Answer:
The p-value of the test is 0.053, which is more than the standard significance level of 0.05, and thus it cannot be concluded that the mean monthly rent in the city is less than $1000.
Step-by-step explanation:
A housing official in a certain city claims that the mean monthly rent for apartments in the city is less than $1000.
At the null hypothesis, we test if the mean is of at least $1000, that is:
[tex]H_0: \mu \geq 1000[/tex]
At the alternative hypothesis, we test if the mean is less than $1000, that is:
[tex]H_1: \mu < 1000[/tex]
The test statistic is:
We have the standard deviation for the sample, so the t-distribution is used.
[tex]t = \frac{X - \mu}{\frac{s}{\sqrt{n}}}[/tex]
In which X is the sample mean, [tex]\mu[/tex] is the value tested at the null hypothesis, s is the standard deviation and n is the size of the sample.
1000 is tested at the null hypothesis:
This means that [tex]\mu = 1000[/tex]
To verify this claim, a simple random sample of 47 renters in the city was taken, and the mean rent paid was $941 with a standard deviation of $245.
This means that [tex]n = 47, X = 941, s = 245[/tex]
Value of the test statistic:
[tex]t = \frac{X - \mu}{\frac{s}{\sqrt{n}}}[/tex]
[tex]t = \frac{941 - 1000}{\frac{245}{\sqrt{47}}}[/tex]
[tex]t = -1.65[/tex]
P-value of the test and decision:
The p-value of the test is found using a left-tailed test(test if the mean is less than a value), with t = -1.65 and 47 - 1 = 46 df.
Using a t-distribution calculator, the p-value is of 0.053.
The p-value of the test is 0.053, which is more than the standard significance level of 0.05, and thus it cannot be concluded that the mean monthly rent in the city is less than $1000.
It is known that the variance of a population equals 1,936. A random sample of 121 has been selected from the population. There is a .95 probability that the sample mean will provide a margin of error of _____. Group of answer choices 31.36 or less 1,936 or less 344.96 or less 7.84 or less
Answer:
Option d (7.84 or less) is the right alternative.
Step-by-step explanation:
Given:
[tex]\sigma^2=1936[/tex]
[tex]\sigma = \sqrt{1936}[/tex]
[tex]=44[/tex]
Random sample,
[tex]n = 121[/tex]
The level of significance,
= 0.95
or,
[tex](1-\alpha) = 0.95[/tex]
[tex]\alpha = 1-0.95[/tex]
[tex]Z_{\frac{\alpha}{2} } = 1.96[/tex]
hence,
The margin of error will be:
⇒ [tex]E = Z_{\frac{\alpha}{2} }(\frac{\sigma}{\sqrt{n} } )[/tex]
By putting the values, we get
[tex]=1.96(\frac{44}{\sqrt{121} } )[/tex]
[tex]=1.96(\frac{44}{11} )[/tex]
[tex]=1.96\times 4[/tex]
[tex]=7.84[/tex]
[infinity]
Substitute y(x)= Σ 2 anx^n and the Maclaurin series for 6 sin3x into y' - 2xy = 6 sin 3x and equate the coefficients of like powers of x on both sides of the equation to n= 0. Find the first four nonzero terms in a power series expansion about x = 0 of a general
n=0
solution to the differential equation.
У(Ñ)= ___________
Recall that
[tex]\sin(x)=\displaystyle\sum_{n=0}^\infty(-1)^n\frac{x^{2n+1}}{(2n+1)!}[/tex]
Differentiating the power series series for y(x) gives the series for y'(x) :
[tex]y(x)=\displaystyle\sum_{n=0}^\infty a_nx^n \implies y'(x)=\sum_{n=1}^\infty na_nx^{n-1}=\sum_{n=0}^\infty (n+1)a_{n+1}x^n[/tex]
Now, replace everything in the DE with the corresponding power series:
[tex]y'-2xy = 6\sin(3x) \implies[/tex]
[tex]\displaystyle\sum_{n=0}^\infty (n+1)a_{n+1}x^n - 2\sum_{n=0}^\infty a_nx^{n+1} = 6\sum_{n=0}^\infty(-1)^n\frac{(3x)^{2n+1}}{(2n+1)!}[/tex]
The series on the right side has no even-degree terms, so if we split up the even- and odd-indexed terms on the left side, the even-indexed [tex](n=2k)[/tex] series should vanish and only the odd-indexed [tex](n=2k+1)[/tex] terms would remain.
