Answer:
3 years
Step-by-step explanation:
4 inches per year on average
1 foot = 12 inches
12 divided by 4 equals 3
therefore it is 3 years
If he is correct, what is the probability that the mean of a sample of 68 computers would differ from the population mean by less than 2.08 months
Complete Question
The quality control manager at a computer manufacturing company believes that the mean life of a computer is 91 months with a standard deviation of 10 months if he is correct. what is the probability that the mean of a sample of 68 computers would differ from the population mean by less than 2.08 months? Round your answer to four decimal places. Answer How to enter your answer Tables Keypad
Answer:
[tex]P(-1.72<Z<1.72)=0.9146[/tex]
Step-by-step explanation:
From the question we are told that:
Population mean \mu=91
Sample Mean \=x =2.08
Standard Deviation \sigma=10
Sample size n=68
Generally the Probability that The sample mean would differ from the population mean
P(|\=x-\mu|<2.08)
From Table
[tex]P(|\=x-\mu|<2.08)=P(|z|<1.72)[/tex]
T Test
[tex]Z=\frac{\=x-\mu}{\frac{\sigma}{\sqrt{n} } }[/tex]
[tex]Z=\frac{2.08}{\frac{10}{\sqrt{68} } }[/tex]
[tex]Z=1.72[/tex]
[tex]P(|\=x-\mu|<2.08)=P(|z|<1.72)[/tex]
[tex]P(-1.72<Z<1.72)[/tex]
Therefore From Table
[tex]P(-1.72<Z<1.72)=0.9146[/tex]
Answer this please~!!!!
Answer:
12
Step-by-step explanation:
113.04=3.14 x 3^2 x h/3
please help me its timed -H.M
Answer:
f(3) = g(3)
General Formulas and Concepts:
Algebra I
Functions
Function NotationGraphingStep-by-step explanation:
We can see from the graph that the lines intersect at (3, 6). If this is the case, then that means that when x = 3 for both functions, it outputs f(x) = 6.
Rewriting this in terms of function notation:
f(3) = 6, g(3) = 6
∴ f(3) = g(3)
Suppose an annuity pays 6% annual interest, compounded semi-annually. You invest in this annuity by contributing $4,500 semiannually for 6 years. What will the annuity be worth after 6 years?
Answer:
$3240
Step-by-step explanation:
hope it is well understood
Answer: 59300
Step-by-step explanation:
The average cost when producing x items is found by dividing the cost function, C(x), by the number of items,x. When is the average cost less than 100, given the cost function is C(x)= 20x+160?
A) ( 2, infinit)
B) (0,2)
C) (-infinit,0) U (2,infinit)
D) (- infinit,0] U [2,infinit)
9514 1404 393
Answer:
A) (2, ∞) . . . . or C) (-∞, 0) ∪ (2, ∞) if you don't think about it
Step-by-step explanation:
We want ...
C(x)/x < 100
(20x +160)/x < 100
20 +160/x < 100 . . . . . separate the terms on the left
160/x < 80 . . . . . . . subtract 20
160/80 < x . . . . . multiply by x/80 . . . . . assumes x > 0
x > 2 . . . . . . simplify
In interval notation this is (2, ∞). matches choice A
__
Technically (mathematically), we also have ...
160/80 > x . . . . and x < 0
which simplifies to x < 0, or the interval (-∞, 0).
If we include this solution, then choice C is the correct one.
_____
Comment on the solution
Since we are using x to count physical items, we want to assume that the practical domain of C(x) is whole numbers, where x ≥ 0, so this second interval is not in the domain of C(x). That is, the average cost of a negative number of items is meaningless.
Help please:))
2. When shipping ice cream, melting is understandably a big concern. You will notice that ice cream is not generally packaged in a cube-shaped container. A standard container of ice cream contains 1 L, or 1000 cm3 of ice cream,
a. What would be the optimal dimensions (radius and height) to minimize surface area?
b. What would the surface area be?
