A magnetic field of 0.080 T is in the y-direction. The velocity of wire segment S has a magnitude of 78 m/s and components of 18 m/s in the x-direction, 24 m/s in the y-direction, and 72 m/s in the z-direction. The segment has length 0.50 m and is parallel to the z-axis as it moves.

Required:
a. Find the motional emf induced between the ends of the segment.
b. What would the motional emf be if the wire segment was parallel to the y-axis?

Answers

Answer 1

Answer:

Explanation:

From the information given:

The motional emf can be computed by using the formula:

[tex]E = L^{\to}*(V^\to*\beta^{\to})[/tex]

[tex]E = L^{\to}*((x+y+z)*\beta^{\to})[/tex]

[tex]E = 0.50*((18\hat i+24 \hat j +72 \hat k )*0.0800)[/tex]

[tex]E = 0.50*((18*0.800)\hat k +0j+(72*0.080) \hat -i ))[/tex]

[tex]E = 0.50*((18*0.800)[/tex]

E = 0.72 volts

According to the question, suppose the wire segment was parallel, there will no be any emf induced since the magnetic field is present along the y-axis.

As such, for any motional emf should be induced, the magnetic field, length, and velocity are required to be perpendicular to one another .

Then the motional emf will be:

[tex]E = 0.50 \hat j *((18*0.800)\hat k -(72*0.080) \hat i ))[/tex]

E = 0 (zero)


Related Questions

A charge of 0.20uC is 30cm from a point charge of 3.0uC in vacuum. what work is required to bring the 0.2uC charge 18cm closer to the 3.0uC charge?​

Answers

Answer:

The correct answer is "[tex]4.49\times 10^{10} \ joules[/tex]".

Explanation:

According to the question,

The work will be:

⇒ [tex]Work=-\frac{kQq}{R}[/tex]

              [tex]=-\frac{1}{4 \pi \varepsilon \times (18-30)\times 3\times 0.2}[/tex]

              [tex]=-\frac{1}{4 \pi \varepsilon \times (-12)\times 3\times 0.2}[/tex]

              [tex]=\frac{0.3978}{\varepsilon }[/tex]

              [tex]=4.49\times 10^{10} \ joules[/tex]

Thus the above is the correct answer.    

We have that the workdone  is mathematically given as

W=4.49*10e10 J

From the question we are told

A charge of 0.20uC is 30cm from a point charge of 3.0uC in vacuum. what work is required to bring the 0.2uC charge 18cm closer to the 3.0uC charge?​

Workdone

Generally the equation for the workdone   is mathematically given as

W=-kQq/R

Therefore

0.3978/ε0 =-1/(4πε0*(18-30)*3*0.2

Hence

W=4.49*10e10 J

For more information on Charge visit

https://brainly.com/question/9383604

Which one of the following statements concerning resistors in "parallel" is true? Question 7 options: The voltage across each resistor is the same. The current through each resistor is the same. The total current through the resistors is the sum of the current through each resistor. The power dissipated by each resistor is the same.

Answers

Answer: The correct statement is:

--> The voltage across each resistor is the same.

Explanation:

RESISTORS are defined as the components of an electric circuit which are capable of creating resistance to the file of electric current in the circuit. They work by converting electrical energy into heat, which is dissipated into the air. These resistors can be divided into two according to their arrangements in the electric cell. It include:

--> Resistors in parallel and

--> Resistors in series

RESISTORS are said to be in parallel when two or more resistance or conductors are connected to common terminals so that the potential difference ( voltage) across each conductor IS THE SAME but with different current flow through each of them. Also, Individual resistances diminish to equal a smaller total resistance rather than add to make the total.

A seesaw made of a plank of mass 10.0 kg and length 3.00 m is balanced on a fulcrum 1.00 m from one end of the plank. A 20.0-kg mass rests on the end of the plank nearest the fulcrum. What mass must be on the other end if the plank remains balanced?

Answers

Answer:

7.5 kg

Explanation:

We are given that

[tex]m_1=10 kg[/tex]

Length of plank, l=3 m

Distance of fulcrum from one end of the plank=1 m

[tex]m_2=20 kg[/tex]

We have to find the mass must be on the other end if the plank remains balanced.

Let m be the mass must be on the other end if the plank remains balanced.

