Answer:
0.9922 = 99.22% probability that the mean monitor life would be greater than 81.2 months in a sample of 146 monitors.
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
The production manager claims they have a mean life of 83 months with a variance of 81.
This means that [tex]\mu = 83, \sigma = \sqrt{81} = 9[/tex]
Sample of 146:
This means that [tex]n = 146, s = \frac{9}{\sqrt{146}}[/tex]
What is the probability that the mean monitor life would be greater than 81.2 months in a sample of 146 monitors?
This is 1 subtracted by the p-value of Z when X = 81.2. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{81.2 - 83}{\frac{9}{\sqrt{146}}}[/tex]
[tex]Z = -2.42[/tex]
[tex]Z = -2.42[/tex] has a p-value of 0.0078.
1 - 0.0078 = 0.9922.
0.9922 = 99.22% probability that the mean monitor life would be greater than 81.2 months in a sample of 146 monitors.
please help !!!!
i would really appreciate it
Answer: A
Step-by-step explanation: x=-2, y=3, z=-3
Answer:
A. -2, 3, -3
Step-by-step explanation:
x = 7 - 2y + z
y = 21 + 6x + 2z = 21 + 6×(7 - 2y + z) + 2z =
= 21 + 42 - 12y + 6z + 2z = 63 - 12y + 8z
13y = 63 + 8z
y = (63 + 8z)/13
2x + 2y - 3z = 11
2×(7 - 2y + z) + 2×(63 + 8z)/13 - 3z = 11
2×(7 - 2×(63 + 8z)/13 + z) + 2×(63 + 8z)/13 - 3z = 11
14 - 4×(63 + 8z)/13 + 2z + 2×(63 + 8z)/13 - 3z = 11
-2×(63 + 8z)/13 - z = -3
-2×(63 + 8z) - 13z = -39
-126 - 16z - 13z = -39
-29z = 87
z = -3
y = (63 + 8×-3)/13 = (63 - 24)/13 = 39/13 = 3
x = 7 - 2×3 + -3 = 7 - 6 - 3 = -2
190 of 7
6 7 8 9 10
-3
4
5
6
The slope of the line shown in the graph is
and the intercept of the line is
Answer:slope 2/3
Y-int 6
Step-by-step explanation:
find the quotient 1/5 / (-5/7) =
Answer:
-7/25
Step-by-step explanation:
1/5 ÷ (-5/7)
Copy dot flip
1/5 * -7/5
-7/25
(2+1/2) (2^2-1+1/4) find the expression in the form of cubes and differences of two terms.
Answer:
Consider the following identity:
a³ - b³ = (a + b)(a² - ab + b²)Let a = 2, b = 1/2
(2 + 1/2)(2² - 2*1/2 + 1/2²) = 2³ - (1/2)³ =8 - 1/8Use the algebraic identity given below
[tex]\boxed{\sf a^3-b^3=(a+b)(a^2-ab+b^2)}[/tex]
[tex]\\ \sf\longmapsto (2+\dfrac{1}{2})(2^2-1+\dfrac{1}{4})[/tex]
[tex]\\ \sf\longmapsto (2+\dfrac{1}{2})(2^2-2\times \dfrac{1}{2}+\dfrac{1}{2}^2)[/tex]
Here a =2 and b=1/2[tex]\\ \sf\longmapsto 2^3-\dfrac{1}{2}^3[/tex]
[tex]\\ \sf\longmapsto 8-\dfrac{1}{8}[/tex]
Emily, Yani and Joyce have a total of 3209 stickers. Yani has 2 times
as many stickers as Joyce. Emily has 279 more stickers than Yani. How
many more stickers does Emily have than Joyce?
Answer:
279+x
Step-by-step explanation:
Emily + Yani + Joyce=3209 stickers
if Yani has 2 times as many stickers as Joyce:this statement states that Joyce has x stickers and Yani has 2x stickers because x multiplied by 2"Emily has 279 more stickers than Yani":therefore the equation for Emily will be ;279+2xhow many stickers does Emily have than Joyce:
(279+2x)-(x)
279+2x-x
=279+x
Is this the correct answer?
Answer:
25.40
Step-by-step explanation:
tickets ( 2 at 10.95 each) = 2* 10.95 = 21.90
popcorn ( 1 at 7.50) = 7.50
Total cost before discount
21.90+7.50=29.40
subtract the discount
29.40-4.00 =25.40
Answer:
Yep! That's correct!
