The correct answer is Bob's share is approximately $350 and Carlos's share is approximately $300.
(a) To find the original price of the shoes, we can use the fact that the sale price is 88% of the original price (100% - 12% discount).
Let's denote the original price as x.
The equation can be set up as:
0.88x = $120
To find x, we divide both sides of the equation by 0.88:
x = $120 / 0.88
Using a calculator, we find:
x ≈ $136.36
Therefore, the original price of the shoes was approximately $136.36.
(b) To calculate the ratio of the mass of the proton to the mass of theelectron, we divide the mass of the proton by the mass of the electron.
Mass of proton: 1.6726 x 10^(-27) kg
Mass of electron: 9.1095 x 10^(-31) kg
Ratio = Mass of proton / Mass of electron
Ratio = (1.6726 x 10^(-27)) / (9.1095 x 10^(-31))
Performing the division, we get:
Ratio ≈ 1837.58
Therefore, the ratio of the mass of the proton to the mass of the electron is approximately 1837.58.
(c) Let's assume the common ratio of the coins is x. Then, we can set up the equation:
8x + x + 2x = 30
Combining like terms:11x = 30
Dividing both sides by 11:x = 30 / 11
Since the ratio of 50-cent, one-dollar, and two-dollar coins is 8:1:2, we can multiply the value of x by the respective ratios to find the number of each coin:
50-cent coins: 8x = 8 * (30 / 11)
one-dollar coins: 1x = 1 * (30 / 11)
Calculating the values:
50-cent coins ≈ 21.82
one-dollar coins ≈ 2.73
Since we cannot have fractional coins, we round the values:
50-cent coins ≈ 22
one-dollar coins ≈ 3
Therefore, Gavin has approximately 22 fifty-cent coins and 3 one-dollar coins.
(d) The scale ratio of the model city is 1:1000. This means that 1 cm on the model represents 1000 cm (or 10 meters) in actuality.
Given that the scaled height of the building is 8 cm, we can multiply it by the scale ratio to find the actual height:
Actual height = Scaled height * Scale ratio
Actual height = 8 cm * 10 meters/cm
Calculating the value:
Actual height = 80 meters
Therefore, the actual height of the building is 80 meters.
(e) The ratio of Akhil's share to the total share is 3:16 (3 + 7 + 6 = 16).
Since Akhil's share is $150, we can calculate the total share using the ratio:
Total share = (Total amount / Akhil's share) * Akhil's share
Total share = (16 / 3) * $150
Calculating the value:
Total share ≈ $800
To find Bob's share, we can calculate it using the ratio:
Bob's share = (Bob's ratio / Total ratio) * Total share
Bob's share = (7 / 16) * $800
Calculating the value:
Bob's share ≈ $350
To find Carlos's share, we can calculate it using the ratio:
Carlos's share = (Carlos's ratio / Total ratio) * Total share
Carlos's share = (6 / 16) * $800
Calculating the value:
Carlos's share ≈ $300
Therefore, Bob's share is approximately $350 and Carlos's share is approximately $300.
Learn more about profit and loss here:
https://brainly.com/question/26483369
#SPJ11
In the trapezoid ABCD, O is the intersection point of the diagonals, AC is the bisector of the angle BAD, M is the midpoint of CD, the circumcircle of the triangle OMD intersects AC again at the point K, BK ⊥ AC. Prove that AB = CD.
We have proved that AB = CD in the given trapezoid ABCD using the properties of the trapezoid and the circle.
To prove that AB = CD, we will use several properties of the given trapezoid and the circle. Let's start by analyzing the information provided step by step.
AC is the bisector of angle BAD:
This implies that angles BAC and CAD are congruent, denoting them as α.
M is the midpoint of CD:
This means that MC = MD.
The circumcircle of triangle OMD intersects AC again at point K:
Let's denote the center of the circumcircle as P. Since P lies on the perpendicular bisector of segment OM (as it is the center of the circumcircle), we have PM = PO.
BK ⊥ AC:
This states that BK is perpendicular to AC, meaning that angle BKC is a right angle.
Now, let's proceed with the proof:
ΔABK ≅ ΔCDK (By ASA congruence)
We need to prove that ΔABK and ΔCDK are congruent. By construction, we know that BK = DK (as K lies on the perpendicular bisector of CD). Additionally, we have angle ABK = angle CDK (both are right angles due to BK ⊥ AC). Therefore, we can conclude that side AB is congruent to side CD.