In balance condition

[tex]20\times 1=10\times (1.5-1)+m\times (1.5+0.5)[/tex]

[tex]20=10(0.5)+2m[/tex]

[tex]20=5+2m[/tex]

[tex]2m=20-5=15[/tex]

[tex]\implies m=\frac{15}{2}[/tex]

[tex]m=7.5 kg[/tex]

Hence, mass 7.5 kg   must be on the other end if the plank remains balanced.

Answer:

The mass at the other end is 7.5 kg.

Explanation:

Let the mass is m.

Take the moments about the fulcrum.

20 x 1 = 10 x 0.5 + m x 2

20 = 5 + 2 m

2 m = 15

m = 7.5 kg

In a new scenario, the block only makes it (exactly) half-way through the rough spot. How far was the spring compressed from its unstretched length

Answers

Answer: hello  below is the missing part of your question

A mass m = 10 kg rests on a frictionless table and accelerated by a spring with spring constant k = 5029 N/m. The floor is frictionless except for a rough patch. For this rough path, the coefficient of friction is μk = 0.49. The mass leaves the spring at a speed v = 3.4 m/s.

answer

x = 0.0962 m

Explanation:

First step :

Determine the length of the rough patch/spot

F = Uₓ (mg)

and  w = F.d = Uₓ (mg)  * d

hence;

d( length of rough patch) = w / Uₓ (mg) = 46.55 / (0.49 * 10 * 9.8) = 0.9694 m

next :

work done on unstretched spring length

Given that block travels halfway i.e. d = 0.9694 / 2 = 0.4847 m

w' = Uₓ (mg)  * d

    = 0.49 * 10 * 9.81 * 0.4847 = 23.27 J

also given that the Elastic energy of spring = work done ( w')

1/2 * kx^2 = 23.27 J

x = [tex]\sqrt{\frac{2*23.27}{5029} }[/tex]  = 0.0962 m

A point charge of -3.0 x 10-5C is placed at the origin of coordinates. Find the electric field at the point 3. r= 50 m on the x-axis​

Answers

Answer: -5×10-3

Explanation:

E=kq/r

Diffuse reflection occurs when parallel light waves strike which surface? a mirror a rippling fountain a polished silver plate a still pond

Answers

Answer: a rippling fountain

Explanation: diffuse reflection happens on rough surfaces, so using the process of elimination, that leaves us with b, a rippling fountain (I also just took this test I'm pretty sure I'm right)

how did kepler discoveries contribute to astronomy

Answers

Answer:

They established the laws of planetary motion. They explained how the Sun rises and sets. They made astronomy accessible to people who spoke Italian.

Explanation:

A block slides down a frictionless plane that makes an angle of 24.0° with the horizontal. What is the
acceleration of the block?

Answers

Answer:

F = m g sin theta      force accelerating block

m a = m g sin theta

a = 9.8 sin 24 = 3.99 m/sec^2

There are two beakers of water on the table. We can compare the average kinetic energy of the water molecules in the two beakers by measuring their

A temperatures.

B volumes.

C densities.

D masses.

Answers

Answer: masses

Explanation:

Trust me

A block of mass M is connected by a string and pulley to a hanging mass m.
The coefficient of kinetic friction between block M and the table is 0.2, and also, M = 20 kg, m = 10 kg.
b. Find the acceleration of the system and tensions on the string.
c. How far will block m drop in the first seconds after the system is released?
d. How long will block M move during the above time?
e. At the time, calculate the velocity of block M
f. Find out the deceleration of block M if the connection string is removal by cutting after the first second. Then, calculate the time taken to contact block M and pulley
How far will block m drop in the first seconds after the system is released?

Answers

(b) Use Newton's second law. The net forces on block M are

• ∑ F (horizontal) = T - f = Ma … … … [1]

• ∑ F (vertical) = n - Mg = 0 … … … [2]

where T is the magnitude of the tension, f is the mag. of kinetic friction between block M and the table, a is the acceleration of block M (but since both blocks are moving together, the smaller block m also shares this acceleration), and n is the mag. of the normal force between the block and the table.

Right away, we see n = Mg, and so f = µn = 0.2Mg.

