Answer:
nr.herkyrsfdlufshfsyfs
Step-by-step explanation:
dsfsyfksutryrysyrslufzmfyzydzufmzmhfzl
hdhfuthfzhkrskyrsgj
A professor creates a histogram of test scores for 26 students in a statistics course. What is the probability of a student having scored between 65 and 100
Complete Question
Complete is Attached Below
Answer:
Option D
Step-by-step explanation:
From the question we are told that:
Sample size [tex]n=26[/tex]
Student scoring [tex]65-100 n'=12[/tex]
Generally the equation for probability of a student having score between 65 and 100 is mathematically given by
[tex]P(65-100)=\frac{12}{26}[/tex]
[tex]P(65-100)=12/26[/tex]
[tex]P(65-100)=0.462[/tex]
Option D
In one state lottery game, you must select four digits (digits may be repeated). If your number matches exactly the four digits selected by the lottery commission, you win.
1) How many different numbers may be chosen?
2) If you purchase one lottery ticket, what is your chance of winning?
3) There are ___ different numbers that can be chosen. (Type a whole number.)
4) There is a ___ chance of winning.*
*The answer choices for number 4 are:
1 in 10,000
1 in 6,561
1 in 100
1 in 1,000
1 in 9,999
Answer:
Part 1)
10,000 different numbers.
Part 2)
A) 1 in 10,000.
Step-by-step explanation:
Part 1)
Since there are four digits and there are ten choices for each digit (0 - 9) and digits can be repeated, then we will have:
[tex]T=\underbrace{10}_{\text{Choices For First Digit}}\times\underbrace{10}_{\text{Second Digit}}\times\underbrace{10}_{\text{Third Digit}}\times \underbrace{10}_{\text{Fourth Digit}} = 10^4=10000[/tex]
Thus, 10,000 different numbers are possible.
Part 2)
Since there 10,000 different tickets possible, the chance of one being the correct combination will be 1 in 10,000.
This is equivalent to 0.0001 or a 0.01% chance of winning.
You may recall that the area of a rectangle is A=L⋅W, where W is the width and L is the length.
Suppose that the length of a rectangle is 3 times the width. If the area is 300 square feet, then what is the width of the rectangle, in feet?
Do not type the units in your answer.
Answer:
The width is 10 feet.
Step-by-step explanation:
We know that the area of a rectangle is given by the formula:
[tex]\displaystyle A=L\cdot W[/tex]
Where L is the length and W is the width.
We are given that the length of the rectangle is three times the width. In other words:
[tex]L=3W[/tex]
The total area is 300 square feet. And we want to determine the width of the rectangle.
So, substitute 300 for A and 3W for L:
[tex](300)=(3W)\cdot W[/tex]
Multiply:
[tex]300=3W^2[/tex]
Divide both sides by three:
[tex]W^2=100[/tex]
And take the principal square root of both sides. So:
[tex]W=10[/tex]
Thus, the width of the rectangle is 10 feet.
A teacher teaches two classes with 8 students each. Each student has a 95% chance of passing their class independent of the other students. Find the probability that, in exactly one of the two classes, all 8 students pass.
Answer:
0.4466 = 44.66% probability that, in exactly one of the two classes, all 8 students pass.
Step-by-step explanation:
For each student, there are only two possible outcomes. Either they pass, or they do not. The probability of an student passing is independent of other students, which means that the binomial probability distribution is used to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
And p is the probability of X happening.
Probability that all students pass in a class:
Class of 8 students, which means that [tex]n = 8[/tex]
Each student has a 95% chance of passing their class independent of the other students, which means that [tex]p = 0.95[/tex]
This probability is P(X = 8). So
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 8) = C_{8,8}.(0.95)^{8}.(0.05)^{0} = 0.6634[/tex]
Find the probability that, in exactly one of the two classes, all 8 students pass.
Two classes means that [tex]n = 2[/tex]
0.6634 probability all students pass in a class, which means that [tex]p = 0.6634[/tex].
This probability is P(X = 1). So
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 2) = C_{2,1}.(0.6634)^{1}.(0.3366)^{1} = 0.4466[/tex]
0.4466 = 44.66% probability that, in exactly one of the two classes, all 8 students pass.
PLESE HELP WITH ANSWER. rewrite the function in the given form
s hard and too long I'm only of class 13
Use the relationship among the three angles of any triangle to solve. Two angles of a triangle have the same
measure and the third angle is 27° greater than the measure of the other two. Find the measure of each angle.
Please help :)
Answer:
51°,51°,78°
Step-by-step explanation:
The sum of angles in a triangle add up to 180°
rewrite 1/6 and 2/11 so they have a common denominator then use <, =, or > to order
Answer:
1/6 < 2/11
Step-by-step explanation:
1/6 = 2/12
2/11 >2/12
So that means 1/6 < 2/11
Answer: 1/6 < 2/11
This is the same as saying 11/66 < 12/66
===========================================================
Explanation:
1/6 is the same as 11/66 when multiplying top and bottom by 11.