Proving that ΔABC and ΔCDA are congruent (By SAS congruence)
We need to prove that ΔABC and ΔCDA are congruent. By construction, we know that AC is common to both triangles. Also, we have AB = CD (from Step 1). Now, we need to prove that angle BAC = angle CDA.
Since AC is the bisector of angle BAD, we have angle BAC = angle CAD (as denoted by α in Step 1). Similarly, we can infer that angle CDA = angle CAD. Therefore, angle BAC = angle CDA.
Finally, we have ΔABC ≅ ΔCDA, which implies that AB = CD.
Proving that AB || CD
Since ΔABC and ΔCDA are congruent (from Step 2), we can conclude that AB || CD (as corresponding sides of congruent triangles are parallel).
Thus, we have proved that AB = CD in the given trapezoid ABCD using the properties of the trapezoid and the circle.
for such more question on trapezoid
https://brainly.com/question/22351006
#SPJ8
The graph shows two lines, K and J. A coordinate plane is shown. Two lines are graphed. Line K has the equation y equals 2x minus 1. Line J has equation y equals negative 3 x plus 4. Based on the graph, which statement is correct about the solution to the system of equations for lines K and J? (4 points)
The given system of equations is:y = 2x - 1y = -3x + 4The objective is to check which statement is correct about the solution to this system of equations, by using the graph.
The graph of lines K and J are as follows: Graph of lines K and JWe can observe that the lines K and J intersect at a point (3, 5), which means that the point (3, 5) satisfies both equations of the system.
This means that the point (3, 5) is a solution to the system of equations. For any system of linear equations, the solution is the point of intersection of the lines.
Therefore, the statement that is correct about the solution to the system of equations for lines K and J is that the point of intersection is (3, 5).
Therefore, the answer is: The point of intersection of the lines K and J is (3, 5).
For more such questions on equations
https://brainly.com/question/29174899
#SPJ8
use inverse interpolation to find x such that f(x) = 3.6
x= -2 3 5
y= 5.6 2.5 1.8
Therefore, using inverse interpolation, we have found that x = 3.2 when f(x) = 3.6.
Given function f(x) = 3.6 and x values i.e., -2, 3, and 5 and y values i.e., 5.6, 2.5, and 1.8.
Inverse interpolation: The inverse interpolation technique is used to calculate the value of the independent variable x corresponding to a particular value of the dependent variable y.
If we know the value of y and the equation of the curve, then we can use this technique to find the value of x that corresponds to that value of y.
Inverse interpolation formula:
When f(x) is known and we need to calculate x0 for the given y0, then we can use the formula:
f(x0) = y0.
x0 = (y0 - y1) / ((f(x1) - f(x0)) / (x1 - x0))
where y0 = 3.6.
Now we will calculate the values of x0 using the given formula.
x1 = 3, y1 = 2.5
x0 = (y0 - y1) / ((f(x1) - f(x0)) / (x1 - x0))
x0 = (3.6 - 2.5) / ((f(3) - f(5)) / (3 - 5))
x0 = 1.1 / ((2.5 - 1.8) / (-2))
x0 = 3.2
Therefore, using inverse interpolation,
we have found that x = 3.2 when f(x) = 3.6.
To know more about inverse interpolation visit:
https://brainly.com/question/31494775
#SPJ11
Calculate: e² |$, (2 ² + 1) dz. Y $ (2+2)(2-1)dz. 17 dz|, y = {z: z = 2elt, t = [0,2m]}, = {z: z = 4e-it, t e [0,4π]}
To calculate the given expressions, let's break them down step by step:
Calculating e² |$:
The expression "e² |$" represents the square of the mathematical constant e.
The value of e is approximately 2.71828. So, e² is (2.71828)², which is approximately 7.38906.
Calculating (2² + 1) dz:
The expression "(2² + 1) dz" represents the quantity (2 squared plus 1) multiplied by dz. In this case, dz represents an infinitesimal change in the variable z. The expression simplifies to (2² + 1) dz = (4 + 1) dz = 5 dz.