The net force on block m is

• ∑ F = mg - T = ma … … … [3]

You can eliminate T and solve for a by adding [1] to [3] :

(T - 0.2Mg) + (mg - T ) = Ma + ma

(m - 0.2M) g = (M + m) a

a = (10 kg - 0.2 (20 kg)) (9.8 m/s²) / (10 kg + 20 kg)

a = 1.96 m/s²

We can get the tension from [3] :

T = m (g - a)

T = (10 kg) (9.8 m/s² - 1.96 m/s²)

T = 78.4 N

(c/d) No time duration seems to be specified, so I'll just assume some time t before block M reaches the edge of the table (whatever that time might be), after which either block would move the same distance of

1/2 (1.96 m/s²) t

(e) Assuming block M starts from rest, its velocity at time t is

(1.96 m/s²) t

(f) After t = 1 s, block M reaches a speed of 1.96 m/s. When the string is cut, the tension force vanishes and the block slows down due to friction. By Newton's second law, we have

F = -f = Ma

The effect of friction is constant, so that f = 0.2Mg as before, and

-0.2Mg = Ma

a = -0.2g

a = -1.96 m/s²

Then block M slides a distance x such that

0² - (1.96 m/s²) = 2 (-1.96 m/s²) x

x = (1.96 m/s²) /  (2 (1.96 m/s²))

x = 0.5 m

(I don't quite understand what is being asked by the part that says "calculate the time taken to contact block M and pulley" …)

Meanwhile, block m would be in free fall, so after 1 s it would fall a distance

x = 1/2 (-9.8 m/s²) (1 s)

x = 4.9 m

The weight of a hydraulic barber's chair with a client is 2100 N. When the barber steps on the input piston with a force of 44 N, the output plunger of a hydraulic system begins to lift the chair. Determine the ratio of the radius of the output plunger to the radius of the input piston.

Answers

Answer:

[tex]\frac{r_1}{r_2}=6.9[/tex]

Explanation:

According to Pascal's Law, the pressure transmitted from input pedal to the output plunger must be same:

[tex]P_1 = P_2\\\\\frac{F_1}{A_1}=\frac{F_2}{A_2}\\\\\frac{F_1}{F_2}=\frac{A_1}{A_2}\\\\\frac{F_1}{F_2}=\frac{\pi r_1^2}{\pi r_2^2}\\\\\frac{F_1}{F_2}=\frac{r_1^2}{r_2^2}[/tex]

where,

F₁ = Load lifted by output plunger = 2100 N

F₂ = Force applied on input piston = 44 N

r₁ = radius of output plunger

r₂ = radius of input piston

Therefore,

[tex]\frac{r_1^2}{r_2^2}=\frac{2100\ N}{44\ N}\\\\\frac{r_1}{r_2}=\sqrt{\frac{2100\ N}{44\ N}} \\\\\frac{r_1}{r_2}=6.9[/tex]

A 0.500-kg block slides up a plane inclined at a 30° angle. If it slides 1.50 m before coming to rest while encountering a frictional force of 2 N, find (a) its acceleration, and (b) its initial velocity.

Answers

B it’s Intail velocity

describe the cause of earth's magnetism ?​

Answers

The magnetic field of Earth is caused by currents of electricity that flow in the molten core. ... The currents flow in the outer core, and the lines of force shown in yellow, travel outwards through the rest of the earth's interior. If the earth rotated faster, it would have a stronger magnetic field.

Write submultipels units of time​

Answers

What

is the the improvetanse of water in our body and how do

Or

open Meet and enter this code

Answer:

Or open Meet and enter this code to the source of definition and how to use it to make

The mass of the moon is 7.2 × 10^22 kg and its radius is 1.7×10^6 m.What will be the gravity of the moon to a body of the mass 1 kg on the surface of the moon.​

Answers

Answer:

1.66 N

Explanation:

The force of gravity of the moon on the body is given by

F = GMm/R² where G = universal gravitational constant = 6.67 × 10⁻¹¹ Nm²/kg², M = mass of moon = 7.2 × 10²² kg, m = mass of body = 1 kg and R = radius of moon = 1.7 × 10⁶ m

Substituting the values of the variables into the equation, we have

F = GMm/R²

F = 6.67 × 10⁻¹¹ Nm²/kg² × 7.2 × 10²² kg × 1 kg/(1.7 × 10⁶ m)²

F = 48.024 × 10¹¹ Nm²/2.89 × 10¹² m²

F = 16.62 × 10⁻¹ N

F = 1.662 N

F ≅ 1.66 N

So, the gravity on the moon is 1.66 N

the spring was compressed three times farther and then the block is released, the work done on the block by the spring as it accelerates the block is

Answers

Answer:

The work done on the block by the spring as it accelerates the block is 4kx².

