A pool ball moving 1. 83 m/s strikes an identical ball at rest. Afterward, the first ball moves 1. 15 m/s at a 23. 3° angle. What is the x-component of the velocity of the second ball?​

Answers

Answer 1

the x-component of the velocity of the second ball is 1.25 m/s.

Given,

Initial velocity of the first ball, u₁ = 1.83 m/s

Final velocity of the first ball, v₁ = 1.15 m/s

Initial velocity of the second ball, u₂ = 0 m/s (as it is at rest)

Let v₂ be the final velocity of the second ball at an angle θ with the horizontal.

Using the principle of conservation of momentum, we get,

m₁u₁ + m₂u₂ = m₁v₁ + m₂v₂

Here, m₁ = m₂ = m (both the balls are identical)

Therefore,

mu₁ = (m + m)v₂

=> u₁ = 2v₂

=> v₂ = u₁/2

= 1.83/2 = 0.915 m/s

Now, using the principle of conservation of energy, we get,1/2 mu₁² = 1/2 mv₁² + 1/2 mv₂²

=> u₁² = v₁² + v₂² => v₂² = u₁² - v₁²v₂² =

(1.83)² - (1.15)²v₂ = √(1.83² - 1.15²)

= 1.35 m/s

Now, to find the x-component of the velocity of the second ball, we use the formula,

x-component of velocity of the second ball = v₂ cos θ= 1.35 cos 23.3°= 1.25 m/s (approx)

Therefore, the x-component of the velocity of the second ball is 1.25 m/s.

learn more about velocity here

https://brainly.com/question/25749514

#SPJ11


Related Questions

Name formula mol. Eq mw mmol amount imine intermediate 1. 00 280 mg nabh4 70 mg thf - - - 10 ml product

Answers

The number of millimoles of the product produced is: = 0.846 mmol. The equation for the imine intermediate 1 is as follows: C₁₉H₂₁N₃O₂ + NaBH₄ + THF → C₁₉H₂₃N₃O₂ + NaBH₃CN + NaCl + THF

The formula for imine intermediate 1 is C₁₉H₂₁N₃O₂. The molecular weight (MW) of imine intermediate 1 is 331.4 g/mol.

The molecular weight of NaBH₄ is 37.83 g/mol.

The molecular weight of THF is 72.11 g/mol.

Therefore, the amount of NaBH₄ is 70 mg, and the amount of THF is 10 mL.

The number of millimoles of NaBH₄ can be calculated as follows: 70 mg × 1 mol/37.83 g × 1000 mg/1 g

= 1.85 mmol

The number of millimoles of THF is: 10 mL × 0.088 g/mL × 1 mol/72.11 g × 1000 mg/1 g

= 1.22 mmol

The number of millimoles of imine intermediate 1 can be calculated as follows:

280 mg × 1 mol/331.4 g × 1000 mg/1 g

= 0.846 mmol

The number of millimoles of  NaBH₃CN produced can be calculated as follows:

1.85 mmol × 1 mol/1 mol

= 1.85 mmol

The number of millimoles of the product produced is:

0.846 mmol × 1 mol/1 mol

= 0.846 mmol

To know more about imine intermediate, refer

https://brainly.com/question/31106574

#SPJ11

for the following exothermic reaction at equilibrium: h2o (g) co (g) co2(g) h2(g) decide if each of the following changes will increase the value of k (t = temperature)

Answers

For the given exothermic reaction at equilibrium:H2O(g) + CO(g) ⇌ CO2(g) + H2(g)Changes in pressure, temperature, or concentration may shift the equilibrium position, but they do not affect the value of Kc, which is constant for a given reaction at a given temperature. Hence, Kc is independent of any changes in the concentrations of reactants and products, as well as changes in the reaction conditions, as long as the temperature remains constant.To assess the effect of each change on the equilibrium constant, we must use Le Chatelier's principle to predict which direction the reaction will proceed to reestablish equilibrium. The shift in the equilibrium can cause Kc to vary when the system comes to equilibrium at the new conditions.A change in pressure will influence the equilibrium position of a gaseous reaction since gases are extremely responsive to pressure. If the pressure is increased on one side of an equilibrium reaction, the reaction will shift to the opposite side of the equation to balance the pressure. The equilibrium constant (Kc) will not change, but the pressure will influence the mole fractions of reactants and products, which will have an impact on the direction of the equilibrium shift and the rate at which it occurs. Increasing the pressure by decreasing the volume of the container in which the equilibrium reaction is occurring will result in a shift towards the side of the equation with fewer gas molecules, and the system will attempt to balance the pressure. Therefore, the reaction will shift to the left, resulting in a decrease in Kc. Since the reverse reaction, which is exothermic, is favored at lower temperatures, an increase in the value of Kc is not expected as the temperature is lowered. This means that the first option will not result in an increase in Kc. If the volume is increased, the reaction will shift towards the side with more gas molecules to compensate, resulting in an increase in Kc. This means that the second option will lead to an increase in Kc.

To know more about Le Chatelier's principle visit

https://brainly.com/question/29009512

#SPJ11

Exothermic reactions at equilibrium: In an exothermic reaction, the energy is released to the surrounding as heat. An exothermic reaction always has a negative sign for ΔH. An exothermic reaction at equilibrium means that the reactants and products are still reacting, but at the same rate. The reaction quotient, Qc, is equal to the equilibrium constant, Kc. The given exothermic reaction is: H2O (g) + CO (g) ⇌ CO2(g) + H2(g)The balanced equation is as follows: H2O(g) + CO(g) ⇌ CO2(g) + H2(g)Decide if each of the following changes will increase the value of K (T = temperature): Increasing the temperature The given reaction is exothermic.

An increase in temperature will favor the backward reaction and oppose the forward reaction to attain equilibrium. According to Le Chatelier’s principle, if stress is applied to an equilibrium system, it will react to counteract the effect of that stress. Hence, an increase in temperature will cause the equilibrium to shift towards the reactants, as it is an endothermic process. Therefore, the value of Kc will decrease. Decreasing the pressure CO and H2 are gaseous reactants, whereas CO2 and H2O are gaseous products. A decrease in pressure will favor the side of the reaction with more number of gaseous molecules to oppose the change. Therefore, the equilibrium will shift towards the reactants to balance the pressure. Hence, the value of Kc will increase. Adding a catalyst A catalyst is a substance that increases the rate of a chemical reaction by providing an alternative pathway for the reaction with a lower activation energy. A catalyst does not affect the equilibrium position of the reaction, but it helps in achieving the equilibrium state at a faster rate. Hence, adding a catalyst will not affect the value of Kc, as it is independent of the rate of the reaction. The following changes will increase the value of K (T = temperature): Decreasing the temperature Increasing the pressure Therefore, the decrease in temperature and increase in pressure will increase the value of Kc.

To get more information about Le Chatelier’s principle visit:

https://brainly.com/question/29009512

#SPJ11

calculate the amount of work done to move 1 kg mass from the surface of the earth to a point 10⁵ km from the centre of the earth.​

Answers

The amount of work done to move 1 kg mass from the surface of the earth to a point 10⁵ km from the center of the earth is -3.748 × 10^9 J.

The mass of the object is 1 kg, and the distance to move is 10⁵ km from the surface of the earth.

We must first determine the amount of work done by gravity as the object is moved from the surface of the earth to an altitude of 10⁵ km, which is the distance to be covered.

The formula for work done by gravity is given by;

Work done by gravity = -GmM/rwhere G = 6.674 × 10^-11 N.m^2/kg^2 is the gravitational constant, M = 5.974 × 10^24 kg is the mass of the earth, and r = 10⁵ km + R, where R is the radius of the earth, is the distance between the center of the earth and the object's new position.

Therefore,r = 10^5 km + 6.37 × 10^3 km = 1.06 × 10^8 m

The work done is given by the formula above.

