instantaneous current Io = initial current t = time constant R = resistance of the circuit C = capacitance of the circuit

To know more about circuit visit:-

https://brainly.com/question/12608516

#SPJ11

The time constant of the RC circuit is approximately 0.674 m s.

To determine the time constant (τ) of an RC circuit, we can use the formula:

τ = RC

Given that the discharge current decreases to 22.0% of its initial value in 1.50 m s, we can calculate the time constant as follows:

The percentage of the initial current remaining after time t is given by the equation:

I(t) =[tex]I_oe^{(-t/\tau)[/tex]

Where:

I(t) = current at time t

I₀ = initial current

e = Euler's number (approximately 2.71828)

t = time

τ = time constant

We are given that the discharge current decreases to 22.0% of its initial value. Therefore, we can set up the following equation:

0.22 =[tex]e^{(-1.50/\tau)[/tex]

To solve for τ, we can take the natural logarithm (ln) of both sides:

ln(0.22) = [tex]\frac{-1.50}{\tau}[/tex]

Rearranging the equation to solve for τ:

τ = [tex]\frac{-1.50 }{ ln(0.22)}[/tex]

Calculating this expression:

τ ≈ 0.674 m s

Learn more about time constant here:

brainly.com/question/32577767

#SPJ11

Other Questions
what is the value of q when the solution contains 2.00103m ca2 and 3.00102m so42 A production department's output for the most recent month consisted of 19,500 units completed and transferred to the next stage of production and 19,500 units in ending Work in Process inventory. The units in ending Work in Process inventory were 60% complete with respect to both direct materials and conversion costs. There were 2,900 units in beginning Work in Process inventory, and they were 80% complete with respect to both direct materials and conversion costs. Calculate the equivalent units of production for the month, assuming the company uses the weighted average method. 00:44:45 Ask Multiple Choice O O 20,080 units. 19.500 units. 31,780 units. units. 31,200 units. Given the equation y = 7 sin The amplitude is: 7 The period is: The horizontal shift is: The midline is: y = 3 11TT 6 x - 22 3 +3 units to the Right (1) which of the following transitions represent the emission of a photon with the largest energy? a) n = 2 to n = 1 b) n = 3 to n = 1 c) n = 6 to n = 4 d) n = 1 to n = 4 e) n = 2 to n = 4 4 of 54 of 5 items 03:18 pause question which number on the map represents the country of india? responses a 11 b 22 c 33 d 44 skip to navigation highlight next If you can earn 12 percent on your investments, and you would like to accumulate $100,000 for your newborn childs education at the end of 18 years, how much must you invest annually to reach your goal? what are the ""only three things to think about"" that make a bomb so dangerous? the h concentration in an aqueous solution at 25 c is 4.3 10. what is [oh]? what is the probability that a positive integer selected at random from the set of positive integers not exceeding 100 is divisible by either 2 or 5? By communicating the benefits of a brand-new product category, Panasonic's 1970 Video Home System (VHS) ad attempted to stimulate which type of demand? Primary Secondary Selective Market What type of insurance would you prefer and why? What do youbelieve is the worst option and why? the table shows values for variable a and variable b. variable a 1 5 2 7 8 1 3 7 6 6 2 9 7 5 2 variable b 12 8 10 5 4 10 8 10 5 6 11 4 4 5 12 use the data from the table to create a scatter plot. Suppose you are creating a database for a library management system. Explain how you would create a table for the "books" entity and insert some sample data, and then alter the table to add a new column for the "authorID" attribute and update authorID with some data. Finally, write a SQL query to retrieve all the books that were published after the year 2000.Note that this book schema has several columns, including "book_id" as the primary key, "title", "authorN", "publisher", "publication_year", "isbn", "language", and "num_pages". It also includes "available" column that is set to "true" by default and can be used to track the availability of the book. Describe the general requirements associated with each certification.CERTIFICATIONSC.P.M. (Certified Purchasing Manager NAPM/ISM, NAPM.org or ISM.ws); ISM is free to join for studentsC.I.R.M. (Certified in Integrated Resource Management APICS, apics.org)C.P.I.M. (Certified in Production & Inventory Management APICS, apics.org)CQMgr (Quality Management - ASQ)M.B.A. (Masters of Business Administration) E11: Please show complete solution and explanation. Thankyou!11. Discuss the physical interpretation of any one Maxwell relation. 1. Write a Python program that prompts the user to enter the current month name and prints the season for that month. Hint: If the user enters March, the output should be "Spring"; if the user enters June, the output should be "Summer". 2. Write a Python program using the recursive/loop structure to print out an equilateral triangle below (single spacing and one space between any two adjacent asterisks in the same row). 3. Write a Python program that prints all the numbers from 0 to 10 except 3 and 6. Hint: Use 'continue' statement.Expected Output: 0124578910(You can add spaces or commas between these numbers if you like) 4. Write a Python program to calculate the sum and average of n integer numbers (n is provided by the user). 5. Grades are values between zero and 10 (both zero and 10 included), and are always rounded to the nearest half point. To translate grades to the American style, 8.5 to 10 become an "A" 7.5 and 8 become a "B," 6.5 and 7 become a "C," 5.5 and 6 become a "D," and other grades become an "F." Implement this translation, whereby you ask the user for a grade, and then give the American translation. If the user enters a grade lower than zero or higher than 10, just give an error message. You do not need to handle the user entering grades that do not end in .0 or .5, though you may do that if you like - in that case, if the user enters such an illegal grade, give an appropriate error message. diethylenetriamine (dien) is capable of serving as a tridentate ligand. .Select all that applyWhat are steps in the problem-solution organizational method of organizing persuasive speeches on questions of policy?A. Explaining the root causes of the problemB. Suggesting a practical planC. Demonstrating a needD. Explaining the importance of the problem 1.Why would it matter that an audience may be made up of morewomen than men, or more Asian Americans than Hispanics, or olderpeople than younger people?b. How would this information affect the wa Which kind of force and motion causes a pencil that is dropped to fall to the floor?