Explanation:

Let initial distance is x.

It was compressed three times farther and then the block is released, new distance is 3x.

The work done in compressing the spring is given by :

[tex]W=\dfrac{1}{2}k(x_2^2-x_1^2)[/tex]

[tex]W=\dfrac{1}{2}k(x_2^2-x_1^2)\\\\W=\dfrac{1}{2}k((3x)^2-x^2)\\\\W=\dfrac{1}{2}k((9x^2-x^2)\\\\W=\dfrac{1}{2}k\times 8x^2\\\\W=4kx^2[/tex]

So, the work done on the block by the spring as it accelerates the block is 4kx².

(a) If half of the weight of a flatbed truck is supported by its two drive wheels, what is the maximum acceleration it can achieve on wet concrete where the coefficient of kinetic friction is 0.5 and the coefficient of static friction is 0.7.
(b) Will a metal cabinet lying on the wooden bed of the truck slip if it accelerates at this rate where the coefficient of kinetic friction is 0.3 and the coefficient of static friction is 0.55?
(c) If the truck has four-wheel drive, and the cabinet is wooden, what is it's maximum acceleration (in m/s2)?

Answers

Answer:

a)     a = 27.44 m / s²,  b) a = 5.39 m / s², c)  a = 156.8 m / s², cabinet maximum acceleration does not change

Explanation:

a) In this exercise the wheels of the truck rotate to provide acceleration, but the contact point between the ground and the 2 wheels remains fixed, therefore the coefficient of friction for this point is static.

Let's apply Newton's second law

we set a regency hiss where the x axis is in the direction of movement of the truck

Y axis y

        N- W = 0

        N = W = m g

X axis

       2fr = m a

the expression for the friction force is

      fr = μ N

      fr = μ m g

we substitute

      2 μ m g = m /2   a

     a = 4 μ g

      a = 4 0.7 9.8

      a = 27.44 m / s²

b) let's look for the maximum acceleration that can be applied to the cabinet

       fr = m a

       μ N = ma

       μ m g = m a

       a = μ g

       a = 0.55  9.8

       a = 5.39 m / s²

as the acceleration of the platform is greater than this acceleration the cabinet must slip

c) the friction force is in the four wheels as well

With when the truck had two-wheel Thracian the weight of distributed evenly between the wheels, in this case with 4-wheel Thracian the weight must be distributed among all

applying Newton's second law

         4 fr = (m/4) a

         16 mg = (m) a

         a = 16 g

         a = 16 9.8

         a = 156.8 m / s²

cabinet maximum acceleration does not change

Light energy is part of a larger form of energy known as __________.

Answers

Light energy is part of a larger form of energy known as electromagnetic energy. Details about electromagnetic energy can be found below.

What is electromagnetic radiation?

Electromagnetic spectrum is the entire range of wavelengths of all known electromagnetic radiations extending from gamma rays through visible light, infrared, and radio waves, to X-rays.

Visible light is the part of the electromagnetic spectrum, between infrared and ultraviolet, that is visible to the human eye.

Therefore, Light energy is part of a larger form of energy known as electromagnetic energy.

Learn more about electromagnetic spectrum at: https://brainly.com/question/23727978

#SPJ1

1
An astronaut weighs 202 lb. What is his weight in newtons?

Answers

Answer:

978.6084 Newton

Explanation:

Given the following data;

Weight = 220 lb

To find the weight in Newtown;

Conversion:

1 lb = 4.448220 N

220 lb = 220 * 4.448220 = 978.6084 Newton

220 lb = 978.6084 Newton

Therefore, the weight of the astronaut in Newton is 978.6084.

Weight can be defined as the force acting on a body or an object as a result of gravity.

Mathematically, the weight of an object is given by the formula;

Weight = mg

Where;

m is the mass of the object.g is the acceleration due to gravity.

Note:

lb is the symbol for pounds.N is the symbol for Newton.

Two blocks in contact with each other are pushed to the right across a rough horizontal surface by the two forces shown. If the coefficient of kinetic friction between each of the blocks and the surface is 0.30, determine the magnitude of the force exerted on the 2.0-kg block by the 3.0-kg block.

Answers

I assume the blocks are pushed together at constant speed, and it's not so important but I'll also assume it's the smaller block being pushed up against the larger one. (The opposite arrangement works out much the same way.)