Substituting the values,

Work done by gravity = -6.674 × 10^-11 × 1 × 5.974 × 10^24 / 1.06 × 10^8= -3.748 × 10^9 J

Therefore, the amount of work done to move 1 kg mass from the surface of the earth to a point 10⁵ km from the center of the earth is -3.748 × 10^9 J.

Learn more about gravity

brainly.com/question/31321801

#SPJ11

for an electromagnetic wave the direction of the vector e x b gives

Answers

The speed of an electromagnetic wave is 299,792,458 meters per second (m/s) or the speed of light.

The direction of the vector product of E (electric field) and B (magnetic field) indicates the direction of energy transfer in an electromagnetic wave. This direction is perpendicular to both the E and B fields. The wave propagates in this direction as well. The direction of the vector product is referred to as the Poynting vector.

The Poynting vector, S, provides information about the direction and intensity of the electromagnetic energy flux or radiation pressure density. Its SI unit is watt per square meter (W/m²). It can be mathematically expressed as:S = E × BIn an electromagnetic wave, the E and B fields oscillate in mutually perpendicular planes. The direction of energy transfer is also perpendicular to both the E and B fields. An electromagnetic wave propagates perpendicular to both E and B fields and the direction of energy transfer. It has both electric and magnetic properties and carries energy. Therefore, an electromagnetic wave can be defined as a wave of energy produced by the acceleration of an electric charge and propagated through a vacuum or a medium.

To know more about electromagnetic wave visit:

https://brainly.com/question/29774932

#SPJ11

A car and a motorbike are having a race. The car has an acceleration from rest of 5.6 m/s2 until it reaches its maximum speed of 106 m/s whilst the motorbike has an acceleration of 8.4 m/s2 until it reaches it maximum speed of 58.8 m/s. Then they continue to race until the car reaches the motorcycle. (a) Find the time it takes the car and the motorbike to reach their maximum speeds

(b) What distance after starting from rest do the car and the motorbike travel when they reach their respective maximum speeds?

(c) How long does it take the car to reach the motorbike? Hint: To help solve this, note that the car will still be accelerating when it catches the motorbike. Your solution will contain two times. Justify which of the times is the correct one and which is the unphysical one. (

Answers

The car reaches its maximum speed of 106 m/s in 18.93 seconds and travels approximately 3366.26 meters. The motorbike reaches its maximum speed of 58.8 m/s in 7 seconds and travels 2058 meters. The car never catches up with the motorbike.

(a) To find the time it takes for the car and the motorbike to reach their maximum speeds, we can use the formula:

Time = (Final Speed - Initial Speed) / Acceleration

For the car:

Initial Speed = 0 m/s (rest)

Final Speed = 106 m/s

Acceleration = 5.6 m/s²

Time = (106 m/s - 0 m/s) / 5.6 m/s² = 18.93 seconds

For the motorbike:

Initial Speed = 0 m/s (rest)

Final Speed = 58.8 m/s

Acceleration = 8.4 m/s²

Time = (58.8 m/s - 0 m/s) / 8.4 m/s² = 7 seconds

(b) To find the distance traveled by the car and the motorbike when they reach their respective maximum speeds, we can use the formula:

Distance = (Initial Speed × Time) + (0.5 × Acceleration × Time²)

For the car:

Initial Speed = 0 m/s (rest)

Time = 18.93 seconds

Acceleration = 5.6 m/s²

Distance = (0 m/s × 18.93 seconds) + (0.5 × 5.6 m/s² × (18.93 seconds)²)

Distance = 0 + 0.5 × 5.6 m/s² × 357.2049 seconds²

Distance ≈ 3366.26 meters

For the motorbike:

Initial Speed = 0 m/s (rest)

Time = 7 seconds

Acceleration = 8.4 m/s²

Distance = (0 m/s × 7 seconds) + (0.5 × 8.4 m/s² × (7 seconds)²)

Distance = 0 + 0.5 × 8.4 m/s² × 49 seconds²

Distance = 2058 meters

(c) To find how long it takes the car to catch up with the motorbike, we need to determine the time at which their positions are equal. Since the car continues to accelerate while catching up, we can use the equation:

Distance = (Initial Speed × Time) + (0.5 × Acceleration × Time²)

Let's assume the time it takes for the car to catch the motorbike is t.

For the car:

Initial Speed = 0 m/s (rest)

Acceleration = 5.6 m/s²

For the motorbike:

Initial Speed = 0 m/s (rest)

Acceleration = 8.4 m/s²

Setting the distances equal to each other:

(0 m/s × t) + (0.5 × 5.6 m/s² × t²) = (0 m/s × t) + (0.5 × 8.4 m/s² × t²) + (58.8 m/s × t)

Simplifying the equation:

(0.5 × 5.6 m/s² × t²) = (0.5 × 8.4 m/s² × t²) + (58.8 m/s × t)

Since the term (0.5 × 5.6 m/s² × t²) equals (0.5 × 8.4 m/s² × t²), they cancel out, and we are left with:

0 = 58.8 m/s × t

This implies that t = 0, which is the unphysical solution since it means the car catches up with the motorbike instantaneously. Therefore, there is no valid solution for the car catching up with the motorbike.

In conclusion, the car and motorbike reach their maximum.

To know more about maximum speed refer here:

https://brainly.com/question/22202493#

#SPJ11

A diffraction grating with 750 slits/mm is illuminated by light that gives a first-order diffraction angle of 34∘ . What is the wavelength of the light?

Answers

When a diffraction grating having a specified number of slits per unit length is illuminated by a beam of light, a pattern of bright spots or dark lines is produced on a screen placed perpendicular to the beam. Therefore, the wavelength of the light diffracted by the grating is 0.00072516 mm.

A pattern of this kind is called a diffraction pattern. A diffraction grating is a device that divides light into its component colors and produces diffraction patterns. It is used for analyzing light and determining the wavelengths of the different colors that make up the light.

The equation used to find the wavelength of light diffracted by a grating is

`d*sin(theta) = n*lambda`.

Here, d is the distance between two successive slits on the grating, theta is the angle of diffraction, n is the order of the diffraction, and lambda is the wavelength of the light. To determine the wavelength of the light in this case, we will use the given data and the above equation. The first-order diffraction angle is 34° and the diffraction grating has 750 slits/mm. Therefore, the distance between two successive slits on the grating is d = 1/750 mm = 0.001333 mm. The order of diffraction is 1.Using the above equation, we have`0.001333*sin(34) = 1*lambda`

Simplifying, we get `lambda = 0.00072516 mm`

to know more about  diffraction visit:

https://brainly.com/question/12290582

#SPJ11

Find the rest energy, in terajoules, of a 17.1 g piece of chocolate. 1 TJ is equal to 1012 J .

rest energy:

TJ

Answers

The rest energy of a 17.1 g piece of chocolate is 485.3 terajoules.

According to the formula E = mc², the energy (E) of an object is equal to its mass (m) multiplied by the speed of light (c) squared. The rest energy (E₀) of an object is its energy at rest. The rest energy of a 17.1 g piece of chocolate can be found as follows:

$$E₀ = mc²$$

Where m = 17.1 g = 0.0171 kg and c = speed of light = 2.998 × 10⁸ m/s.

Plugging in these values, we get:

$$E₀ = (0.0171 kg) × (2.998 × 10⁸ m/s)² = 4.853 × 10¹⁴ J$$

To convert joules to terajoules, we divide by 10¹²:

$$E₀ = \frac{4.853 × 10¹⁴ J}{10¹² J/TJ} = 485.3 TJ

More on rest energy: https://brainly.com/question/31796191

#SPJ11

An electron situated at point P experiences an electrostatic force of 4.8 x 10-14 N acting on it. What is the electric field strength at P? 3.0 x 10^5 N/C 7.7 x 10^-33 N/C 3.3 x 10^-6 N/C 6.4 x 10^-14

Answers

Based on the information provided in the question, we cannot determine the electric field strength at point P.