Split up both series on the left into even- and odd-indexed series:
[tex]y'(x) = \displaystyle \sum_{k=0}^\infty (2k+1)a_{2k+1}x^{2k} + \sum_{k=0}^\infty (2k+2)a_{2k+2}x^{2k+1}[/tex]
[tex]-2xy(x) = \displaystyle -2\left(\sum_{k=0}^\infty a_{2k}x^{2k+1} + \sum_{k=0}^\infty a_{2k+1}x^{2k+2}\right)[/tex]
Next, we want to condense the even and odd series:
• Even:
[tex]\displaystyle \sum_{k=0}^\infty (2k+1)a_{2k+1}x^{2k} - 2 \sum_{k=0}^\infty a_{2k+1}x^{2k+2}[/tex]
[tex]=\displaystyle \sum_{k=0}^\infty (2k+1)a_{2k+1}x^{2k} - 2 \sum_{k=0}^\infty a_{2k+1}x^{2(k+1)}[/tex]
[tex]=\displaystyle a_1 + \sum_{k=1}^\infty (2k+1)a_{2k+1}x^{2k} - 2 \sum_{k=0}^\infty a_{2k+1}x^{2(k+1)}[/tex]
[tex]=\displaystyle a_1 + \sum_{k=1}^\infty (2k+1)a_{2k+1}x^{2k} - 2 \sum_{k=1}^\infty a_{2(k-1)+1}x^{2k}[/tex]
[tex]=\displaystyle a_1 + \sum_{k=1}^\infty (2k+1)a_{2k+1}x^{2k} - 2 \sum_{k=1}^\infty a_{2k-1}x^{2k}[/tex]
[tex]=\displaystyle a_1 + \sum_{k=1}^\infty \bigg((2k+1)a_{2k+1} - 2a_{2k-1}\bigg)x^{2k}[/tex]
• Odd:
[tex]\displaystyle \sum_{k=0}^\infty 2(k+1)a_{2(k+1)}x^{2k+1} - 2\sum_{k=0}^\infty a_{2k}x^{2k+1}[/tex]
[tex]=\displaystyle \sum_{k=0}^\infty \bigg(2(k+1)a_{2(k+1)}-2a_{2k}\bigg)x^{2k+1}[/tex]
[tex]=\displaystyle \sum_{k=0}^\infty \bigg(2(k+1)a_{2k+2}-2a_{2k}\bigg)x^{2k+1}[/tex]
Notice that the right side of the DE is odd, so there is no 0-degree term, i.e. no constant term, so it follows that [tex]a_1=0[/tex].
The even series vanishes, so that
[tex](2k+1)a_{2k+1} - 2a_{2k-1} = 0[/tex]
for all integers k ≥ 1. But since [tex]a_1=0[/tex], we find
[tex]k=1 \implies 3a_3 - 2a_1 = 0 \implies a_3 = 0[/tex]
[tex]k=2 \implies 5a_5 - 2a_3 = 0 \implies a_5 = 0[/tex]
and so on, which means the odd-indexed coefficients all vanish, [tex]a_{2k+1}=0[/tex].
This leaves us with the odd series,
[tex]\displaystyle \sum_{k=0}^\infty \bigg(2(k+1)a_{2k+2}-2a_{2k}\bigg)x^{2k+1} = 6\sum_{k=0}^\infty (-1)^k \frac{x^{2k+1}}{(2k+1)!}[/tex]
[tex]\implies 2(k+1)a_{2k+2} - 2a_{2k} = \dfrac{6(-1)^k}{(2k+1)!}[/tex]
We have
[tex]k=0 \implies 2a_2 - 2a_0 = 6[/tex]
[tex]k=1 \implies 4a_4-2a_2 = -1[/tex]
[tex]k=2 \implies 6a_6-2a_4 = \dfrac1{20}[/tex]
[tex]k=3 \implies 8a_8-2a_6 = -\dfrac1{840}[/tex]
So long as you're given an initial condition [tex]y(0)\neq0[/tex] (which corresponds to [tex]a_0[/tex]), you will have a non-zero series solution. Let [tex]a=a_0[/tex] with [tex]a_0\neq0[/tex]. Then
[tex]2a_2-2a_0=6 \implies a_2 = a+3[/tex]
[tex]4a_4-2a_2=-1 \implies a_4 = \dfrac{2a+5}4[/tex]
[tex]6a_6-2a_4=\dfrac1{20} \implies a_6 = \dfrac{20a+51}{120}[/tex]
and so the first four terms of series solution to the DE would be
[tex]\boxed{a + (a+3)x^2 + \dfrac{2a+5}4x^4 + \dfrac{20a+51}{120}x^6}[/tex]
What is the approximate length of arc s on the circle below? Use 3.14 for Pi. Round your answer to the nearest tenth.