Consider the forces acting on either block. Let the direction in which the blocks are being pushed by the positive direction.

The 2.0-kg block feels

• the downward pull of its own weight, (2.0 kg) g

• the upward normal force of the surface, magnitude n₁

• kinetic friction, mag. f₁ = 0.30n₁, pointing in the negative horizontal direction

• the contact force of the larger block, mag. c₁, also pointing in the negative horizontal direction

• the applied force, mag. F, pointing in the positive horizontal direction

Meanwhile the 3.0-kg block feels

• its own weight, (3.0 kg) g, pointing downward

• normal force, mag. n₂, pointing upward

• kinetic friction, mag. f₂ = 0.30n₂, pointing in the negative horizontal direction

• contact force from the smaller block, mag. c₂, pointing in the positive horizontal direction (this is the force that is causing the larger block to move)

Notice the contact forces form an action-reaction pair, so that c₁ = c₂, so we only need to find one of these, and we can get it right away from the net forces acting on the 3.0-kg block in the vertical and horizontal directions:

• net vertical force:

n₂ - (3.0 kg) g = 0   ==>   n₂ = (3.0 kg) g   ==>   f₂ = 0.30 (3.0 kg) g

• net horizontal force:

c₂ - f₂ = 0   ==>   c₂ = 0.30 (3.0 kg) g8.8 N

A 2.90 m segment of wire supplying current to the motor of a submerged submarine carries 1400 A and feels a 2.00 N repulsive force from a parallel wire 4.50 cm away. What is the direction and magnitude (in A) of the current in the other wire? magnitude A direction

Answers

Answer:

[tex]I_2=30.9A[/tex]

Explanation:

From the question we are told that:

Wire segment [tex]l_s=2.9m[/tex]

Initial Current [tex]I_1=1400A[/tex]

Force [tex]F=2.00N[/tex]

Distance of Wire [tex]d=4.50cm=>0.0450m[/tex]

Generally the equation for Force is mathematically given by

 [tex]F=\frac{\mu_0 * I_1*I_2*l_s}{2 \pi *r}[/tex]

 [tex]F=\frac{4 \pi*10^{-7} *1400 I*I_2*2.9}{2 \pi *0.0450}[/tex]

 [tex]I_2=\frac{22.5*10^-2}{2*10^{-7}*1400*2.6}[/tex]

 [tex]I_2=30.9A[/tex]

Explain why the flow from the battery increases when the switch is closed. Give the label of the concept(s) that you use from the model of electricity. [

Answers

Answer:

Due to the applied filed the electrons move in a particular direction.

Explanation:

Initially when the switch is off, the free electrons move here and there in any random directions in the conductor with the random speeds called thermal velocity.  So, tat the net flow is almost zero.

When the battery is connected is switch is ON, the random motion of the electrons aligned in a particular direction due to the force applied by the electric filed, so the net flow is not zero it increases and thus the current flow.

A 10 kg box is at static equilibrium and the downward pull of gravity acting on the box is 98 Newton’s what is the minimum force that would require to just pick up the box

Answers

Explanation:

static equilibrium means its on the floor or something

so slightly greater than 98 newtons in the upward direction

A proton enters a region of constant magnetic field, perpendicular to the field and after being accelerated from rest by an electric field through an electrical potential difference of 330 V. Determine the magnitude of the magnetic field, if the proton travels in a circular path with a radius of 23 cm.

Answers

Answer:

 B = 1.1413 10⁻² T

Explanation:

We use energy concepts to calculate the proton velocity

starting point. When entering the electric field

        Em₀ = U = q V

final point. Right out of the electric field

        em_f = K = ½ m v²

energy is conserved

       Em₀ = Em_f

       q V = ½ m v²

       v = [tex]\sqrt{2qV/m}[/tex]

we calculate

       v = [tex]\sqrt{\frac{ 2 \ 1.6 \ 10^{-19} \ 300}{1.67 \ 0^{-27}} }[/tex]

       v = [tex]\sqrt{632.3353 \ 10^8}[/tex]

       v = 25.15 10⁴ m / s

now enters the region with magnetic field, so it is subjected to a magnetic force