The electric field strength at point P can be calculated using the formula:

Electric Field Strength = Force / Charge

In this case, the given force acting on the electron is 4.8 x 10^-14 N. However, the charge of the electron is not provided in the question. Without knowing the charge, we cannot accurately calculate the electric field strength.

The electric field strength is defined as the force experienced by a unit positive charge. Since the charge of the electron is negative, we would need to consider the magnitude of the charge to calculate the electric field strength correctly.

Therefore, based on the information provided in the question, we cannot determine the electric field strength at point P.

To know more about electric refer here:

https://brainly.com/question/31173598#

#SPJ11

the force per meter between the two wires of a jumper cable being utilized to start a stalled van is 0.215 n/m.

Answers

This force per meter refers to the force experienced between two parallel wires carrying electric current.

When electric current flows through the wires, a magnetic field is generated around each wire. These magnetic fields interact with each other, resulting in a force between the wires.In the context of a jumper cable being used to start a stalled van, the force per meter indicates the force exerted between the positive and negative terminals of the jumper cable. This force is responsible for delivering electrical energy from the functioning vehicle's battery to the stalled van's battery to start the engine.

To know more about energy visit :

https://brainly.com/question/1932868

#SPJ11

The fundamental frequency of a pipe that is open at both ends is 594 Hz .
How long is this pipe?
If one end is now closed, find the wavelength of the newfundamental.
If one end is now closed, find the frequency of the newfundamental.

Answers

When one end is closed, the new wavelength is 1.154 m and the new fundamental frequency is 297 Hz.

The fundamental frequency of a pipe that is open at both ends is 594 Hz. In order to calculate the length of this pipe, we will use the formula v = fλ where v is the speed of sound, f is the frequency and λ is the wavelength.

The speed of sound in air is approximately 343 m/s.

We will therefore have: 594 = (343/λ)λ = (343/594)m = 0.577m or 57.7cm.

If one end of the pipe is now closed, it will act as a closed-end resonator which means that the wavelength will now be twice the length of the pipe.

Therefore, the new wavelength will be 2(0.577) = 1.154 m or 115.4 cm.

Using the formula v = fλ and substituting the new wavelength and speed of sound, we have 343 = f(1.154) which gives us the new fundamental frequency f as:

f = 297 Hz.

Thus, the length of the pipe that is open at both ends is 57.7 cm. When one end is closed, the new wavelength is 1.154 m and the new fundamental frequency is 297 Hz.

Learn more about fundamental frequency here:

https://brainly.com/question/31314205

#SPJ11

A box with a mass of 25 kg rests on a horizontal surface. The coefficient of static friction between the box and the surface is 0.20. What horizontal force must be applied to the box for it to start s

Answers

To start the box sliding along the surface in the positive x direction, a horizontal force greater than 49 N in the positive x direction must be applied.

The maximum static friction force can be calculated using the equation:

f_static_max = μ_static * N

where μ_static is the coefficient of static friction and N is the normal force acting on the box. In this case, since the box is on a horizontal surface, the normal force is equal to the weight of the box:

N = m * g

Substituting the given values:

N = 25 kg * 9.8 m/s² = 245 N

Now, we can determine the maximum static friction force:

f_static_max = 0.20 * 245 N = 49 N

This is the maximum force that can be exerted before the box starts sliding. Therefore, to overcome the static friction and initiate sliding in the positive x direction, a horizontal force greater than 49 N in the positive x direction must be applied. The exact value of the force will depend on the magnitude of the static friction and the force applied.

To know more about static friction refer here:

https://brainly.com/question/30886698#

#SPJ11

Complete Question:

A box with a mass of 25 kg rests on a horizontal surface. The coefficient of static friction between the box and the surface is 0.20. What horizontal force must be applied to the box for it to start sliding along the surface in the positive x direction? Use g = 9.8 m/s². O A horizontal force greater than 49 N in the positive x direction. O A horizontal force equal to 49 N in the positive x direction. O A horizontal force less than 49 N in the positive x direction. O A horizontal force that is either equal to or greater than 49 N in the positive x direction. O None of the other answers

Show Attempt History Current Attempt in Progress A proton initially has = (18.0)i + (-490) + (-18.0) and then 5.20 s later has = (7.50)i + (-4.90)j + (13.0) (in meters per second). (a) For that 5.20 s, what is the proton's average acceleration av in unit vector notation, (b) in magnitude, and (c) the angle between ag and the positive direction of the xaxis? (a) Number Units (b) Number Units (c) Number Units eTextbook and Media,

Answers

(a) The proton's average acceleration av in unit vector notation is (-2.50)i + (197)j + (6.70)k m/s^2.

(b) The magnitude of the proton's average acceleration av is 198 m/s^2.

(c) The angle between the average acceleration av and the positive direction of the x-axis is approximately 95.4 degrees.

Explanation to the above given short answers are written below,

(a) To find the average acceleration av, we need to calculate the change in velocity and divide it by the time interval. The change in velocity is given by
Δv = v_f - v_i,
where v_f is the final velocity and
v_i is the initial velocity.

Subtracting the initial velocity from the final velocity, we get
Δv = (7.50 - 18.0)i + (-4.90 - (-490))j + (13.0 - (-18.0))k = (-10.5)i + (485.1)j + (31.0)k.

Dividing Δv by the time interval of 5.20 s, we get the average acceleration av = (-2.50)i + (197)j + (6.70)k m/s^2.

(b) The magnitude of the average acceleration av can be calculated using the formula
|av| = √(avx^2 + avy^2 + avz^2),
where avx, avy, and avz are the components of av in the x, y, and z directions, respectively.

Substituting the values, we get |av| = √((-2.50)^2 + (197)^2 + (6.70)^2) = 198 m/s^2.

(c) The angle between the average acceleration av and the positive direction of the x-axis can be determined using the formula
θ = arctan(avy / avx).

Substituting the values, we get θ = arctan(197 / (-2.50)) ≈ 95.4 degrees.

To know more about "Acceleration" refer here:

https://brainly.com/question/31479424#

#SPJ11v

i
need the answer to the upper control limit and lower control limit
for the r-chart. i know the x-chart answers are correct
Ross Hopkins is attempting to monitor a filling process that has an overall average of 725 mL. The average range R is 4 mL. For a sample size of 10, the control limits for 3-sigma x chart are: Upper C

Answers

The control limits for 3-sigma x chart are 718.5 mL and 731.5 mL.

An x-chart is a graph that shows a collection of data points on a line that corresponds to the sample mean. It's created by calculating the mean of the data and plotting it on a chart in the middle. The upper and lower control limits, or UCL and LCL, are also represented on the graph. The control limits show when a process is out of control or exceeding its predicted performance limits. The x-chart is used to monitor variables data, such as the sample mean, to detect changes in a process. The average range R is a measure of process variability. The average range R is a measure of process variability. It is calculated by taking the average of the ranges from several samples.

The X-bar chart is a type of Shewhart control chart used in industrial statistics to monitor the arithmetic means of successive samples of the same size, n. This control chart is used for characteristics like weight, temperature, thickness, and so on that can be measured on a continuous scale.

Know more about x chart, here:

https://brainly.com/question/20308970

#SPJ11

The average distance between Earth and the Sun is 1.5 x 1011m.
(a) Calculate the average speed of Earth in its orbit (assumed to be circular) in meters per second. m/s
(b) What is this speed in miles per hour? mph

Answers

The average speed of the earth in its orbit is 2.98 x 104 m/s or 6.67 x 104 mph.

The average distance between the earth and the sun is 1.5 x 1011m.

This can be done using the formula for the speed of an object in circular motion:Speed = distance/time

For the earth's orbit around the sun, we know that the distance covered is the circumference of the circle with radius equal to the average distance between the earth and the sun.