2/11 is the same as 12/66 when multiplying top and bottom by 6.
The 6 and 11 multipliers are from the original denominators (just swapped).
We can see that 11/66 is smaller than 12/66, simply because 11 < 12, so that means 1/6 is smaller than 2/11
-----------------
Here's one way you could list out the steps
11 < 12
11/66 < 12/66
1/6 < 2/11
------------------
Here's another way to list out the steps. First assume that 1/6 and 2/11 are equal. Cross multiplication then leads to
1/6 = 2/11
1*11 = 6*2
11 = 12
Which is false. But we can fix this by replacing every equal sign with a less than sign
1/6 < 2/11
1*11 < 6*2
11 < 12
---------------------
Yet another way to see which is smaller is to use your calculator or long division to find the decimal form of each value
1/6 = 0.1667 approximately
2/11 = 0.1818 approximately
We see that 0.1667 is smaller than 0.1818, which must mean 1/6 is smaller than 2/11.
What is the distance between the points (2, 1) and (14, 6) on a coordinate
plane?
Answer:
it's 13 if you use the distance formula
find the length of a rhombus if the lengths of its diagonals are: 5 cm and 12 cm
9514 1404 393
Answer:
6.5 cm
Step-by-step explanation:
The length of the rhombus is the length of the long diagonal: 12 cm.
Perhaps you want the length of one side. We recognize the given lengths as the legs of a 5-12-13 right triangle. Since each side is the hypotenuse of a right triangle whose legs are half the diagonals, the side length of the rhombus will be half of 13 cm.
The side lengths of the rhombus are 6.5 cm.
What's the lateral area of the following cone?
11 cm
10 cm
511.23 cm
55 cm?
110.02 cm?
189.75 cm?
Answer:189.75
Step-by-step explanation:
The lateral area of the cone for the height of 11 cm and diameter 10 cm is given by option D. 189.75 cm²
To calculate the lateral area of a cone, find the curved surface area.
The lateral area of a cone can be calculated using the formula:
Lateral Area = π × r × l
where:
π is the mathematical constant pi (approximately 3.14159)
r is the radius of the base of the cone
l is the slant height of the cone
Height (h) = 11 cm
Diameter (d) = 10 cm
First, we need to find the radius (r) and the slant height (l).
The radius (r) is half of the diameter:
r
= d / 2
= 10 cm / 2
= 5 cm
The slant height (l) can be found using the Pythagorean theorem:
l² = r² + h²
l² = 5² + 11²
l² = 25 + 121
l² = 146
l = √146
≈ 12.083 cm
Now, calculate the lateral area:
Lateral Area = π × r × l
Lateral Area = 3.14159 × 5 cm × 12.083 cm
Lateral Area ≈ 189.75 cm²
Therefore, the lateral area of the cone is approximately 189.75 cm². The correct answer is C) 189.75 cm²
learn more about lateral area here
brainly.com/question/30196078
#SPJ2
-moves "The string of a kite is perfectly taut" and always makes an angle of 35 degrees above horizontal. (a) If the kite flyer has let out 500 feet of string, how high is the kite? (b) If the string is let out at a rate of 10 feet per second, how fast is the kite's height increasing?
Answer:
a) [tex]h=286.8ft[/tex]
b) [tex]\frac{dh}{dt}=5.7ft/s[/tex]
Step-by-step explanation:
From the question we are told that:
Angle [tex]\theta=35[/tex]
a)
Slant height [tex]h_s=500ft[/tex]
Generally the trigonometric equation for Height is mathematically given by
[tex]h=h_ssin\theta[/tex]
[tex]h=500sin35[/tex]
[tex]h=286.8ft[/tex]
b)
Rate of release
[tex]\frac{dl}{dt}=10ft/sec[/tex]
Generally the trigonometric equation for Height is mathematically given by
[tex]h=lsin35[/tex]
Differentiate
[tex]\frac{dh}{dt}=\frac{dl}{dt}sin35[/tex]
[tex]\frac{dh}{dt}=10sin35[/tex]
[tex]\frac{dh}{dt}=5.7ft/s[/tex]
Find the value of x in each case
The answer is 36 degrees
Step 1
Angle GEH=180-2x (angles on a a straight line are supplementary)
Step 2
4x= G^+GE^H(sum of exterior angle)
4x=x+(180-2x)
4x=180-x
4x+x=180
5x=180
x=36 degrees
What is the simplest form of this expression?
ANSWER:
The answer is b
Hi I need help with fraction
1
_ x 10
8.