-5.8 ft
-6.3 ft
-27.5 ft
-69.1 ft
9514 1404 393
Answer:
69.1 ft
Step-by-step explanation:
The diameter of the circle is 24 ft. The length of the arc is more than twice the diameter, so cannot be less than about 50 ft. The only reasonable choice is ...
69.1 ft
__
The circumference of the circle is ...
C = 2πr = 2(3.14)(12 ft) = 75.36 ft
The arc length of interest is 330° of the 360° circle, so is 330/360 = 11/12 times the circumference.
s = (11/12)(75.36 ft) = 69.08 ft ≈ 69.1 ft
Answer:D
Step-by-step explanation:
A cell phone company charges a monthly fee of $18 plus five cents for each call. A
customer's total cell phone bill this month is $50.50. Use n to represent the number of
calls.
Answer:
650 calls
Step-by-step explanation:
so since you have 18$ per month plus 5 cents per call you would do
18+0.5n(n represent the number of calls)= the total fee of $50.50 cents.
thus,now you need to figure out how much the phone calls were without the monthly fee so you would do:
50.50-18=32.50
so 32.50 is the price of all the phone calls
then you divide 32.50 by 0.05 which equals to 650
meaning that n=650
hope I helped!
In a certain animal species, the probability that a healthy adult female will have no offspring in a given year is 0.24, while the probabilities of 1, 2, 3, or 4 offspring are respectively 0.25, 0.19, 0.17, and 0.15. Find the expected number of offspring.
Answer:
The expected number of offspring is 2
Step-by-step explanation:
The given parameters can be represented as:
[tex]\begin{array}{cccccc}x & {0} & {1} & {2} & {3} & {4} \ \\ P(x) & {0.24} & {0.25} & {0.19} & {0.17} & {0.15} \ \end{array}[/tex]
Required
The expected number of offspring
This implies that we calculate the expected value of the function.
So, we have:
[tex]E(x) = \sum x * P(x)[/tex]
Substitute known values
[tex]E(x) = 0 * 0.24 + 1 * 0.25 + 2 * 0.19+ 3 * 0.17 + 4 * 0.15[/tex]
Using a calculator, we have:
[tex]E(x) = 1.74[/tex]
[tex]E(x) = 2[/tex] --- approximated
In a round-robin chess tournament every player plays one game with every other player. Five participants withdrew after playing two games each. None of these players played a game against each other. A total of 220 games were played in the tournament. Including those who withdrew, how many players participated
9514 1404 393
Answer:
26 players to start; 21 players after 5 withdrew
Step-by-step explanation:
We are told that the withdrawing players did not play against each other, so the total number of games they played was 5×2 = 10. Then the number of games played by the remaining players was 220 -10 = 210. When n players play each other, they play a total of n(n -1)/2 games. Here, that total is 210, so we have ...
n(n -1)/2 = 210
n^2 -n = 420 . . . . . . . . .multiply by 2
(n -1/2)^2 = 420.25 . . . . add 0.25 to complete the square
n = 1/2 +√420.25 = 0.5 +20.5 = 21 . . . . . square root and add 1/2
The number of participating players after 5 withdrew was 21. There were 26 players to start.
y varies directly as the cube of x. When x = 3, then y = 7. Find y when x = 4.
Answer:
[tex]y \: \alpha \: {x}^{3} \ \\ y \: = k {x}^{3} \\ where \: y = 7 \: and \:x = 3 \\ y = k {x}^{3} \\ 7 = k ( {3)}^{3} \\ 7 = 27k \\ k = \frac{7}{27} \\ \\ so \: \: y = \frac{7}{27} {x}^{3} \\ \\ y = \frac{7}{27} {4}^{3} \\ y = \frac{448}{27} [/tex]
the required value of y at x = 4 is 16.64.
Given that,
y varies directly as the cube of x. When x = 3, then y = 7.To determine the y when x = 4.
Proportionality is defined as between two or more sets of values, and how these values are related to each other in the sense that are they directly proportional or inversely proportional to each other.