Circumference = 2πr, where r is the radius of the circle.

So the distance covered by the earth in one orbit is:Distance covered = 2πrwhere r = 1.5 x 1011mTherefore, distance covered = 2π(1.5 x 1011)m = 9.42 x 1011m

We also know that the time taken for one complete orbit is one year or 365 days, or 3.154 x 107 seconds.

Therefore:Time taken for one orbit = 3.154 x 107 seconds

Now we can use the formula for speed to find the average speed of the earth in its orbit:

Speed = distance/timeSpeed = (9.42 x 1011m)/(3.154 x 107s)Speed = 2.98 x 104m/s

Therefore, the average speed of the earth in its orbit is 2.98 x 104m/s.

Convert m/s to miles/hour

We can convert m/s to miles/hour by using the conversion factor: 1 mile = 1609.34m and 1 hour = 3600s

Therefore, 1 mile/hour = 1609.34/3600 m/s = 0.44704 m/s

So to convert the speed of the earth from m/s to miles/hour, we need to divide by 0.44704:

Speed in miles/hour = (2.98 x 104 m/s)/0.44704Speed in miles/hour = 6.67 x 104 mph

Therefore, the average speed of the earth in its orbit is 2.98 x 104 m/s or 6.67 x 104 mph.

Learn more about average speed

brainly.com/question/6280317

#SPJ11

A billiard ball of mass 0.28 kg hits a second, identical ball at a speed of 5.8 m/s and comes to rest as the second ball flies off. The collision takes 250 μs.
A.) What is the average force on the first ball?
B.) What is the average force on the second ball?

Answers

The average force on the first ball is 0 N. The average force on the second ball is 0 N.

To solve this problem, we can use the principles of conservation of momentum and energy. Let's start by calculating the velocity of the second ball after the collision using the conservation of momentum:

Initial momentum = Final momentum
(mass_1 * velocity_1) + (mass_2 * velocity_2) = 0
(0.28 kg * 5.8 m/s) + (0.28 kg * velocity_2) = 0
velocity_2 = -(0.28 kg * 5.8 m/s) / 0.28 kg
velocity_2 = -5.8 m/s. The negative sign indicates that the second ball is moving in the opposite direction to the first ball. Now, we can calculate the change in kinetic energy of the first ball using the conservation of energy: Initial kinetic energy - Final kinetic energy = Work done by the force
(0.5 * mass_1 * velocity_1^2) - 0 = Average force * distance.
0.5 * 0.28 kg * (5.8 m/s)^2 = Average force * 0.
Average force on the first ball = 0 N
Since the first ball comes to rest, there is no change in kinetic energy, and therefore, no average force is exerted on it.
Next, we can calculate the change in kinetic energy of the second ball:
Initial kinetic energy - Final kinetic energy = Work done by the force
(0.5 * mass_2 * velocity_2^2) - 0 = Average force * distance

0.5 * 0.28 kg * (-5.8 m/s)^2 = Average force * 0
Average force on the second ball = 0 N.
Similarly, since the second ball flies off, there is no change in kinetic energy, and therefore, no average force is exerted on it. In conclusion:

A) The average force on the first ball is 0 N.

B) The average force on the second ball is 0 N.

To learn more about force:

https://brainly.com/question/30507236

#SPJ11

Which of the following is NOT an NGO? a) CARE b) Red Cross c) UNICEF d) World Vision e) Oxfam

Answers

Option c) UNICEF is not an NGO, while options a) CARE, b) Red Cross, d) World Vision, and e) Oxfam are all NGOs.

Which of the following is NOT an NGO?

The paragraph presents a question regarding non-governmental organizations (NGOs) and requires the identification of the option that is not an NGO.

NGOs are typically independent organizations that operate on a non-profit basis to address social, humanitarian, and environmental issues. They often work alongside governments and other entities to provide assistance and advocate for various causes.

Among the options provided, the United Nations International Children's Emergency Fund (UNICEF) is not considered an NGO.

UNICEF is a specialized agency of the United Nations (UN) and operates as a program within the UN system. It focuses specifically on child rights and well-being worldwide, collaborating with governments and other partners to fulfill its mandate.

On the other hand, CARE, Red Cross, World Vision, and Oxfam are all recognized NGOs that work on a range of issues such as poverty alleviation, disaster response, healthcare, and advocacy.

Therefore, option c) UNICEF is not an NGO, while options a) CARE, b) Red Cross, d) World Vision, and e) Oxfam are all NGOs.

Learn more about NGO

brainly.com/question/30092509

#SPJ11

A(n) asymmetric encryption algorithm requires the use of a secret key known to both the sender and receiver.
True/False

Answers

Statement : A(n) asymmetric encryption algorithm requires the use of a secret key known to both the sender and receiver, is False.

In asymmetric encryption, also known as public-key encryption, there are two different keys: a public key and a private key. The public key is available to anyone and is used for encryption, while the private key is kept secret and is used for decryption. The sender uses the recipient's public key to encrypt the message, and the recipient uses their private key to decrypt it.
Asymmetric encryption does not require the use of a shared secret key between the sender and receiver. It relies on the use of different key pairs, where the public key can be freely shared while the private key remains confidential. This property makes asymmetric encryption more secure and suitable for various applications such as secure communication and digital signatures.

To know more about , asymmetric encryption algorithm, click here https://brainly.com/question/29217765

#SPJ11

A voltaic cell consists of an Mn/Mn2+ half-cell and a Caicd2+ half-cell. The standard reduction potential for Mn2+ is -1.18V and for Cd2+ is -0.40 V. Calculate Ecell at 25 °C when the concentration of [Cd2+] = 8.84 x 10-0 M and [Mn2+1=9.57 x 10-5 M. (value + 0.02) Selected Answer: [None Given] Correct Answer: 0.93 +0.02

Answers

The value of E-cell at 25 °C when the concentration of [Cd2+] = 8.84 × 10⁻⁰ M and [Mn2+1=9.57 × 10⁻⁵ M is 0.93 + 0.02 V.

The chemical equation for the reaction of a voltaic cell made up of a Mn/Mn2+ half-cell and a Cd/Cd2+ half-cell is;2Mn2+ (aq) + Cd(s) → Cd2+ (aq) + 2Mn3+ (aq) (Overall cell reaction) E°cell = E°right - E°left= (-0.40) - (-1.18) = 0.78 V (The positive value indicates that the reaction is spontaneous)From the Nernst equation, Ecell = E°cell -  (RT/nF) * ln Q

where; R = gas constant = 8.31 J/mol. KT = temperature in kelvin = 25 + 273 = 298Kn = number of moles of electrons transferred = 2F = Faraday's constant = 96500 C/mol, Q = reaction quotient = [Cd2+]/[Mn2+}²= (8.84 × 10⁻⁰) / (9.57 × 10⁻⁵)²= 97.3Ecell = 0.78 - [(8.31 × 298) / (2 × 96500)] * ln 97.3Ecell = 0.93 + 0.02 V (rounded off to 2 decimal places).

To know more about voltaic cell, visit:

https://brainly.com/question/29186551

#SPJ11

In your own words, fully describe the primary differences in stellar evolution of a high-mass star and a star like the Sun. Be sure to fully describe the steps in complete thoughts. Listing out the steps for each type of star is a good way to answer this question. Be sure you are not doing a copy/paste from the lecture material. I want to know if you can describe the stages. Bullet pointing the steps might be useful and easy to organize thoughts.

Answers

High-mass stars, like the Sun, undergo stellar evolution in a different manner compared to lower-mass stars. Here are the primary differences in the stages of stellar evolution between a high-mass star and a star like the Sun:

Sun-like Star:

Nebula: A cloud of gas and dust collapses under its gravity, forming a protostar.

Main Sequence: The protostar reaches equilibrium, and nuclear fusion begins in its core, converting hydrogen into helium. This phase lasts for about 10 billion years.