Step-by-step explanation:
We know that Marilyn and her sister are each getting a ticket that cost $10.95. They are also getting a $7.50 popcorn to share. Let's add those values up.
(10.95 * 2) + 7.50 {Multiply 10.95 by 2 to get 21.90.}
21.90 + 7.50 {Add 7.50 to 21.90 to get 29.40}
$29.40 (without the credit) in toal
A credit on a movie reward card functions as a discount, so what we need to do next is subtract 4 from 29.40. That will get us $25.40 as the total cost.
After doing the math, I can deduce that your answer is correct!
simplify the following without using calculator
√50 + √98
Answer:
The exact answer is 12*√2, if you need approximately answer it is 12*1.4= 16.8
Step-by-step explanation:
√50 + √98 = √(25*2)+√(49*2)= √25√2+√49*√2= 5√2+7*√2=12*√2
Lainey is looking for a new apartment and her realtor keeps calling her with new listings . The calls only take a few minutes , but a few minutes here and there are really starting to add up . She's having trouble concentrating on her work . What should Lainey do ? a ) Tell her realtor she can only receive text messages b ) Limit the time spent on each call c ) Turn off her phone until she is on a break d ) Call her realtor back when customers won't see her on the phone
Answer:
c ) Turn off her phone until she is on a break
A shop sells a particular of video recorder. Assuming that the weekly demand for the video recorder is a Poisson variable with the mean 3, find the probability that the shop sells. . (a) At least 3 in a week. (b) At most 7 in a week. (c) More than 20 in a month (4 weeks).
Answer:
a) 0.5768 = 57.68% probability that the shop sells at least 3 in a week.
b) 0.988 = 98.8% probability that the shop sells at most 7 in a week.
c) 0.0104 = 1.04% probability that the shop sells more than 20 in a month.
Step-by-step explanation:
For questions a and b, the Poisson distribution is used, while for question c, the normal approximation is used.
Poisson distribution:
In a Poisson distribution, the probability that X represents the number of successes of a random variable is given by the following formula:
[tex]P(X = x) = \frac{e^{-\lambda}*\lambda^{x}}{(x)!}[/tex]
In which
x is the number of successes
e = 2.71828 is the Euler number
[tex]\lambda[/tex] is the mean in the given interval.
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
The Poisson distribution can be approximated to the normal with [tex]\mu = \lambda, \sigma = \sqrt{\lambda}[/tex], if [tex]\lambda>10[/tex].
Poisson variable with the mean 3
This means that [tex]\lambda= 3[/tex].
(a) At least 3 in a week.
This is [tex]P(X \geq 3)[/tex]. So
[tex]P(X \geq 3) = 1 - P(X < 3)[/tex]
In which:
[tex]P(X < 3) = P(X = 0) + P(X = 1) + P(X = 2)[/tex]
Then
[tex]P(X = x) = \frac{e^{-\lambda}*\lambda^{x}}{(x)!}[/tex]
[tex]P(X = 0) = \frac{e^{-3}*3^{0}}{(0)!} = 0.0498[/tex]
[tex]P(X = 1) = \frac{e^{-3}*3^{1}}{(1)!} = 0.1494[/tex]
[tex]P(X = 2) = \frac{e^{-3}*3^{2}}{(2)!} = 0.2240[/tex]
So
[tex]P(X < 3) = P(X = 0) + P(X = 1) + P(X = 2) = 0.0498 + 0.1494 + 0.2240 = 0.4232[/tex]
[tex]P(X < 3) = P(X = 0) + P(X = 1) + P(X = 2) = 1 - 0.4232 = 0.5768[/tex]
0.5768 = 57.68% probability that the shop sells at least 3 in a week.
(b) At most 7 in a week.