C. Suggest at least two reasons why this is different from the ice cream packaging that you see in the stores.
Answer:
a) Because this asks about the radius and height, I assume that we are talking about a cylinder shape.
Remember that for a cylinder of radius R and height H the volume is:
V = pi*R^2*H
And the surface will be:
S = 2*pi*R*H + pi*R^2
where pi = 3.14
Here we know that the volume is 1000cm^3, then:
1000cm^3 = pi*R^2*H
We can rewrite this as:
(1000cm^3)/pi = R^2*H
Now we can isolate H to get:
H = (1000cm^3)/(pi*R^2)
Replacing that in the surface equation, we get:
S = 2*pi*R*H + pi*R^2
S = 2*pi*R*(1000cm^3)/(pi*R^2) + pi*R^2
S = 2*(1000cm^3)/R + pi*R^2
So we want to minimize this.
Then we need to find the zeros of S'
S' = dS/dR = -(2000cm^3)/R^2 + 2*pi*R = 0
So we want to find R such that:
2*pi*R = (2000cm^3)/R^2
2*pi*R^3 = 2000cm^3
R^3 = (2000cm^3/2*3.14)
R = ∛(2000cm^3/2*3.14) = 6.83 cm
The radius that minimizes the surface is R = 6.83 cm
With the equation:
H = (1000cm^3)/(pi*R^2)
We can find the height:
H = (1000cm^3)/(3.14*(6.83 cm)^2) = 6.83 cm
(so the height is equal to the radius)
b) The surface equation is:
S = 2*pi*R*H + pi*R^2
replacing the values of H and R we get:
S = 2*3.14*(6.83 cm)*(6.83 cm) + 3.14*(6.83 cm)^2 = 439.43 cm^2
c) Because if we pack cylinders, there is a lot of space between the cylinders, so when you store it, there will be a lot of space that is not used and that can't be used for other things.
Similarly for transport problems, for that dead space, you would need more trucks to transport your ice cream packages.
f(x) = 2x2 + 4x - 5
g(x) = 6x3 – 2x2 + 3
Find (f + g)(x).
Answer:
4x-5=4x-5
(f+g) (x)=6x³+3Step-by-step explanation:
Solve for x.
7(x+2) = 6(x+5)
O x=-44
O X=-16
O x= 44
O x= 16
Answer:
x = 16
Step-by-step explanation:
7(x + 2) = 6(x + 5)
First, to start solving this problem, we have to distribute the "7" to the "x + 2" in the parenthesis and the "6" to the "x + 5" in the parenthesis.
7x + 14 = 6x + 30
Next, let's subtract "6x" from both sides of this equation!
x + 14 = 30
Now, we have to subtract "14" from both sides of the equation.
x = 16
Lastly! Let's make sure our "x=" equation is correct by inputting our value into the "x" values.
7(16 + 2) = 6(16 + 5)
7(18) = 6(21)
126 = 126
Since our equations equal each other we know that our x-value is correct!
Hope this Helps! :)
Have any questions? Ask below in the comments and I will try my best to answer.
-SGO
A researcher wishes to estimate the proportion of adults who have high-speed Internet access. What size sample should be obtained if she wishes the estimate to be within with % confidence if (a) she uses a previous estimate of ? (b) she does not use any prior estimates?
Answer:
732 samples ;
752 samples
Step-by-step explanation:
Given :
α = 90% ; M.E = 0.03 ; p = 0.58 ; 1 - p = 1 - 0.58 = 0.42
Using the relation :
n = (Z² * p * (1 - p)) / M.E²
Zcritical at 90% = 1.645
n = (1.645² * 0.58 * 0.42) / 0.03²
n = 0.65918769 / 0.0009
n = 732.43076
n = 732 samples
B.)