Answer:
The answer is 1 1/4 or 5/4
Step-by-step explanation:
1/8 · 10 = 10/8
10/8 when simplified is 5/4
1. What are the intercepts of the equation 2x+3/2y+3z=6
Answer:
x-intercept=3
y-intercept=4
z-intercept=2
Step-by-step explanation:
The variance of the scores on a skill evaluation test is 143,641 with a mean of 1517 points. If 343 tests are sampled, what is the probability that the mean of the sample would differ from the population mean by less than 36 points
Answer:
The probability that the mean of the sample would differ from the population mean by less than 36 points=0.9216
Step-by-step explanation:
We are given that
The variance of the scores on a skill evaluation test=143,641
Mean=1517 points
n=343
We have to find the probability that the mean of the sample would differ from the population mean by less than 36 points.
Standard deviation,[tex]\sigma=\sqrt{143641}[/tex]
[tex]P(|x-\mu|<36)=P(|\frac{x-\mu}{\frac{\sigma}{\sqrt{n}}}|<\frac{36}{\frac{\sqrt{143641}}{\sqrt{343}}})[/tex]
[tex]=P(|Z|<\frac{36}{\sqrt{\frac{143641}{343}}})[/tex]
[tex]=P(|Z|<1.76)[/tex]
[tex]=0.9216[/tex]
Hence, the probability that the mean of the sample would differ from the population mean by less than 36 points=0.9216
Your sample is normally distributed with a mean age of 36. The standard deviation in this sample is 4 years. You would expect:
Kindly find complete question attached below
Answer:
Kindly check explanation
Step-by-step explanation:
Given a normal distribution with ;
Mean = 36
Standard deviation = 4
According to the empirical rule :
68% of the distribution is within 1 standard deviation of the mean ;
That is ; mean ± 1(standard deviation)
68% of subjects :
36 ± 1(4) :
36 - 4 or 36 + 4
Between 32 and 40
2.)
95% of the distribution is within 2 standard deviations of the mean ;
That is ; mean ± 2(standard deviation)
95% of subjects :
36 ± 2(4) :
36 - 8 or 36 + 8
Between 28 and 44
3.)
99% is about 3 standard deviations of the mean :
That is ; mean ± 3(standard deviation)
99% of subjects :
36 ± 3(4) :
36 - 12 or 36 + 12
Between 24 and 48
Cole biked at 5 mph for 1 hours. Which of the following choices show how far he biked?
A=5.5 miles
B=6.5 miles
C=7.5 miles
D=10 miles
Answer:
Most Likely A, 5.5 Miles
Step-by-step explanation:
However the question doesn't make sense as the logical answer is simply 5 miles, but the safest choice is 5.5
What transformation was not done to the linear parent function, f(x) = x, to
get the function g(x) = – } (x + 5) + 7?
A. Reflected over the x-axis
B. Vertically compressed by a factor of 2
O c. Shifted right 5 units
D. Shifted up 7 units
Answer:
C.
Step-by-step explanation:
The function shifted left five units instead of right five units.
There's no vertical compression in the equation provided, but that's probably just a typo since there's a random bracket that I assume was supposed to be a fraction.
amy shoots a 100 arrows at a target each arrow with a probability 0.2 what is the probability that at most one of her first 10 arrows hits the target
Answer:
0.3758 = 37.58% probability that at most one of her first 10 arrows hits the target
Step-by-step explanation:
For each shot, there are only two possible outcomes. Either they hit the target, or they do not. The probability of a shot hitting the target is independent of any other shot, which means that the binomial probability distribution is used to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
And p is the probability of X happening.
Each arrow with a probability 0.2
This means that [tex]p = 0.2[/tex]
First 10 arrows
This means that [tex]n = 10[/tex]
What is the probability that at most one of her first 10 arrows hits the target?
This is:
[tex]P(X \leq 1) = P(X = 0) + P(X = 1)[/tex]
So
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 0) = C_{10,0}.(0.2)^{0}.(0.8)^{10} = 0.1074[/tex]
[tex]P(X = 1) = C_{10,1}.(0.2)^{1}.(0.8)^{9} = 0.2684[/tex]
Then
[tex]P(X \leq 1) = P(X = 0) + P(X = 1) = 0.1074 + 0.2684 = 0.3758[/tex]
0.3758 = 37.58% probability that at most one of her first 10 arrows hits the target
The functions f(x) and g(x) are shown on the graph.
f(x) = x2
What is g(x)?