Here,
y is directly proportional to the cube of x i.e
y ∝ x³
y = kx³ - - - - - (1)
where k is proportionality constant,
At x = 3 y = 7
7 = k (3)³
7 / 27 = k
k = 0.26
Put k in equation 1
y = 0.26 x³
Now at x = 4
y = 0.26 * 4³
y = 0.26 * 64
y = 16.64
Thus, the required value of y at x = 4 is 16.64.
Learn more about proportionality here: https://brainly.com/question/22620356
#SPJ5
Find m∠F.
Find the answer to m∠F
Answer:
m∠F = 45°
Step-by-step explanation:
Notice the lengths of the given sides and the right angle. This is enough information to prove that this is a 45-45-90 triangle, or just basically a square cut diagonally.
Regardless if even just one side is given for a 45-45-90 triangle, all 45-45-90 triangles have one thing in common. The sides that form the right angle are equivalent and the hypotenuse is equal to one of the sides that form the right angle times the square root of two. I'm aware that it sounded confusing, as I'm awful at explaining, so just look at the picture I've attached instead of trying to understand my explanation that seemed like trying to learn a second language.
Look at the picture. See that FD = x times that square root of 2 and that DE = x. Now look back at your picture. It's connecting, now isn't it?
Now that we know that this is indeed a 45-45-90 triangle, we can confirm that m∠F = 45°
Previous studies suggest that use of nicotine-replacement therapies and antidepressants can help people stop smoking. The New England Journal of Medicine published the results of a double-blind, placebo-controlled experiment to study the effect of nicotine patches and the antidepressant bupropion on quitting smoking. The target for quitting smoking was the 8th day of the experiment.
In this experiment researchers randomly assigned smokers to treatments. Of the 162 smokers taking a placebo, 28 stopped smoking by the 8th day. Of the 272 smokers taking only the antidepressant buproprion, 82 stopped smoking by the 8th day.
Calculate the 99% confidence interval to estimate the treatment effect of buproprion (placebo-treatment). (The standard error is about 0.0407. Use critical value z = 2.576.)
( ), ( )
Round your answer to three decimal places. Put lower bound in the first box and upper bound in the second box.
Using the z-distribution, it is found that the 99% confidence interval to estimate the treatment effect of buproprion (placebo-treatment) is (-0.234, -0.024).
What is a t-distribution confidence interval?The confidence interval is:
[tex]\overline{x} \pm zs[/tex]
In which:
[tex]\overline{x}[/tex] is the sample mean.z is the critical value.s is the standard error.In this problem, we are given that z = 2.576, s = 0.0407. The sample mean is the difference of the proportions, hence:
[tex]\overline{x} = \frac{28}{162} - \frac{82}{272} = -0.129[/tex]
Then, the bounds of the interval are given by:
[tex]\overline{x} - zs = -0.129 - 2.576(0.0407) = -0.234[/tex]
[tex]\overline{x} + zs = -0.129 + 2.576(0.0407) = -0.024[/tex]
The 99% confidence interval to estimate the treatment effect of buproprion (placebo-treatment) is (-0.234, -0.024).
More can be learned about the z-distribution at https://brainly.com/question/25890103
0.003 is 1/10 of
Please help I need this for homework !!!!!!!!!!!!
Answer:
0.03
Step-by-step explanation:
8
6
4
2
6
8
-8 -6 -4 -2 0-3
21
.
-6
-8
O A. y -[x]-2
OB. y -[x]+3
O C. y = (x) - 3
O D. y = [x]+2
The required equation of the line is y = [x]+2
From the graph shown, we can see that the line dotted points forms a straight line. We are to find the required equation of the line formed.
The formula for calculating the equation of a straight line is expressed as
y = mx+b where
m is the slope b is the y-intercept
Get the slope 'm'
[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]
Using the coordinate points (2, 0) and (4, 2)
[tex]m=\frac{2-0}{4-2}\\m=\frac{2}{2}\\m=1[/tex]
Get the y-intercept 'b'
Substitute m = 1 and (2, 0) into y = mx+b as shown;
[tex]2=1(0)+b\\2=0+b\\b=2[/tex]
Get the required equation. Recall that y = mx+b, hence;
[tex]y = 1x + 2\\y=x+2[/tex]
Hence the required equation of the line is y = [x]+2
Learn more at: https://brainly.com/question/20348771
Look at image to see question
Answer:
Does the answer help you
I NEED HELP PLEASE!!