Red Giant: As hydrogen fuel depletes, the star expands and becomes a red giant, burning helium in its core while outer layers expand.

Planetary Nebula: The red giant sheds its outer layers, creating an expanding shell of gas and exposing the core.

White Dwarf: The remaining core, composed of a dense, hot, degenerate gas, becomes a white dwarf, gradually cooling over billions of years.

High-Mass Star:

Nebula: Similar to the Sun-like star, a nebula collapses to form a protostar.

Main Sequence: The protostar becomes a high-mass main sequence star, undergoing nuclear fusion at a higher rate due to its higher mass.

Red Supergiant: The high-mass star exhausts its hydrogen quickly and expands to become a red supergiant, fusing heavier elements in its core.

Supernova: Once fusion ceases, the core collapses, resulting in a catastrophic explosion called a supernova, releasing an enormous amount of energy and creating heavy elements.

Neutron Star or Black Hole: The core of the high-mass star collapses further, forming either a neutron star or a black hole, depending on its mass.

In summary, the primary differences in stellar evolution between a high-mass star and a star like the Sun lie in their mass-dependent stages. High-mass stars burn through their fuel more rapidly, leading to shorter lifetimes and more energetic events such as supernovae. The remnants of high-mass stars can form neutron stars or black holes, while lower-mass stars like the Sun end their lives as white dwarfs. These differences highlight the profound influence of stellar mass on the evolutionary path of stars.

To know more about mass ,visit:

https://brainly.com/question/86444

#SPJ11

After the adiabatic expansion described in the previous part, the system undergoes a compression that brings it back to its original state. Which of the following statements is/are true? Check all that apply.
The total change in internal energy of the system after the entire process of expansion and compression must be zero.
The total change in internal energy of the system after the entire process of expansion and compression must be negative.
The total change in temperature of the system after the entire process of expansion and compression must be positive.
The total work done by the system must equal the amount of heat exchanged during the entire process of expansion and compression.

Answers

The total change in internal energy of the system after the entire process of expansion and compression must be zero. This statement is true according to the first law of thermodynamics, which states that energy cannot be created or destroyed but only converted from one form to another. Therefore, the total change in internal energy of the system must be zero if the system returns to its original state. The internal energy of a system is the sum of the kinetic and potential energy of its particles. The internal energy of a system can be changed by either adding or removing heat from the system or by doing work on or by the system. The total change in internal energy is the sum of the heat added to the system and the work done on the system. Since the system returns to its original state after compression, the total change in internal energy must be zero.

The total change in internal energy of the system after the entire process of expansion and compression must be negative. This statement is false because the total change in internal energy must be zero, not negative. As stated earlier, the internal energy of a system is the sum of the kinetic and potential energy of its particles, and the total change in internal energy is the sum of the heat added to the system and the work done on the system. If the system returns to its original state, the total change in internal energy must be zero.

The total change in temperature of the system after the entire process of expansion and compression must be positive. This statement is false because the temperature change of the system depends on the heat added to or removed from the system. If the heat added to the system during compression is equal to the heat removed from the system during expansion, the temperature of the system will remain the same. Therefore, the total change in temperature of the system after the entire process of expansion and compression must be zero.

The total work done by the system must equal the amount of heat exchanged during the entire process of expansion and compression. This statement is false because the total work done by the system is not necessarily equal to the amount of heat exchanged during the entire process of expansion and compression. The work done by the system during compression is negative because the system is doing work on the surroundings. The work done by the surroundings on the system during expansion is positive. Therefore, the total work done by the system is the difference between the work done during compression and the work done during expansion. The amount of heat exchanged during the entire process is equal to the sum of the heat added to the system during compression and the heat removed from the system during expansion. Thus, the total work done by the system is not necessarily equal to the amount of heat exchanged during the entire process of expansion and compression.

To know more about work done visit:

https://brainly.com/question/32263955

#SPJ11

determine the amplitude a and the phase angle γ (in radians), and express the displacement in the form x(t)=acos(ωt−γ), with x in meters.

Answers

The displacement function is x(t) = 0.4 cos(3πt - 0.93) m, expressed in the given form. Determination of amplitude: In the given form of the displacement function x(t), the amplitude 'a' is given by the coefficient of the cosine function. Therefore, a = 0.4 m.

Determination of phase angle: The phase angle 'γ' can be determined by comparing the given function with the standard cosine function in the form of [tex]x(t) = a cos(ωt + γ).[/tex]

Here, we need to note that in the given function, the argument of the cosine function is (ωt - γ).

Therefore, [tex]γ = (ωt - arc cos (x/a))[/tex]

We know that [tex]cos(γ) = x/a[/tex]

∴ arc cos(x/a)

= γ= arc cos(0.4/0.6)

= 0.93 rad (approx)

Hence, the phase angle is γ = 0.93 rad.

Expressing displacement in the given form: Given that the displacement function is

x(t) = 0.4 cos(3πt - 0.93)

The angular frequency is ω = 3π rad/s and the phase angle is γ = 0.93 rad. Thus, the displacement function is x(t) = 0.4 cos(3πt - 0.93) m, expressed in the given form.

To learn more about displacement visit;

https://brainly.com/question/11934397

#SPJ11

Two external forces are applied to a particle: F1→=11 N i^+-5 N
j^ and F2→=18 N i^+-2.5 N j^.
A) Find the force F3→ that will keep the particle in
equilibrium.
Enter the x and y components separ

Answers

The force F3→ that will keep the particle in equilibrium is: F3→ = -29 N i^ + 7.5 N j^.

By summing the forces in the x and y directions and taking the negative of their sum, we can determine the force F3→ that will balance the applied forces and keep the particle in equilibrium.

To keep the particle in equilibrium, the net force acting on it must be zero. This means that the sum of the forces in the x-direction and the sum of the forces in the y-direction must both be zero.

F1→ = 11 N i^ - 5 N j^

F2→ = 18 N i^ - 2.5 N j^

To find the force F3→ that will keep the particle in equilibrium, we need to find the negative of the vector sum of F1→ and F2→.

Summing the forces in the x-direction:

F1x = 11 N

F2x = 18 N

F3x = -(F1x + F2x) = -(11 N + 18 N) = -29 N

Summing the forces in the y-direction:

F1y = -5 N

F2y = -2.5 N

F3y = -(F1y + F2y) = -(-5 N + (-2.5 N)) = 7.5 N

To know more about "Force" refer here:

https://brainly.com/question/30751496#

#SPJ11

Footprints on the Moon (Adapted from Bennett, Donahue, Schneider, and Voit)
It has been estimated that about 25 million micrometeorites impact the surface of the Moon daily. (This estimate comes from observing the number of micrometeorites that impact the Earth’s atmosphere daily.) Assuming that these impacts are distributed randomly across the surface of the Moon, estimate the length of time which a footprint left on the Moon by the Apollo astronauts will remain intact, given that it takes approximately 20 micrometeorite impacts to destroy a footprint. (Hint: this is an order of magnitude type calculation, and requires you to make some estimates. Be sure to clearly explain what you are doing at each step of your calculation, and determine if the resulting answer is reasonable!)
Escape Velocity
a) Gravitational Potential energy V = -GMm/r, Kinetic Energy K = 1/2 mv2 Derive the escape velocity for a planet of mass M and radius R. Calculate this value for the surfaces of Earth and Jupiter.
b) Temperature is the average kinetic energy of a group of particles. For an idea gas, K = 3/2 kBT, where K is the kinetic energy, kB is Boltzmann’s constant, and T is temperature. Derive the average velocity of a gas molecule as a function of its mass and Temperature. Calculate this value for a molecule of Oxygen (O2) and Hydrogen (H2).
c) Why does the Earth’s atmosphere have so little Hydrogen, while Jupiter’s atmosphere is full of it?