10-
If(x)
1
х
10
-5
5
10
g(x)
-10
A. g(x) = (– x)2 - 3
B. g(x) = – x2 + 3
c. g(x) = (-x)2 + 3
D. g(x) = -X2 - 3
Answer:
[tex]g(x) = -x^2 + 3[/tex]
Step-by-step explanation:
Given
[tex]f(x) = x^2[/tex]
Required
Determine g(x)
First, shift f(x) down by 3 units
The rule is:
[tex]f'(x) = f(x) - 3[/tex]
So:
[tex]f'(x) = x^2 - 3[/tex]
Next, reflect f'(x) across the x-axis to get g(x)
The rule is:
[tex]g(x) = -f(x)[/tex]
So, we have:
[tex]g(x) = -(x^2 - 3)[/tex]
Open bracket
[tex]g(x) = -x^2 + 3[/tex]
Answer:
D
Step-by-step explanation:
I figured out the hard way
62. A chemist mixes 15 liters of 40 percent acid solution and 25 liters of 20 percent acid solution.
What percent of the mixture is acid?
40% of 15 L = 6 L of acid
20% of 25 L = 5 L of acid
This means the mixture contains a total of 11 L of acid, and with a total volume of 15 L + 25 L = 40 L, that means the mixture is at a concentration of
(11 L acid) / (40 L solution) = 0.275 = 27.5%
Help please!!
The triangles are similar by:
the SAS similarity theorem.
the ASA similarity theorem.
the AA similarity postulate.
None of the choices are correct.
the SSS similarity theorem.
Using the Fenske equation, calculate the number of theoretical plates for a fractional distillation set up used to separate Ethyl acetate (the more volatile component) from hexane (less volatile component) in a mixture with the following experimental data:
n=log(X/Xb) -log(Y a/Yb)/ log α Fenske Equation
Experimental data: l
The following are the data optained from injection of a 1-microliter sample of the equimolar stock solution used in the distillation experiment into a GČ. The percent of the area under the appropriate peak is idicated.
a = 1.6
GC results of the stock mixture used in the experiment
Component Rt (retention time) Percent Area
Ethyl acetate 1.09 53 82
Hexane 1.58 47 18
GC results of a 1-microliter sample after 3 mL had been collected:
Component Rt (retention time) Percent Area
Ethyl acetate 1.09 82
Hexane 1.58 18
a. 3.9
b. 7.2
c. 7.0
d. 3.0
The population standard deviation for the temperature of beers found in Scooter's Tavern is 0.26 degrees. If we want to be 90% confident that the sample mean beer temperature is within 0.1 degrees of the true mean temperature, how many beers must we sample
Answer:
19 beers must be sampled.
Step-by-step explanation:
We have that to find our [tex]\alpha[/tex] level, that is the subtraction of 1 by the confidence interval divided by 2. So:
[tex]\alpha = \frac{1 - 0.9}{2} = 0.05[/tex]
Now, we have to find z in the Z-table as such z has a p-value of [tex]1 - \alpha[/tex].
That is z with a pvalue of [tex]1 - 0.05 = 0.95[/tex], so Z = 1.645.
Now, find the margin of error M as such
[tex]M = z\frac{\sigma}{\sqrt{n}}[/tex]
In which [tex]\sigma[/tex] is the standard deviation of the population and n is the size of the sample.
The population standard deviation for the temperature of beers found in Scooter's Tavern is 0.26 degrees.
This means that [tex]\sigma = 0.26[/tex]
If we want to be 90% confident that the sample mean beer temperature is within 0.1 degrees of the true mean temperature, how many beers must we sample?
This is n for which M = 0.1. So
[tex]M = z\frac{\sigma}{\sqrt{n}}[/tex]
[tex]0.1 = 1.645\frac{0.26}{\sqrt{n}}[/tex]
[tex]0.1\sqrt{n} = 1.645*0.26[/tex]
[tex]\sqrt{n} = \frac{1.645*0.26}{0.1}[/tex]
[tex](\sqrt{n})^2 = (\frac{1.645*0.26}{0.1})^2[/tex]
[tex]n = 18.3[/tex]
Rounding up:
19 beers must be sampled.
the Barnes family drove 140 miles the first day and 220 miles on the second day. If they drove about 60 miles per hour, approximately how many hours did they drive?
Can someone please help me, with part B
Step-by-step explanation:
let y = x+5/4
Interchanging x and y , we get ;
x = y+5/4
or, 4x = y+5
or, 4x-5 = y
or, g(x) -1 = 4x-5
Answer:
In verse of B.g(x)=[tex]\frac{x+5}{4}[/tex] is:
4x-5
Answer:
Solution given:
B.g(x)=[tex]\frac{x+5}{4}[/tex]
let
g(x)=y
y=[tex]\frac{x+5}{4}[/tex]
Interchanging role of x and y
we get:
x=[tex]\frac{y+5}{4}[/tex]
doing crisscrossed multiplication
4x=y+5
y=4x-5
So
g-¹(x)=4x-5
a, b, c are prime numbers and 5≤a
Answer:
a=5
Step-by-step explanation:
Compute P(B) using the Classical Method. Round your answer to two decimal places.
compute is an electronic devices
Multiple choice plss help
Answer:
D
Step-by-step explanation:
The correct answer Is D