Answer:
70
Step-by-step explanation:
70 because as the number of trials increase, the actual ratio of outcomes will converge on the expected ratio.
I'm not sure how to do this
Answer:
1 and 5 sevenths of a bag
Step-by-step explanation:
2/7 males half to it takes 4/7 to make a full one multiply 4 by 3 and you get 12/7 so that makes 1 and 5/7
1. Find the HCF of the following numbers by prime factorisation and continued division method10,35,40
Answer:
Step-by-step explanation:
10 = 2*5
35 = 5*7
40 = 2*2*2*5
The number 5 is common to all three factorisations
So the HCF = 5.
Continued division:
10 and 35:
10) 35(3
30
5)10(2
10
0
- so the HCF of 10 and 35 is 5.
10 and 40:
10)40( 4
40
0
So the HCF of 10 and 40 is 10
We found HCF of 10 and 35 is 5 so:
HCF of 10, 35 and 40 is HCF of 5 and 10 which is 5.
[tex]5(x-6)+3=3/4(2x-8)[/tex]
Water boils at 100° Celsius and above. Which inequality describes the temperatures at which water would boil?
Answer:
D.
Step-by-step explanation:
The required inequality is given as x ≥ 100 as the water boils at 100°C and above, Option B is correct.
What is inequality?Inequality can be defined as the relation of the equation containing the symbol of ( ≤, ≥, <, >) instead of the equal sign in an equation.
here,
As given in the question,
Water boils at 100°C and above,
So let x be the temperature of the water,
And according to the condition,
x ≥ 100° C
Thus, the inequality x ≥ 100 is shown in option B.
Thus, the required inequality is given as x ≥ 100 as the water boils at 100°C and above, and Option B is correct.
Learn more about inequality here:
brainly.com/question/14098842
#SPJ2
Find the measure of each angle in the problem. TO contains point H.
Answer:
The angles are 45 and 135
Step-by-step explanation:
The two angles form a straight line, which is 180 degrees
c+ 3c = 180
4c = 180
Divide by 4
4c/4 =180/4
c = 45
3c = 3(45) = 135
The angles are 45 and 135
Answer:
45 and 135 ...
Question 4 (2 marks)
Justin works 14 hours at a normal pay rate of $24.80 per hour and 5 hours of overtime at
time and a half. How much should he be paid?
I
809 words
LE
English (Australia)
Answer:
554.7
Step-by-step explanation:
The pay=25.8*14+(25.8)*5*1.5=554.7
A cash register contains $10 bills and $50 bills with a total value of $1080.If there are 28 bills total, then how many of each does the register contain?
Answer:
8 ten dollar bills
20 fifty dollar bills
Step-by-step explanation:
x = number of 10 dollar bills
y = number of 50 dollar bills
x+y = 28
10x+50y = 1080
Multiply the first equation by -10
-10x -10y = -280
Add this to the second equation
-10x -10y = -280
10x+50y = 1080
-----------------------
40y = 800
Divide by 40
40y/40 = 800/40
y = 20
Now find x
x+y =28
x+20 = 28
x = 28-20
x= 8
PLEASE HELP NOW
Solve the equation for y. Identify the slope and y-intercept then graph the equation.
2y-3x=10
Y=
M=
B=
Please Include a picture of the graph and show your work if you can
Answer:
Step-by-step explanation:
Solve for y:
[tex]2y-3x=10\\2y=3x+10\\y=\frac{3}{2} x+5[/tex]
Therefore:
y = 3/2x + 5
m = 3/2
b = 5
Graph below courtesy of Desmos.
URGENT! 15 PNTS
Points T, R, and P, define _____
A. plane B
B. line e
C. line segment PR⎯⎯⎯⎯⎯⎯⎯
D. plane M
Answer:
Since points T, R, and P are all present on plane B, the answer is A.
Points T, R, and P define plane B
We have given that,
A. plane B
B. line e
C. line segment PR⎯⎯⎯⎯⎯⎯⎯
D. plane M
We have to determine the Points T, R, and P, define
What is the plane?A plane is a two-dimensional doubly ruled surface spanned by two linearly independent vectors. The generalization of the plane to higher dimensions is called a hyperplane. The angle between two intersecting planes is known as the dihedral angle.
Since points T, R, and P are all present on plane B, the answer is A
Points T, R, and P define plane B.
To learn more about the plane visit:
https://brainly.com/question/2644832
#SPJ5
Question 4 of 16
If the probability of rain today is 35%, what is the probability that it will not rain
today?