This is:
[tex]P(X \leq 7) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5) + P(X = 6) + P(X = 7)[/tex]
In which
[tex]P(X = x) = \frac{e^{-\lambda}*\lambda^{x}}{(x)!}[/tex]
[tex]P(X = 0) = \frac{e^{-3}*3^{0}}{(0)!} = 0.0498[/tex]
[tex]P(X = 1) = \frac{e^{-3}*3^{1}}{(1)!} = 0.1494[/tex]
[tex]P(X = 2) = \frac{e^{-3}*3^{2}}{(2)!} = 0.2240[/tex]
[tex]P(X = 3) = \frac{e^{-3}*3^{3}}{(3)!} = 0.2240[/tex]
[tex]P(X = 4) = \frac{e^{-3}*3^{4}}{(4)!} = 0.1680[/tex]
[tex]P(X = 5) = \frac{e^{-3}*3^{5}}{(5)!} = 0.1008[/tex]
[tex]P(X = 6) = \frac{e^{-3}*3^{6}}{(6)!} = 0.0504[/tex]
[tex]P(X = 7) = \frac{e^{-3}*3^{7}}{(7)!} = 0.0216[/tex]
Then
[tex]P(X \leq 7) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5) + P(X = 6) + P(X = 7) = 0.0498 + 0.1494 + 0.2240 + 0.2240 + 0.1680 + 0.1008 + 0.0504 + 0.0216 = 0.988[/tex]
0.988 = 98.8% probability that the shop sells at most 7 in a week.
(c) More than 20 in a month (4 weeks).
4 weeks, so:
[tex]\mu = \lambda = 4(3) = 12[/tex]
[tex]\sigma = \sqrt{\lambda} = \sqrt{12}[/tex]
The probability, using continuity correction, is P(X > 20 + 0.5) = P(X > 20.5), which is 1 subtracted by the p-value of Z when X = 20.5.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{20 - 12}{\sqrt{12}}[/tex]
[tex]Z = 2.31[/tex]
[tex]Z = 2.31[/tex] has a p-value of 0.9896.
1 - 0.9896 = 0.0104
0.0104 = 1.04% probability that the shop sells more than 20 in a month.
The probability of the selling the video recorders for considered cases are:
P(At least 3 in a week) = 0.5768 approximately.P(At most 7 in a week) = 0.9881 approximately.P( more than 20 in a month) = 0.0839 approximately.What are some of the properties of Poisson distribution?Let X ~ Pois(λ)
Then we have:
E(X) = λ = Var(X)
Since standard deviation is square root (positive) of variance,
Thus,
Standard deviation of X = [tex]\sqrt{\lambda}[/tex]
Its probability function is given by
f(k; λ) = Pr(X = k) = [tex]\dfrac{\lambda^{k}e^{-\lambda}}{k!}[/tex]
For this case, let we have:
X = the number of weekly demand of video recorder for the considered shop.
Then, by the given data, we have:
X ~ Pois(λ=3)
Evaluating each event's probability:
Case 1: At least 3 in a week.
[tex]P(X > 3) = 1- P(X \leq 2) = \sum_{i=0}^{2}P(X=i) = \sum_{i=0}^{2} \dfrac{3^ie^{-3}}{i!}\\\\P(X > 3) = 1 - e^{-3} \times \left( 1 + 3 + 9/2\right) \approx 1 - 0.4232 = 0.5768[/tex]
Case 2: At most 7 in a week.
[tex]P(X \leq 7) = \sum_{i=0}^{7}P(X=i) = \sum_{i=0}^{7} \dfrac{3^ie^{-3}}{i!}\\\\P(X \leq 7) = e^{-3} \times \left( 1 + 3 + 9/2 + 27/6 + 81/24 + 243/120 + 729/720 + 2187/5040\right)\\\\P(X \leq 7) \approx 0.9881[/tex]
Case 3: More than 20 in a month(4 weeks)
That means more than 5 in a week on average.
[tex]P(X > 5) = 1- P(X \leq 5) =\sum_{i=0}^{5}P(X=i) = \sum_{i=0}^{5} \dfrac{3^ie^{-3}}{i!}\\\\P(X > 5) = 1- e^{-3}( 1 + 3 + 9/2 + 27/6 + 81/24 + 243/120)\\\\P(X > 5) \approx 1 - 0.9161 \\ P(X > 5) \approx 0.0839[/tex]
Thus, the probability of the selling the video recorders for considered cases are:
Learn more about poisson distribution here:
https://brainly.com/question/7879375
The midpoint of has coordinates of (4, -9). The endpoint A has coordinates (-3, -5). What are the coordinates of B?
9514 1404 393
Answer:
(11, -13)
Step-by-step explanation:
If midpoint M is halfway between A and B:
M = (A +B)/2
Then B is ...