Answers

25 million micrometeorites hit the surface of the moon daily. The Apollo astronauts' footprint will stay on the surface of the moon if it takes around 20 micrometeorites to damage it.

So, to calculate the duration, we'll need to find the number of footprints that have been damaged. We don't know how many footprints there are, so let's estimate that. Assume the average person walks at a rate of 1 step per second. Assume that each step is one foot in length. Assume the average person walks for 2 hours. Then, each person walks for 7200 seconds. The number of footprints per individual is 7200 x 1 = 7200. If we presume 12 people in total, the total number of footprints is 7200 x 12 = 86400.

Therefore, assuming that the footprints are uniformly distributed on the surface of the moon and that 25 million micrometeorites hit the moon's surface daily, the footprints are destroyed at a rate of 25,000,000/20 = 1,250,000 footprints per day.

The duration for the Apollo astronaut's footprints on the moon to remain intact:86400/1,250,000 = 0.06912 days, or roughly 1 hour and 40 minutes.

To calculate how long an Apollo astronaut's footprint would stay on the surface of the Moon, given that it takes around 20 micrometeorites to destroy a footprint, and given that 25 million micrometeorites hit the Moon's surface every day, we'll need to do some calculations. We'll begin by assuming that the footprints were uniformly distributed on the surface of the moon. We'll also assume that each person took 1 step per second, that each step is one foot in length, and that the average person walked for 2 hours. That means each person walked for 7200 seconds, or took 7200 steps. If we assume that there were 12 people on the Apollo mission, then the total number of footprints left by the astronauts would be 12 x 7200 = 86400.

Now, we need to figure out how quickly these footprints are being destroyed. Given that it takes around 20 micrometeorites to destroy a footprint, and given that 25 million micrometeorites hit the Moon's surface every day, we can calculate that the footprints are being destroyed at a rate of 25,000,000/20 = 1,250,000 footprints per day.

So, to find out how long it would take for the footprints to be destroyed, we divide the total number of footprints by the rate at which they are being destroyed:86400/1,250,000 = 0.06912 days, or roughly 1 hour and 40 minutes. Therefore, the length of time for the footprint to remain intact is approximately 1 hour and 40 minutes.

Learn more about micrometeorites: https://brainly.com/question/10979949

#SPJ11

1. (a) In reaching equilibrium, how much heat transfer occurs from 1.1 kg of water at 40°C when it is placed in contact with 1.1 kg of 20°C water? Specific heat of water c=4186 J/(kg°C) Hint: If th

Answers

The heat transfer that occurs from 1.1 kg of water at 40°C to 1.1 kg of water at 20°C is 92,270 J.

To calculate the heat transfer that occurs when two substances reach thermal equilibrium, we can use the equation Q = mcΔT, where Q is the heat transfer, m is the mass, c is the specific heat, and ΔT is the change in temperature.

In this case, we have two equal masses of water, each weighing 1.1 kg. The specific heat of water, c, is given as 4186 J/(kg°C).

First, we need to calculate the change in temperature, ΔT, which is the difference between the final equilibrium temperature and the initial temperature. Since the masses are equal, the equilibrium temperature will be the average of the initial temperatures, which is (40°C + 20°C) / 2 = 30°C.

Next, we can calculate the heat transfer for each mass of water using the equation Q = mcΔT. For the water at 40°C, the heat transfer is Q₁ = (1.1 kg) * (4186 J/(kg°C)) * (30°C - 40°C) = -45,530 J (negative because heat is transferred out of the water). Similarly, for the water at 20°C, the heat transfer is Q₂ = (1.1 kg) * (4186 J/(kg°C)) * (30°C - 20°C) = 137,800 J.

The total heat transfer is the sum of the individual heat transfers: Q_total = Q₁ + Q₂ = -45,530 J + 137,800 J = 92,270 J.

Therefore, the heat transfer that occurs from 1.1 kg of water at 40°C to 1.1 kg of water at 20°C is 92,270 J.

To know more about thermal equilibrium refer here:

https://brainly.com/question/29419074#

#SPJ11

Complete Question:

(a) In reaching equilibrium, how much heat transfer occurs from 1.1 kg of water at 40€ when it is placed in contact with 1.1 kg of 20€ water? Specific heat of water c=4186 J/(kg) Hint: If the masses of water are equal, what is the equilirium temperature of the water mixture?

if a frictional force of 100 n is applied to each side of the tires, determine the average shear strain in the rubber.

Answers

Without specific information about the dimensions and material properties of the rubber, it is not possible to accurately calculate the average shear strain.

What is the average shear strain in the rubber if a frictional force of 100 N is applied to each side of the tires?

The given paragraph states that a frictional force of 100 N is applied to each side of the tires, and we need to determine the average shear strain in the rubber.

Shear strain is a measure of deformation or distortion that occurs when a force is applied parallel to a surface. It represents the change in shape of the material due to the applied force.

To calculate the average shear strain, we need to know the dimensions of the rubber and the material's properties. The shear strain can be determined using the formula: shear strain = (shear displacement) / (original length).

In this case, without specific information about the dimensions and material properties of the rubber, it is not possible to provide an accurate calculation or explanation of the average shear strain.

The shear strain depends on factors such as the thickness of the rubber, the nature of the material, and the specific force distribution.

To accurately determine the average shear strain in the rubber, more information about the dimensions and properties of the rubber would be required.

Learn more about shear strain

brainly.com/question/32006951

#SPJ11

The plates have (20%) Problem 3: Two metal plates form a capacitor. Both plates have the dimensions L a distance between them of d 0.1 m, and are parallel to each other. 0.19 m and W 33% Part a) The plates are connected to a battery and charged such that the first plate has a charge of q Write an expression or the magnitude edof the electric field. E, halfway between the plates. ted ted ted 33% Part (b) Input an expression for the magnitude of the electric field E-q21 WEo X Attempts Remain E2 Just in front of plate two 33% Part (c) If plate two has a total charge of q-l mic, what is its charge density, ơ. n Cim2? Grade Summary ơ-1-0.023 Potential 96% cos) cotan)asin acos(O atan acotan sinh cosh)tan cotanh) . Degrees Radians sint) tan) ( 78 9 HOME Submissions Attempts remaining: (u per attemp) detailed view HACKSPACE CLEAR Submitint give up! deduction per hint.

Answers

a) The expression and magnitude of the plates halfway between the plates is -0.594 × 10⁶ V/m. b) The expression and magnitude of the plates, just in front of the plate, is E = q/(L×W)∈₀. c) the charge density is

-0.052×10⁻⁶ C/m².

Given information,

Distance between the plates, d = 0.1 m

Area, L×W = 0.19 m

Q = -1μC

a) The expression for the electric field,

E = q/(L×W)∈₀

E = -1×10⁻⁶/(0.19)8.85× 10⁻¹²

E = -0.594 × 10⁶ V/m

Hence, the electric field is -0.594 × 10⁶ V/m.

b)  The expression for the magnitude of the electric field, in front of the plates,

E = q/(L×W)∈₀

Hence, the expression for the magnitude of the electric field, in front of the plates is E = q/(L×W)∈₀.

c)  The charge density σ,

σ = Q/A

σ =   -1×10⁻⁶/0.19

σ = -0.052×10⁻⁶ C/m²

Hence, the charge density is -0.052×10⁻⁶ C/m².

To learn more about charge density, here:

https://brainly.com/question/15126907

#SPJ4

"
Which of the following statements are TRUE about a body moving in
circular motion?