A. 100%
B. 65%
C. 35%
D. 50%
Answer:
I think the answer is B. 65%
In order to pass a class, Amanda needs to have a score higher than 86 on her final. Which graph represents possible scores that Amanda could get to pass this class?
Answer:
graph C
Step-by-step explanation:
Amanda needs to have a score higher than 86 on her final.
That means she can't get lower than 86 (Obviously) but not even an 86.
It has to be higher than 86 for her to pass
Let x represent Amanda's score
[tex]x>86[/tex]
Bolded dots on graphs mean that she can have a 86 but if it's not a bolded dot she can have either higher or lower
Just keep that in mind
The answer will be C. because it describes Amanda's score higher than 86
Answer:
c
Step-by-step explanation:
A researcher is interested in whether there is a significant difference between the mean age of marriage across three racial groups. Using the data provided below, conduct an F-test to determine whether you believe there is an association between race and average age at marriage.
Race N Mean
Black 113 25.39
White 904 22.99
Other 144 23.87
All Groups 1,161 23.33
Answer:
The P-value is < significance value ( 0.05 ) hence we reject the Null hypothesis ( i.e. There is an association between the race and average age at marriage )
Step-by-step explanation:
Conducting an F-test to determine association between race and average age at marriage
step 1 : State the hypothesis
H0 : ц1 = ц2 = ц3
Ha : ц1 ≠ ц2 ≠ ц3
step 2 : determine the mean square between
Given mean value of all groups = 23.33
SS btw = 113*(25.39 - 23.33)² + 904*(22.99 - 23.33)² + 144*(23.89 - 23.33)^2 = 113(4.2436) + 904(0.1156) + 144(0.3136)
= 629.1876
hence: df btw = 3 - 1 = 2
df total = 1161 - 1 = 1160
df within = 1160 - 2 = 1158
SS within = 36.87*1158 = 42695.46
Therefore the MS between = 629.19 / 2 = 314.60
The F-ratio = 314.59 / 36.87 = 8.53
using the values for Btw the P-value = 0.00021
The P-value is < significance value ( 0.05 ) hence we reject the Null hypothesis ( i.e. There is an association between the race and average age at marriage )
A company pays a bonus to four employees A, B, C, and D. A gets four times as much as B. B gets 50% of the amount paid to C. C and D get the same amount. If the total bonus is ¢1,800.00, set all necessary equations to ascertain the share of each employees.
Answer:
A = 800, B = 200, C = 400 Andy D = 400
Step-by-step explanation:
bHhHshsbsnsnsnsnsnsbsbsbckclccllcxldkdldkdkdk HELP
Answer:
Step-by-step explanation:
The reasons for each statement are inside the parentheses
1. <1 and <2 are complementary (given)
2. m<1 + m<2 = 90° (definition of complementary angles)
3. m<2 = 74° (given)
4. m<1 + 74° = 90° (Substitution)
5. m<1 = 16° (Subtraction property of equality)
This is gotten by subtracting 74° from both sides as follows:
m<1 + 74° - 74° = 90° - 74°
m<1 = 16°
Solve for x step by step:
2(4x-3)-8=4+2x
Answer:
3
Step-by-step explanation:
2(4x-3)-8=4+2x
8x - 6 - 8 = 4 + 2x
8x - 2x = 4 + 6 + 8
6x = 18
x = 18/6
x = 3
Answer:
[tex]2(4x - 3) - 8 = 4 + 2x \\ 2 \times 4x + 2 \times - 3 - 8 = 4 + 2x \\ according \: to \: bodmas \: first \: \times then + or - \\ so \\ 8x - 6 - 8 = 4 + 2x \\ 8x - 14 = 4 + 2x \\ 8x - 2x = 4 + 14 \\ 6x = 18 \\ x = \frac{18}{6} \\ x = 3 \\ thank \: you[/tex]
Which table represents a linear function?
Answer:
C
Step-by-step explanation:
C is the only function that have a consistent decrease while A is a trigonometric function, B is a non linear function, D is an exponential function
Write 36 as a product of its prime factors.Write the factors in order,from smallest to largest.
Pls Help me!!!!
Answer:
2×2×3×3
Step-by-step explanation:
Answer:
2×2×3×3
Step-by-step explanation:
36=3×12
12=3×4
4=2×2
=3×3×2×2
Hope this helps! <3