B = 2M -A
B = 2(4, -9) -(-3, -5) = (8+3, -18+5)
B = (11, -13)
Answer:
Use the midpoint formula:
[tex]midpoint=(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2})[/tex]
Endpoint A = (x₁, y₁) = (-3, -5)Endpoint B = (x₂, y₂)Midpoint = (4, -9)Substitute in the values:
[tex](4, -9)=(\frac{-3+x_{2}}{2} +\frac{-5+y_{2}}{2} )[/tex]
[tex]4=\frac{-3+x_{2}}{2} \\4(2)=-3+x_{2}\\8+3=x_{2}\\x_{2}=11[/tex] [tex]-9=\frac{-5+y_{2}}{2} \\(-9)(2)=-5+y_{2}\\-18+5=y_{2}\\y_{2}=-13[/tex]
Therefore, Point B = (11, -13)
PLEASEE HELP ME ASAPPP (geometry)
Answer:AE=EC và BF=FC => EF là đường trung bình của tam giác ABC
=> EF // và bằng 1/2 AB
=> AB = 16
Step-by-step explanation:
Answer:
AB=16
Step-by-step explanation:
Midsegment Theorem states that the segment connecting the midpoints of two sides of a triangle is parallel to the third side and half as long.
The mid-segment of a triangle, which joins the midpoints of two sides of a triangle, is parallel to the third side of the triangle and half the length of that third side of the triangle.
AD=DB
AD+DB=AB=2EF
AB=2×8=16
plez halppp mehh ;-;
Answer:
False
True
True
Step-by-step explanation:
Angle 1 cannot be equal to angle 4. Even by just viewing one can see that they can't be equal.
Angle 1 and 2 when combined give a 90 degree angle going from a to c.
Angle 3 and 4 form a 180 degree angle.
HOPE THIS HELPED
Given the function f(x) = -5x + 2, find the range ofly for x = -1, 0, 1.
O 7, 2, -3
O 7, 2, 3
O-7, -2, 3
0-7, -2, -3
Answer:
A
Step-by-step explanation:
f(-1)=7, f(0)=2, f(1)=-3
If 1100 square centimeters of material is available to make a box with a square base and an open top, find the largest possible volume of the box. Round to two decimal places if necessary.
volume= a^2 * h
area= a^2+4ah
take the second equation, solve for h
4ah=1100-a^2
h=1100/4a -1/4 a now put that expression in volume equation for h.
YOu now have a volume expression as function of a.
take the derivative, set to zero, solve for a. Then put that value back into the volume equation, solve for Volume.
Cited from jiskha
Because the P-value is ____ than the significance level 0.05, there ____ sufficient evidence to support the claim that there is a linear correlation between lemon imports and crash fatality rates for a significance level of α= 0.05.
Do the results suggest that imported lemons cause carfatalities?
a. The results suggest that an increase in imported lemons causes car fatality rates to remain the same.
b. The results do not suggest any cause-effect relationship between the two variables.
c. The results suggest that imported lemons cause car fatalities.
d. The results suggest that an increase in imported lemons causes in an increase in car fatality rates.
Answer:
H0 : correlation is equal to 0
H1 : correlation is not equal to 0 ;
Pvalue < α ;
There is sufficient evidence
r = 0.945 ;
Pvalue = 0.01524
Step-by-step explanation:
Given the data :
Lemon_Imports_(x) Crash_Fatality_Rate_(y)
230 15.8
264 15.6
359 15.5
482 15.3
531 14.9
Using technology :
The regression equation obtained is :
y = 16.3363-0.002455X
Where, slope = - 0.002455 ; Intercept = 16.3363
The Correlation Coefficient, r = 0.945
H0 : correlation is equal to 0
H1 : correlation is not equal to 0 ;
The test statistic, T:
T = r / √(1 - r²) / (n - 2)
n = 5 ;
T = 0.945 / √(1 - 0.945²) / (5 - 2)
T = 0.945 / 0.1888341
T = 5.00439
The Pvalue = 0.01524
Since Pvalue < α ; Reject the Null and conclude that there is sufficient evidence to support the claim.
Carmen Abdul and David sent a total of 78 text messages over their cell phones during the weekend . Abdul sent 10 fewer messages then Carmen . David sent two times as many messages as Abdul how many messages did they each send?