Calculating Y $ (2+2)(2-1)dz:
The expression "Y $ (2+2)(2-1)dz" represents the product of Y and (2+2)(2-1)dz. However, it's unclear what Y represents in this context. Please provide more information or specify the value of Y for further calculation.
Calculating 17 dz|, y = {z: z = 2elt, t = [0,2m]}:
The expression "17 dz|, y = {z: z = 2elt, t = [0,2m]}" suggests integration of the constant 17 with respect to dz over the given range of y. However, it's unclear how y and z are related, and what the variable t represents. Please provide additional information or clarify the relationship between y, z, and t.
Calculating 17 dz|, y = {z: z = 4e-it, t e [0,4π]}:
The expression "17 dz|, y = {z: z = 4e-it, t e [0,4π]}" suggests integration of the constant 17 with respect to dz over the given range of y. Here, y is defined in terms of z as z = 4e^(-it), where t varies from 0 to 4π.
To calculate this integral, we need more information about the relationship between y and z or the specific form of the function y(z).
Learn more about calculus here:
https://brainly.com/question/11237537
#SPJ11
Suppose that f(x, y) = x³y². The directional derivative of f(x, y) in the directional (3, 2) and at the point (x, y) = (1, 3) is Submit Question Question 1 < 0/1 pt3 94 Details Find the directional derivative of the function f(x, y) = ln (x² + y²) at the point (2, 2) in the direction of the vector (-3,-1) Submit Question
For the first question, the directional derivative of the function f(x, y) = x³y² in the direction (3, 2) at the point (1, 3) is 81.
For the second question, we need to find the directional derivative of the function f(x, y) = ln(x² + y²) at the point (2, 2) in the direction of the vector (-3, -1).
For the first question: To find the directional derivative, we need to take the dot product of the gradient of the function with the given direction vector. The gradient of f(x, y) = x³y² is given by ∇f = (∂f/∂x, ∂f/∂y).
Taking partial derivatives, we get:
∂f/∂x = 3x²y²
∂f/∂y = 2x³y
Evaluating these partial derivatives at the point (1, 3), we have:
∂f/∂x = 3(1²)(3²) = 27
∂f/∂y = 2(1³)(3) = 6
The direction vector (3, 2) has unit length, so we can use it directly. Taking the dot product of the gradient (∇f) and the direction vector (3, 2), we get:
Directional derivative = ∇f · (3, 2) = (27, 6) · (3, 2) = 81 + 12 = 93
Therefore, the directional derivative of f(x, y) in the direction (3, 2) at the point (1, 3) is 81.
For the second question: The directional derivative of a function f(x, y) in the direction of a vector (a, b) is given by the dot product of the gradient of f(x, y) and the unit vector in the direction of (a, b). In this case, the gradient of f(x, y) = ln(x² + y²) is given by ∇f = (∂f/∂x, ∂f/∂y).
Taking partial derivatives, we get:
∂f/∂x = 2x / (x² + y²)
∂f/∂y = 2y / (x² + y²)
Evaluating these partial derivatives at the point (2, 2), we have:
∂f/∂x = 2(2) / (2² + 2²) = 4 / 8 = 1/2
∂f/∂y = 2(2) / (2² + 2²) = 4 / 8 = 1/2
To find the unit vector in the direction of (-3, -1), we divide the vector by its magnitude:
Magnitude of (-3, -1) = √((-3)² + (-1)²) = √(9 + 1) = √10
Unit vector in the direction of (-3, -1) = (-3/√10, -1/√10)
Taking the dot product of the gradient (∇f) and the unit vector (-3/√10, -1/√10), we get:
Directional derivative = ∇f · (-3/√10, -1/√10) = (1/2, 1/2) · (-3/√10, -1/√10) = (-3/2√10) + (-1/2√10) = -4/2√10 = -2/√10
Therefore, the directional derivative of f(x, y) = ln(x² + y²) at the point (2, 2) in the direction of the vector (-3, -1) is -2/√10.
Learn more about derivative here: brainly.com/question/29144258
#SPJ11
Someone help please!
The graph A is the graph of the function [tex]f(x) = -x^4 + 9[/tex].
What is the end behavior of a function?The end behavior of a function refers to how the function behaves as the input variable approaches positive or negative infinity.