A. For a body moving in a circular motion at constant speed,
the direction of the velocity vector is the same as the
10 1 point A Which of the following statements are TRUE about a body moving in circular motion? A. For a body moving in a circular motion at constant speed, the direction of the velocity vector is the same as the direction of
the acceleration
B. At constant speed and radius, increasing the mass of an object moving in a circular path will increase the net force.
C. If an object moves in a circle at a constant speed, its velocity vector will be constant in magnitude but changing in direction

a.) A and B
b.) A, B and C
c.) A and C
d.) B and C

Answers

Option c) A and C statements are TRUE about a body moving in circular motion.

a) For a body moving in circular motion at a constant speed, the direction of the velocity vector is the same as the direction of the acceleration. This is true because in circular motion, the velocity vector is always tangential to the circular path, and the acceleration vector is directed towards the center of the circle, perpendicular to the velocity vector.

b) Increasing the mass of an object moving in a circular path will not directly affect the net force. The net force is determined by the centripetal force required to keep the object in circular motion, which is determined by the object's mass, speed, and radius of the circular path. Increasing the mass alone does not change the net force.

c) If an object moves in a circle at a constant speed, its velocity vector will be constant in magnitude but changing in direction. This is because the object is constantly changing its direction while maintaining the same speed. Velocity is a vector quantity that includes both magnitude (speed) and direction, so if the direction is changing, the velocity vector is also changing.

Therefore, the correct statements are A and C.

learn more about Circular motion here:

https://brainly.com/question/2285236

#SPJ11

what is the average acceleration?
Position (m) Velocity (m/s) 1.0 0.80- 0.60 0.40 0.20 0.0 1.0 0.80 0.60 0.40 0.20 0.0 0.0 0.0 1.0 1.0 2.0 2.0 3.0 3.0 4.0 Time (s) 4.0 Time (s) 5.0 5.0 6.0 6.0 7.0 7.0 " " 8.0 11 11 0 0 0 0 0 " " " " 1

Answers

Average acceleration is defined as the ratio of change in velocity to the time interval in which this change occurs.The average acceleration for each interval is:Interval 1: 0.8 m/s²Interval 2: -0.2 m/s²Interval 3: -0.2 m/s²Interval 4: -0.2 m/s²Interval 5: -0.2 m/s²Interval 6: 0.0 m/s²Interval 7: 0.0 m/s²Interval 8: 11.0 m/s²

In simple terms, it is the rate at which an object changes its velocity with time. It is measured in meters per second squared (m/s²).To find the average acceleration, one can use the formula:A = Δv/Δt

Where:A = average accelerationΔv = change in velocityΔt = change in timeFrom the given data, the change in velocity can be found by subtracting the initial velocity from the final velocity.

For example, for the first interval,Δv = (0.8 m/s) - (0.0 m/s) = 0.8 m/sSimilarly, the change in time can be found by subtracting the initial time from the final time.

For example, for the first interval,Δt = 1.0 s - 0.0 s = 1.0 sUsing the formula for average acceleration,A = Δv/Δtwe get the following values for each time interval:Interval 1: A = (0.8 m/s - 0.0 m/s) / (1.0 s - 0.0 s) = 0.8 m/s²

Interval 2: A = (0.6 m/s - 0.8 m/s) / (2.0 s - 1.0 s) = -0.2 m/s²Interval 3: A = (0.4 m/s - 0.6 m/s) / (3.0 s - 2.0 s) = -0.2 m/s²Interval 4: A = (0.2 m/s - 0.4 m/s) / (4.0 s - 3.0 s) = -0.2 m/s²

Interval 5: A = (0.0 m/s - 0.2 m/s) / (5.0 s - 4.0 s) = -0.2 m/s²Interval 6: A = (0.0 m/s - 0.0 m/s) / (6.0 s - 5.0 s) = 0.0 m/s²Interval 7: A = (0.0 m/s - 0.0 m/s) / (7.0 s - 6.0 s) = 0.0 m/s²Interval 8: A = (11.0 m/s - 0.0 m/s) / (8.0 s - 7.0 s) = 11.0 m/s².

To know more about acceleration refer here:

https://brainly.com/question/30660316#

#SPJ11

wo asteroids are flying through space towards one another.Comet A has a mass of 147kg and is moving at 80m/s [R]. Comet B is moving at 29m/s [L] and has a mass of 147kg. a. Calculate the total kinetic energy and momentum of the system just before the two asteroids collide.4 Marks,C:1 b. The two asteroids collide head-on in a perfectly elastic collision.Show the steps that you would follow in order to calculate/determine the velocity of each(3 Marks,C:1

Answers

(a) The total kinetic energy and momentum of the system before collision is 532,213.5 J and 16,023 kgm/s respectively.

(b) The final velocity of Comet A after the collision is 0 m/s and the final velocity of Comet B is 51 m/s.

What is the total momentum and kinetic energy of the asteroids?

(a) The total kinetic energy and momentum of the system just before the two asteroids collide is calculated by applying the following formula.

Momentum of the system;

P = (147 kg x 80 m/s) + ( 147 kg x 29 m/s)

P = 16,023 kgm/s

Kinetic energy of the system;

K.E = ¹/₂ x 147 x 80²   +  ¹/₂ x 147 x 29²

K.E = 532,213.5 J

(b) The velocity of the each asteroid after the perfectly elastic collision is calculated by applying the principle of conservation of linear momentum as follows;

m₁u₁ + m₂u₂ = m₁v₁  +  m₂v₂

where;

m₁ is the mass of Comet Am₂ is the mass of Comet Bu₁ is the initial velocity of Comet Au₂ is the initial velocity of Comet Bv₁ is the final velocity of Comet Av₂ is the final velocity of Comet B

147 x 80  -   147 x 29 =  147v₁  +  147v₂

7497 = 147(v₁  +  v₂)

v₁  +  v₂ = 7497 / 147

v₁  +  v₂ = 51 --------  (1)

Since the collision of the system occurred in one direction, our second equation is;

u₁ + v₁ = u₂ + v₂

80 + v₁ = 29 + v₂

v₁ = v₂ - 51 --------- (2)

Substitute (2) into (1);

v₁  +  v₂ = 51

v₂ - 51  + v₂ = 51

2v₂ = 51 + 51

2v₂ = 102

v₂ = 102/2

v₂ = 51 m/s

The value of v₁ becomes;

v₁ = v₂ - 51

v₁ = 51 - 51

v₁ = 0 m/s

Thus, the final velocity of Comet A is 0 m/s and the final velocity of Comet B is 51 m/s.

Learn more about conservation of linear momentum here: https://brainly.com/question/7538238

#SPJ4

Given the formula C1V1=C2V2, where C indicates concentration and V indicates volume, which equation represents the correct way to find the concentration of the dilute solution (C2)?
View Available Hint(s)
Given the formula , where indicates concentration and indicates volume, which equation represents the correct way to find the concentration of the dilute solution ()?
C2=V2C1V1C2=V1V2C1C2=C1V1V2C2=C1V1V2

Answers

Hence the correct equation that represents the way to find the concentration of the dilute solution (C2) can be given as C2 = (C1V1)/V2.

The formula for dilution of a solution is given as:C1V1=C2V2, where C indicates concentration and V indicates volume. If the initial concentration and volume and final volume are known, the final concentration can be calculated by solving for C2.

Explanation:Let's take an example to explain it better.

Suppose, we need to prepare a 500 ml of 0.5 M NaCl solution from 1.0 M NaCl solution.

Given, Initial concentration, C1= 1.0 M ,Initial volume, V1= 1000 ml

Final volume, V2= 500 ml, Final concentration, C2= ?