If no prior estimate is given, then p = 0.5 ; 1 - p = 1 - 0.5 = 0.5
n = (Z² * p * (1 - p)) / M.E²
Zcritical at 90% = 1.645
n = (1.645² * 0.5 * 0.5) / 0.03²
n = 0.67650625 / 0.0009
n = 751.67361
n = 752 samples
An industrial psychologist consulting with a chain of music stores knows that the average number of complaints management receives each month throughout the industry is 4, but the variance is unknown. Nine of the chain's stores were randomly selected to record complaints for one month; they received 2, 4, 3, 5, 0, 2, 5, 1, and 5 complaints. Using the .05 significance level, is the number of complaints received by the chain different from the number of complaints received by music stores in general?
1. Use the five steps of hypothesis testing.
2. Sketch the distributions involved
3. Explain the logic of what you did to a person who is familiar with hypothesis testing, but knows nothing about t tests of any kind. Be sure to explain how this problem differs from a problem with a known population variance and a single sample.
Answer: See explanation
Step-by-step explanation:
1. Use the five steps of hypothesis testing.
Step 1: The aim of the research is to conduct the five steps of hypothesis testing.
Step 2:
Null hypothesis: H0 u= 4
Population mean: H1 u = 4
Alternate hypothesis: u ≠ 4
Population mean: u ≠ 4
Step 3 and step 4 are attached.
Step 5: Based on the calculation, the calculated value of t is less than the t critical value, therefore, the null hypothesis will be failed to be rejected.
2. Sketch the distributions involved
This has been attached.
3. Explain the logic of what you did to a person who is familiar with hypothesis testing, but knows nothing about t tests of any kind.
The distribution is "t".
The means is tested by using T-test.
Chi-square is used to test the single variance.
identify the angles relationship
Find x on this triangle
Answer:
3 sqrt(3) =x
Step-by-step explanation:
Since this is a right triangle, we can use trig functions
cos theta = adj / hyp
cos 30 = x/6
6 cos 30 = x
6 ( sqrt(3)/2) = x
3 sqrt(3) =x
A car travels 1/8 mile in 2/13 minutes. What is the speed in terms of miles per minute?
Answer:
13/16 miles per minute
Step-by-step explanation:
Take the miles and divide by the minutes
1/8 ÷ 2/13
Copy dot flip
1/8 * 13/2
13/16 miles per minute
Suppose f(x)=x^2. What is the graph of g(x)=1/2f(x)?
9514 1404 393
Answer:
see attached
Step-by-step explanation:
The graph of g(x) is a vertically scaled version of the graph of f(x). The scale factor is 1/2, so vertical height at a given value of x is 1/2 what it is for f(x). This will make the graph appear shorter and fatter than for f(x).
The graph of g(x) is attached.
Give the properties for the equation x2 + y2 + 8x - 2y +15 = 0
Radius √2 4 2
Answer:
ind the center and radius of the sphere: x2 + y2 +z2-8x + 2y + 62+1 0 2) Find an equation of the sphere that passes through the point (6,-2, 3) and has center (-1,2, 1). Find the curve in which the sphere from #2 intersects the yz-plane. For #4-11, u : ? + j-2k 4) 2u +3v 5) Iv 6) uv and v-3i-2j + k 8) Ivxu 9) comp,v 10) proju 11) Find the angle between u and v 12) Find the scalar triple product of a, b, and c. If a (3, 1,2), b (-1,1,0), and c (0,0,-4) 13) Find the values of x such that (3,2, x) and (2x, 4, x) are orthogonal 14) Find two unit vectors that are orthogonal to both j + 2k and i-2j+3k 15) Find the acute angle between two diagonals of a cube 16) Find a vector perpendicular to the plane through the points A(1,0,0), B(2,0,-1) and C(1,4,3) 17) Find parametric equations for the line through (4,-1, 2) and (1, 1, 5) 18) Find parametric equations for the line through (-2, 2, 4) and perpendicular to the plane 2x-y+5z 12 19) Find an equation of the plane through (2, 1,0) and parallel to x + 4y -3z 1 20) Find an equation of the plane through (3, -1, 1), (4, 0, 2), and (6, 3, 1). 21) Show that the planes x y-z 1 and 2x 3y + 4z 5 are neither parallel nor perpendicular. Find the angle between the planes.