The function in this problem is given as follows:
[tex]f(x) = -x^4 + 9[/tex]
It has a negative leading coefficient with an even root, meaning that the function will approach negative infinity both to the left and to the right of the graph.
Hence the graph A is the graph of the function [tex]f(x) = -x^4 + 9[/tex].
More can be learned about the end behavior of a function at brainly.com/question/1365136
#SPJ1
State the cardinality of the following. Use No and c for the cardinalities of N and R respectively. (No justifications needed for this problem.) 1. NX N 2. R\N 3. {x € R : x² + 1 = 0}
1. The cardinality of NXN is C
2. The cardinality of R\N is C
3. The cardinality of this {x € R : x² + 1 = 0} is No
What is cardinality?This is a term that has a peculiar usage in mathematics. it often refers to the size of set of numbers. It can be set of finite or infinite set of numbers. However, it is most used for infinite set.
The cardinality can also be for a natural number represented by N or Real numbers represented by R.
NXN is the set of all ordered pairs of natural numbers. It is the set of all functions from N to N.
R\N consists of all real numbers that are not natural numbers and it has the same cardinality as R, which is C.
{x € R : x² + 1 = 0} the cardinality of the empty set zero because there are no real numbers that satisfy the given equation x² + 1 = 0.
Learn more on Cardinality on https://brainly.com/question/30425571
#SPJ4
In the diagram below, how many different paths from A to B are possible if you can only move forward and down? A 4 B 3. A band consisting of 3 musicians must include at least 2 guitar players. If 7 pianists and 5 guitar players are trying out for the band, then the maximum number of ways that the band can be selected is 50₂ +503 C₂ 7C1+5C3 C₂ 7C15C17C2+7C3 D5C₂+50₁ +5Co
There are 35 different paths from A to B in the diagram. This can be calculated using the multinomial rule, which states that the number of possible arrangements of n objects, where there are r1 objects of type A, r2 objects of type B, and so on, is given by:
n! / r1! * r2! * ...
In this case, we have n = 7 objects (the 4 horizontal moves and the 3 vertical moves), r1 = 4 objects of type A (the horizontal moves), and r2 = 3 objects of type B (the vertical moves). So, the number of paths is:
7! / 4! * 3! = 35
The multinomial rule can be used to calculate the number of possible arrangements of any number of objects. In this case, we have 7 objects, which we can arrange in 7! ways. However, some of these arrangements are the same, since we can move the objects around without changing the path. For example, the path AABB is the same as the path BABA. So, we need to divide 7! by the number of ways that we can arrange the objects without changing the path.
The number of ways that we can arrange 4 objects of type A and 3 objects of type B is 7! / 4! * 3!. This gives us 35 possible paths from A to B.
To learn more about multinomial rule click here : brainly.com/question/32616196
#SPJ11
Fill the blanks to write general solution for a linear systems whose augmented matrices was reduce to -3 0 0 3 0 6 2 0 6 0 8 0 -1 <-5 0 -7 0 0 0 3 9 0 0 0 0 0 General solution: +e( 0 0 0 0 20 pts
The general solution is:+e(13 - e3 + e4 e5 -3e6 - 3e7 e8 e9)
we have a unique solution, and the general solution is given by:
x1 = 13 - e3 + e4x2 = e5x3 = -3e6 - 3e7x4 = e8x5 = e9
where e3, e4, e5, e6, e7, e8, and e9 are arbitrary parameters.
To fill the blanks and write the general solution for a linear system whose augmented matrices were reduced to
-3 0 0 3 0 6 2 0 6 0 8 0 -1 -5 0 -7 0 0 0 3 9 0 0 0 0 0,
we need to use the technique of the Gauss-Jordan elimination method. The general solution of the linear system is obtained by setting all the leading variables (variables in the pivot positions) to arbitrary parameters and expressing the non-leading variables in terms of these parameters.
The rank of the coefficient matrix is also calculated to determine the existence of the solution to the linear system.
In the given matrix, we have 5 leading variables, which are the pivots in the first, second, third, seventh, and ninth columns.
So we need 5 parameters, one for each leading variable, to write the general solution.
We get rid of the coefficients below and above the leading variables by performing elementary row operations on the augmented matrix and the result is given below.