To find C2 using the dilution equation,

C1V1=C2V2(1.0 M) (1000 ml) = C2 (500 ml)C2= (1.0 M x 1000 ml) / 500 ml= 2.0 M

Observations: The final concentration of the NaCl solution prepared by dilution is 0.5 M. The dilution formula can be used to find the final concentration of a dilute solution if the initial concentration and volume and final volume are known.

to know more about dilution visit:

https://brainly.com/question/28548168

#SPJ11

Other Questions
In 2016, Maddi Ltd had 8,200 units of sales. All of the manufacturing costs were variable and totalled $70,000 during the year. As well as producing the units, Maddi Ltd also had a shop in which it sold their units. The costs associated with the shop were $94,000 of variable and $86,400 of fixed. Total sales were $262,400. The break even in revenue (expressed in dollars) in 2016 was: a. $117,856 O d. $7,200 e. Unable to be calculated with the provided information. Ob. $3,683 c. $230,400 The ratio of cash to monthly cash expenses is computed as _____.cash as of year-end divided by monthly cash expensesbeginning cash balance divided by ending cash balancecash and cash equivalents divided by cash as of year-endNone of these choices are correct.financial data for a company is provided below: cash, end of year, $500,000 estimation of yearly cash expenses from negative cash flows from operations on statement of cash flows, $(155,000) cash, beginning of year, $400,000 accounts receivable, $10,000 inventory, $20,000 net income for the year how many months will the company be able to continue without positive cash flows or additional financing (round to nearest whole month)? 12 months 25 months 39 months 16 months According to the N+1 rule, a hydrogen atom that appears as a quartet would have how many neighbor H's? 3 4 5 8 Arrange the following light sources, used for spectroscopy, in order of increasing energy (lowest energy to highest energy) Suppose there are only two periods, period 0 and period 1, and three possible states of the world in period 1: a good weather state, a fair weather state, and a bad weather state. Apples are the only product produced in this world, and they cannot be stored from one period to the next. The following abbreviations will be used: PA = apple in the present period (i.e., present apple), GA = good weather apple in the next period, FA = fair weather apple in the next period, BA = bad weather apple in the next period. Suppose that an apple tree firm offers for sale a bond and stock: The apple tree produces 160 GA, 100 FA, and 50 BA. The bond pays 40 GA, 40 FA and 40 BA. The stock pays 120 GA, 60 FA and 10 BA. In addition, securities C, D, and E are available Security C pays 140 GA, 80 FA, and 30 BA. Security D pays 60 GA, 30 FA, and 5 BA. Security E pays 80 GA, 20 FA, and 0 BA. The arbitrage-free price of the bond is 32 PA, and the arbitrage-free price of the stock is 44 PA. Securities C, D, and E are also priced fairly at 60 PA, 22 PA, and 20 PA, respectively. There are no arbitrage opportunities in this market. Note: if you compute the determinant using computer, you may have not an exact result due to numerical accuracy. For instance, if the true answer is 0, you may get a very small number instead but not exactly 0. Round your answers to 4 decimal digits. a) Are the stock, bond, and security C payoffs linearly independent? b) Find the price of the fair weather atomic security. c) Is the market complete? d) Calculate the arbitrage-free price of the apple tree? A pair of dice is rolled. The 36 different possible pair of dice results are illustrated, on the 2-dimensional grid alongside.Use the grid to determine the probability of getting: a two 3sb a 5 and a 6c a 5 or a 6d at least one 6e exactly one 6f no sixes9 a sum of 7h a sum of 7 or 11 I a sum greater than 8j a sum of no more than 8. Consider a metal pipe that carries water to a house.Which answer best explains why a pipe like this may burst in very cold weather? O The metal contracts to a greater extent than the water. O The interior of the pipe contracts less than the outside of the pipe O Both the metal and the water expand,but the water expands to a greater extent. O Water expands upon freezing while the metal contracts at lower temperatures. O Water contracts upon freezing while the metal expands at lower temperatures Consider the following scenario: Eden Dairy, a major Australian dairy company manufactures and sells standardised breakfast yoghurts to countries all over the world. To appeal to local needs, minor changes in attributes such as sweetness and flavour are made. The main products and labels, on the other hand, are standardised. Eden Dairy first entered the Chinese market a few years ago and has been very happy with the results. In China, the company's revenues are still increasing at a rate of about 50% per year. Eden Dairy began operations in India by manufacturing and selling its goods, based on its marketing success in China and other Asian countries and market reforms that were taking place in India.The initial response to the product was extremely positive in India, and the company was considering rapidly increasing its production capacity within a year. After a year, however, sales slowed and began to decline. The product was aimed at the upper-middle class in India, especially families with two working spouses.According to extensive customer research, the target market experimented with flavoured breakfast yoghurt as an alternative meal (i.e. breakfast) for a short time before returning to the conventional Indian breakfast. Non-Indian snack items and the restaurant market, according to the CEOs of some other food companies in India, are the areas in which MNCs can hope for success. Attempting to replace a complete meal with a non-Indian food has a lower chance of success.You're a senior executive in Eden Dairy's foreign division, with experience in product management in a variety of countries. The CEO intends to despatch you on a fact-finding mission to India to address these unique questions.QuestionIn your response, what would your answers be to the following questions below:A) Was it a mistake to enter the Indian market with a standardised product? (3 marks)B) If so, was it an issue with the product or with the way it was presented? (3 marks)C) Given the benefits of exploiting global brand equity and product awareness, as well as the drawbacks of varying local preferences, what would be your strategy be for entering new markets? A cross-functional team is a workgroup made up of employees from different functional areas within an organization who collaborate to reach a stated objective. Indicate who should be on this important cross-functional team and explain why. Describe the goals the team should strive to achieve. CASE - University Cafeterias You are a group of managers in charge of food services for a large university in Sydney. Recently, a survey of students, faculty, and staff was conducted to evaluate customer satisfaction with the food services provided by the university's eight cafeterias. The results were disappointing. Complaints ranged from dissatisfaction with the type and range of meals and snacks provided, operating hours, and food temperature to frustration about unresponsiveness to current concerns about healthful diets and the needs of vegetarians. You have decided to form a cross- functional team that will further evaluate reactions to the food services and will develop a proposal for changes to be made to increase customer satisfaction a biotic or abiotic component that limits the size of a population of an organism is known as __________. The correlation coefficient of a set of points is r = 0.8. The standard deviation of the x-coordinates of the points is 2.1, and the standard deviation of the y-coordinates of the points is 1.2. Find the slope of the least-squares line Discuss how the need for control over foreign operations varies with the strategy and distinctive competencies of a company. Please provide examples. Function graphingSketch a graph of the function f(x) = - 5 sin 6 5 4 3 2 -&t -7n -65-4n -3n-2n - j -2 -3 -4 -5 -6 + - (a) 27 3 4 5 \ / 67 8 Suppose you have $3,000 In your bank account today. You plan todeposit st. 500 in year 1. $500 in year 2, and $1,200 inYear 4 , If the bank pays you, annual interest, how much money youare going t I need these high school statistics questions to besolved33. In 2009, DuPont Automotive reported that 18% of cars in North America were white in color. We are interested in the proportion of white cars in a random sample of 400 cars. Find the z-score that r Complete the table. Answer should be T or F.P QT F P V Q P ^ Q P -> Q -P -Q -P V -Q -P -> Q -P -> -Q P QF T P V Q P ^ Q P -> Q -P -Q -P V -Q -P -> Q -P -> -Q P Q an external event, rather than the independent variable, changes scores of the dependent variable. press space to open participants show spontaneous change. press space to open the thought of treatment, rather than the treatment itself, causes participants to report changes. press space to open participants leave a study in a systematic way. press space to open groups vary systematically on traits other than the levels of the independent variable. Choose the correct answer (Geology)5. Isoclinal fold has: O a. The two limbs dip in the same direction. Ob. The two limbs dip at equal angle in the same direction. O c. The two limbs dip at equal angle in different direction. the enrgy profiles for four different reactions are shown below the scales are the same for each. which reaction is the most exothermic A product whose EOQ is 40 experiences a decrease in holding cost from $16 per unit annually to $1. The revised EOQ is Osixteen times as large O four times as large O one-fourth as large O one-sixteen as large O can not be determined Explain the working of AHP by considering at least onequalitative and one quantitative criteria while considering areal-life scenario. Assume hypothetical values for Eigen valuecomputations.