Not sure how to do this
What is the derivative of x^2?
Answer:
[tex]\displaystyle \frac{d}{dx}[x^2] = 2x[/tex]
General Formulas and Concepts:
Calculus
Differentiation
DerivativesDerivative NotationBasic Power Rule:
f(x) = cxⁿf’(x) = c·nxⁿ⁻¹Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle y = x^2[/tex]
Step 2: Differentiate
Basic Power Rule: [tex]\displaystyle \frac{dy}{dx} = 2x^{2 - 1}[/tex]Simplify: [tex]\displaystyle \frac{dy}{dx} = 2x[/tex]Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation
I need help solving this problem
Answer:
300
Step-by-step explanation:
describe how you could use the point-slope formula to find the equation of a line that is perpendicular to a given line and passes through a given point
Answer:
Using the slope intercept formula, we can see the slope of line p is ¼. Since line k is perpendicular to line p it must have a slope that is the negative reciprocal. (-4/1) If we set up the formula y=mx+b, using the given point and a slope of (-4), we can solve for our b or y-intercept. In this case it would be 17.
can someone help me out with this question???
Answer:
a
Step-by-step explanation:
Write each question as a single logarithm (Picture attached)
Answer:
a.
[tex] log_{5}( {u}^{3 \times {v}^{4} } ) [/tex]
b.
[tex] ln( \frac{1}{( {x}^{2} - 2x + 1 } ) [/tex]
c.
[tex] log_{2}(x { \sqrt{3x - 2} }^{4} ) [/tex]
A number is chosen at random from 1 to 50. What is the probability of selecting
multiples of 10.
Answer: 25
Step-by-step explanation:
wrote the terms below.
–8, –4, 0, 4, 8, 12
What do these terms represent?
an arithmetic series
an arithmetic sequence
a geometric series
a geometric sequence
Answer:
an arithmetic sequence
Step-by-step explanation:
an arithmetic series is wrong also heres an example i found of an arithmetic sequence
The terms in the given sequence represents an arithmetic sequence.
What is Arithmetic Sequence?Arithmetic sequence is a sequence of numbers where the numbers are arranged ion a definite order such that the difference of two consecutive numbers is a constant. This constant of difference is called common difference which is commonly denoted by the letter 'd'.
Given sequence of numbers is,
-8, -4, 0, 4, 8, 12, ......
We have to find which sequence does it represent.
This is not a series since they are not represented as the sum.
If the sequence is a geometric sequence, then the ratio of consecutive numbers will be same.
If it is arithmetic sequence, then the difference of consecutive numbers will be same.
Here, ratio is not same.
Difference are same.
-4 - -8 = 4, 0 - -4 = 4, 4 - 0 = 4, 8 - 4 = 4, ........
Common difference is 4.
Hence it is an arithmetic sequence.
Learn more about arithmetic Sequence here :
https://brainly.com/question/15412619
#SPJ3
HELP ASAP PLEASE!!!!!!!!
Answer:
1
Step-by-step explanation:
1 : 1 :sqrt(2)
The legs are in the ratio of 1 to 1
tan 45 = opp side / adj side
tan 45 = 1/1
tan 45 =1
Answer:
Step-by-step explanation:
The weights of newborn baby boys born at a local hospital are believed to have a normal distribution with a mean weight of 35113511 grams and a variance of 253,009253,009. If a newborn baby boy born at the local hospital is randomly selected, find the probability that the weight will be less than 46174617 grams. Round your answer to four decimal places.
Answer:
The answer is "0.1397".
Step-by-step explanation:
[tex]\mu=3511\\\\[/tex]
variance [tex]\ S^2= 253,009\\\\[/tex]
standard deviation [tex]\sigma =\sqrt{253,009}=503\\\\[/tex]
Finding the probability in which the weight will be less than [tex]4617 \ grams\\\\[/tex]
[tex]P(X<4617)=p[z<\frac{4617-3511}{503}]\\\\[/tex]
[tex]=p[z<\frac{1106}{503}]\\\\=p[z< 2.198]\\\\= .013975\approx 0.1397[/tex]
I need help finding the answer to this question on edge.