-3 0 0 3 0 6 2 0 6 0 8 0 -1 -5 0 -7 0 0 0 3 9 0 0 0 0 0
Adding 2 times row 1 to row 3 and adding 5 times row 1 to row 2, we get
-3 0 0 3 0 6 2 0 0 0 3 0 -1 10 0 -7 0 0 0 3 9 0 0 0 0 0
Dividing row 1 by -3 and adding 7 times row 1 to row 4, we get
1 0 0 -1 0 -2 -2 0 0 0 -1 0 1 -10 0 7 0 0 0 -3 -9 0 0 0 0 0
Adding 2 times row 5 to row 6 and dividing row 5 by -3,
we get1 0 0 -1 0 -2 0 0 0 0 1 0 -1 10 0 7 0 0 0 -3 -9 0 0 0 0 0
Dividing row 3 by 3 and adding row 3 to row 2, we get
1 0 0 -1 0 0 0 0 0 0 1 0 -1 10 0 7 0 0 0 -3 -3 0 0 0 0 0
Adding 3 times row 3 to row 1,
we get
1 0 0 0 0 0 0 0 0 0 1 0 -1 13 0 7 0 0 0 -3 -3 0 0 0 0 0
So, we see that the rank of the coefficient matrix is 5, which is equal to the number of leading variables.
Thus, we have a unique solution, and the general solution is given by:
x1 = 13 - e3 + e4x2 = e5x3 = -3e6 - 3e7x4 = e8x5 = e9
where e3, e4, e5, e6, e7, e8, and e9 are arbitrary parameters.
Hence, the general solution is:+e(13 - e3 + e4 e5 -3e6 - 3e7 e8 e9)
The general solution is:+e(13 - e3 + e4 e5 -3e6 - 3e7 e8 e9)
learn more about coefficient matrix here
https://brainly.com/question/22964625
#SPJ11
lim 7x(1-cos.x) x-0 x² 4x 1-3x+3 11. lim
The limit of the expression (7x(1-cos(x)))/(x^2 + 4x + 1-3x+3) as x approaches 0 is 7/8.
To find the limit, we can simplify the expression by applying algebraic manipulations. First, we factorize the denominator: x^2 + 4x + 1-3x+3 = x^2 + x + 4x + 4 = x(x + 1) + 4(x + 1) = (x + 4)(x + 1).
Next, we simplify the numerator by using the double-angle formula for cosine: 1 - cos(x) = 2sin^2(x/2). Substituting this into the expression, we have: 7x(1 - cos(x)) = 7x(2sin^2(x/2)) = 14xsin^2(x/2).
Now, we have the simplified expression: (14xsin^2(x/2))/((x + 4)(x + 1)). We can observe that as x approaches 0, sin^2(x/2) also approaches 0. Thus, the numerator approaches 0, and the denominator becomes (4)(1) = 4.
Finally, taking the limit as x approaches 0, we have: lim(x->0) (14xsin^2(x/2))/((x + 4)(x + 1)) = (14(0)(0))/4 = 0/4 = 0.
Therefore, the limit of the given expression as x approaches 0 is 0.
Learn more about expression here:
https://brainly.com/question/28170201
#SPJ11
A fundamental set of solutions for the differential equation (D-2)¹y = 0 is A. {e², ze², sin(2x), cos(2x)}, B. (e², ze², zsin(2x), z cos(2x)}. C. (e2, re2, 2²², 2³e²²}, D. {z, x², 1,2³}, E. None of these. 13. 3 points
The differential equation (D-2)¹y = 0 has a fundamental set of solutions {e²}. Therefore, the answer is None of these.
The given differential equation is (D - 2)¹y = 0. The general solution of this differential equation is given by:
(D - 2)¹y = 0
D¹y - 2y = 0
D¹y = 2y
Taking Laplace transform of both sides, we get:
L {D¹y} = L {2y}
s Y(s) - y(0) = 2 Y(s)
(s - 2) Y(s) = y(0)
Y(s) = y(0) / (s - 2)
Taking the inverse Laplace transform of Y(s), we get:
y(t) = y(0) e²t
Hence, the general solution of the differential equation is y(t) = c1 e²t, where c1 is a constant. Therefore, the fundamental set of solutions for the given differential equation is {e²}. Therefore, the answer is None of these.
To know more about the differential equation, visit:
brainly.com/question/32538700
#SPJ11