        F = m a

the force is

       F = q v x B

as the velocity is perpendicular to the magnetic field

       F = q v B

acceleration is centripetal

       a = v² / r

we substitute

       qvB =1/2  m v² / r

       B =  v[tex]\frac{m v}{2 q r}[/tex]

we calculate

       B = [tex]\frac{1.67 \ 10^{-27} 25.15 \ 10^4 }{1.6 \ 10^{-19} 0.23}[/tex]

       B = 1.1413 10⁻² T

A farmhand pushes a 26-kg bale of hay 3.9 m across the floor of a barn. If she exerts a horizontal force of 88 N on the hay, how much work has she done

Answers

Answer:

W =  343.2 J

Explanation:

Given that,

Mass of bale of hay = 26 kg

Horizontal force exerted = 88 N

Distance moved, d = 3.9 m

Work done, W = Fd

Put all the values,

W = 88 N × 3.9 m

= 343.2 J

So, the work done is 343.2 J.  

~~~~~NEED HELP ASAP~~~~~
A point on a rotating wheel (thin loop) having a constant angular velocityy of 300 rev/min, the wheel has a radius of 1.5m and a mass of 30kg. (I = mr^2)


a.) Determine the linear regression

b.) At this given angular velocity, what is the rotational kinetic energy?

Answers

Answer:

Centripetal Acceleration 18.75 m/s^2, Rotational Kinetic Energy 843.75 J

Explanation:

a Linear acceleration (we cant find tangential acceleration with the givens so we will find centripetal)

a= ω^2*r

ω= 300rev/min

convert into rev/s

300/60= 5rev/s

a= 18.75m/s^2

b) use Krot= 1/2 Iω^2

plug in gives

1/2(30*2.25)(25)= 843.75 J

I need help with this physics question.

Answers

The acceleration will increase by 61.3%.

Explanation:

The centripetal acceleration [tex]a_c[/tex] is given by

[tex]a_c = \dfrac{v^2}{r}[/tex]

If the velocity of the object increases by 27.0%, then its new velocity v' becomes

[tex]v' = 1.270v[/tex]

The new centripetal acceleration [tex]a'_c[/tex] becomes

[tex]a'_c = \dfrac{(1.270v)^2}{r} = 1.613 \left(\dfrac{v^2}{r} \right)[/tex]

[tex]\:\:\:\:\:\:\:\:\:= 1.613a_c[/tex]

A proton has been accelerated from rest through a potential difference of -1350 V. What is the proton's kinetic energy, in electron volts? What is the proton's kinetic energy, in joules? What is the proton's speed?

Answers

Answer:

1 eV = 1.60 * 10^-19 J      work done in accelerating electron thru 1 V

KE (total energy) = 1350 ^ 1 eV     (note proton goes from +  to -)

KE = 1.60 * 10^-19 * 1350 = 2.16 * 10^-16 Joules

1/2 m v^2 = KE = 2.16 * 10^-16 J

v^2 = 4.32 * 10E-16 / 1.67 * 10-27 = 2.59 * 10^11

v = 5.09 * 10^5 m/s

The proton's kinetic energy, in joules is  2.16 *[tex]10^{-16}[/tex] J. The proton's velocity is 5.09 * [tex]10^{5}[/tex]m/s.

What is velocity?

When an item is moving, its velocity is the rate at which its direction is changing as seen from a certain point of view and as measured by a specific unit of time.

Uniform motion an object is said to have uniform motion when object cover equal distance in equal interval of time within exact fixed direction. For a body in uniform motion, the magnitude of its velocity remains constant over time.

1 eV = 1.60 * [tex]10^{-19} J[/tex]     work done in accelerating electron throw 1 V

K.E (total energy) = 1350 ^ 1 eV     (note proton goes from +  to -)

K.E = 1.60 * [tex]10^{-19}[/tex]J * 1350 = 2.16 * [tex]10^{-16}[/tex] Joules

1/2 m v² = KE = 2.16 *[tex]10^{-16}[/tex] J

Velocity of proton is,

v² = 4.32 * 10[tex]e^{-16}[/tex] / 1.67 * [tex]10{-27}[/tex] = 2.59 * [tex]10^{11}[/tex]

v = 5.09 * [tex]10^{5}[/tex]m/s

The proton's kinetic energy, in joules is  2.16 *[tex]10^{-16}[/tex] J. The proton's velocity is 5.09 * [tex]10^{5}[/tex]m/s.

To learn more about velocity refer the link:

brainly.com/question/18084516  

#SPJ2

In order to keep a leaking ship from sinking, it is necessary to pump 12.0 lb of water each second from below deck up a height of 2.00 m and over the side. What is the minimum horse-
power motor that can be used to save the ship?

Answers

Answer:

P = 0.14 hp

Explanation:

The power required by the ship is given as:

[tex]P = \frac{Work}{Time} = \frac{Potential\ Eenrgy}{t}\\\\P = \frac{mgh}{t}[/tex]

where,

P = Power = ?

m = mass to pump = (12 lb)(1 kg/2.20 lb) = 5.44 kg

g = acceleration due to gravity = 9.81 m/s²

h = height = 2 m

t = time = 1 s

Therefore,

[tex]P = \frac{(5.44\ kg)(9.81\ m/s^2)(2\ m)}{1\ s}\\\\P = 106.8\ W[/tex]

Converting to horsepower (hp):

[tex]P = (106.8\ W)(\frac{1\ hp}{746\ W})[/tex]

P = 0.14 hp

The period of a simple pendulum is 3.5 s. The length of the pendulum is doubled. What is the period T of the longer pendulum?

Answers

Explanation:

The period T of a simple pendulum is given by

[tex]T = 2 \pi \sqrt{\dfrac{l}{g}}[/tex]

Doubling the length of the pendulum gives us a new period T'

[tex]T' = 2 \pi \sqrt{\dfrac{l'}{g}} = 2 \pi \sqrt{\dfrac{2l}{g}}[/tex]

[tex]\:\:\:\:\:\:\:= \sqrt{2} \left(2 \pi \sqrt{\dfrac{l}{g}} \right)[/tex]

[tex]\:\:\:\:\:\:\:= \sqrt{2}\:T = \sqrt{2}(3.5\:\text{s})= 4.95\:\text{s}[/tex]

Other Questions
PLZZ HELP!! YOU GET 20 IF YOU DO!!! Find the root and its meaning in the word below. Use a dictionary if necessary.Diseaseroot: 1.dis2.sease3.ease4.seameaning:5.pain6.comfort7.absence of8.health a point object is 10 cm away from a plane mirror while the eye of an observer(pupil diameter is 5.0 mm) is 28 cm a way assuming both eye and the point to be on the same line perpendicular to the surface find the area of the mirror used in observing the reflection of the point Choose the word or phrase which best completes each sentence:1. The teacher gave back the papers which ___ markeda. was b. has been c. had been d. have been2. Mrs. Ramsay was accustomed ___ in this rickety housea. by living b. to living c. with living d. lining3. If my candidate had won the election, I ____ happy nowa. am b. was c. would be d. can be4. People have different ways of preparing_____a. their exams b. to exams c. for exams d. in exams5. Lack of sleep can have a noticeable ____ your performance at worka. effect to b. effect in c. affect on d. effect on6. I've got to see the dentist for a check - up tomorrow; I just hope I don't need toa. have anything done b. be done something to c. let anything be done d. make something done7. He climbed up the tree ___ to pick to apples before the wind blew them offa. so b. in order c. so that d. for8. Next summer, we're _____ a swimming pool built in our garden.a. making b. deciding c. letting d. having Standard 8 SS chapter number 2 question answer 1 what do you know about our earth write a short notewhat do you know about our earth? write a short note Yes or no; Is it possible to have as many representatives as people, if government wants to prevent abuse of power? I come from a city that is located in the southern part of the country. Choose the graph below that represents the following system of inequalities: y is greater than and equal -3x + 1 and y is greater than and equal 1/2x + 3 A population of 30 bunnies is increasing at a rate of 40% per year. How many bunnies will be there in 5 years? Which one is the result of the output given by a compute I need help with this question. Pls give me an answer /steps and explanations. Da vo c im ca v qu v ht, loi qu no di y c xp cng nhm vi qu m ?A. Nho B. C chuaC. Chanh D. Xoi importance of hematology I need help with this I will appreciate if I get an answer for this problem Picture with the question is posted explain how data structures and algorithms are useful to the use of computer in data management Given = 1/(3), what is ((+)())/ ? 18 is 65% of what number A rectangles perimeter is equal to 27 plus its width. The length of the rectangle is four times its width. What is the width of the rectangle in units? f x equals 1 / x - 3 + 7 find the inverse of f x and its domain Match the following properties to the type of wave.