Answer:
6
Step-by-step explanation:
We need to evaluate :-
[tex]\rm\implies \displaystyle\rm\sum^4_n (-1)^n (3n + 2 ) [/tex]
Here the [tex]\Sigma[/tex] is the sum operator . And here we need to find the sum from n = 1 to n = 4 . We can write it as ,
[tex]\rm\implies (-1)^1 ( 3*1 +2) + (-1)^2 ( 3*2+2) + (-1)^3(3*3+2) + (-1)^4(3*4+2) [/tex]
Now we know that for odd powers of -1 , we get -1 and for even powers we get 1 . Therefore ,
[tex]\rm\implies -1 ( 3 + 2 ) + 1 (6+2)+-1(9+2)+1(12+2)[/tex]
Now add the terms inside the brackets and then multiply it with the number outside the bracket . We will get ,
[tex]\rm\implies -1 * 5 + 1 * 8 + -1*11 + 1*14 \\\\\rm\implies -5 + 8 - 11 + 14 \\\\\rm\implies\boxed{\quad 6 \quad}[/tex]
Hence the required answer is 6.
find c.round to the nearest tenth
Answer:
we need a picture...
Step-by-step explanation:
Michael invest $P at a rate of 3.8% per year compounded interest. After 30 years the value of this investment is $1,469. Calculate the value of P.
Answer:
Step-by-step explanation:
The formula for this is
[tex]A(t)=P(1+r)^t[/tex] and we have everything but the P. Filling in:
[tex]1469=P(1+.038)^{30[/tex] and
[tex]1469=P(1.038)^{30[/tex] and
1469 = P(3.061403718) so
P = 479.85
a soft drink vendor at a popular beach analyzes his sales recods and finds that if he sells x cans of soda pop in one day, his profit (in dollars) is given by
Complete Question:
A soft-drink vendor at a popular beach analyzes his sales records, and finds that if he sells x cans of soda pop in one day, his profit (in dollars) is given by P(x) = -0.001x² + 3x - 1800.
a. What is his maximum profit per day?
b. How many cans must be sold in order to obtain the maximum profit?
Answer:
a. $450
b. 1500 cans
Step-by-step explanation:
Given the following quadratic function;
P(x) = -0.001x² + 3x - 1800 ......equation 1
a. To find his maximum profit per day;
Since P(x) is a quadratic equation, P(x) would be maximum when [tex] x = \frac {-b}{2a} [/tex]
Note : the standard form of a quadratic equation is ax² + bx + c = 0 ......equation 2
Comparing eqn 1 and eqn 2, we have;
a = -0.001, b = 3 and c = -1800
Now, we determine the maximum profit;
[tex] x = \frac {-b}{2a} [/tex]
Substituting the values, we have;
[tex] x = \frac {-3}{2*(-0.001)} [/tex]
Cancelling out the negative signs, we have;
[tex] x = \frac {3}{2*0.001} [/tex]
[tex] x = \frac {3}{0.002} [/tex]
x at maximum = 1500
Substituting the value of "x" into equation 1;
P(1500) = -0.001 * 1500² + 3(1500) - 1800
P(1500) = -0.001 * 2250000 + 4500 - 1800
P(1500) = -2250 + 2700
P(1500) = $450
b. Therefore, the soft-drink vendor must sell 1500 cans in order to obtain the maximum profit.
A drinking container is shaped like a cone and must hold at least 10 ounces of fluid. The radius of the top of the container is 2.25 inches. The steps for determining the height of the cone-shaped container are shown below.
9514 1404 393
Answer:
C. h ≥ 1.9 in
Step-by-step explanation:
As the final step, divide both sides of the inequality by 5.3:
(5.3h)/5.3 ≥ 10/5.3
h ≥ 1.9