Answer:
Carmen:27
Abdul:17
David=34
Step-by-step explanation:
Carmen+Abdul+David = 78
Carmen-Abdul=10
David=2Abdul
Carmen=Abdul+10
Carmen+Abdul+David = Abdul+10+Abdul+2Abdul=78
4Abdul=68
Abdul = 68/4=17
Carmen = 17+10=27
David = 2 * 17 = 34
27+17+34=78
Given: AABC, AC = 5
m C = 90°
m A= 22°
Find: Perimeter of AABC
A
C
B
9514 1404 393
Answer:
perimeter ≈ 12.4 units
Step-by-step explanation:
The side adjacent to the angle is given. The relationships useful for the other two sides are ...
Tan = Opposite/Adjacent
Cos = Adjacent/Hypotenuse
From these, we have ...
opposite = 5·tan(22°) ≈ 2.02
hypotenuse = 5/cos(22°) ≈ 5.39
Then the perimeter is ...
P = a + b + c = 2.02 + 5 + 5.39 = 12.41
The perimeter of ∆ABC is about 12.4 units.
Can someone please help solve this equation thank you
Answer:
A and B
Step-by-step explanation:
Both points are in the shaded/blue zone
I hope this helps!
pls ❤ and give brainliest pls
Answer:
Yea both A and B are correct.
Step-by-step explanation:
if you can see you can put (-12,0) inside the shaded triangle also for (-10,1)
you can give brainlist to the person above :D
I'm interval notation please
9514 1404 393
Answer:
(-2, 4]
Step-by-step explanation:
-21 ≤ -6x +3 < 15 . . . . given
-24 ≤ -6x < 12 . . . . . . subtract 3
4 ≥ x > -2 . . . . . . . . . . divide by -6
In interval notation, the solution is (-2, 4].
__
Interval notation uses a square bracket to indicate the "or equal to" case--where the end point is included in the interval. A graph uses a solid dot for the same purpose. When the interval does not include the end point, a round bracket (parenthesis) or an open dot are used.
the age of furaha is 1/2 of the age of her aunt if the sum of their ages is 54 years. find the age of her aunt
Answer:
I think it is twenty seven
5 Cece draws these two figures to prove there is more
than one parallelogram with a 40° angle between a
2-cm side and a 6-cm side. Is Cece correct? Explain.
2 cm
40
4.
2 cm
Answer:
chash greatly ta 45uerywryrsyrsyrs
I will give brainliest if you answer properly.
Answer:
See below
Step-by-step explanation:
a)
[tex]2\sin(x) +\sqrt{3} =0 \implies 2\sin(x)=-\sqrt{3} \implies \boxed{\sin(x)=-\dfrac{\sqrt{3}}{2} }[/tex]
[tex]\therefore x=\dfrac{4\pi }{3}[/tex]
But note, as sine does represent the [tex]y[/tex] value, [tex]\dfrac{5\pi }{3}[/tex] is also solution
Therefore,
[tex]x=\dfrac{4\pi }{3} \text{ and } x=\dfrac{5\pi }{3}[/tex]
This is the solution for [tex]x\in[0, 2\pi ][/tex], recall the unit circle.
Note: [tex]\sin(x)=-\dfrac{\sqrt{3}}{2} \implies \sin(x)=\sin \left(\pi +\dfrac{\pi }{3} \right)[/tex]
b)
[tex]\sqrt{3} \tan(x) + 1 =0 \implies \tan(x) = -\dfrac{1}{\sqrt{3} } \implies \boxed{ \tan(x) = -\dfrac{\sqrt{3} }{3} }[/tex]
Once
[tex]\tan(x) = -\dfrac{\sqrt{3} }{3} \implies \sin(x) = -\dfrac{1}{2} \text{ and } \cos(x) = \dfrac{\sqrt{3} }{2}[/tex]
As [tex]\tan(x) = \dfrac{\sin(x)}{\cos(x)}[/tex]
[tex]\therefore x=-\dfrac{\pi }{6}[/tex]
c)
[tex]4\sin^2(x) - 1 = 0 \implies \sin^2(x) = \dfrac{1}{4} \implies \boxed{\sin(x) = \pm \dfrac{\sqrt{1} }{\sqrt{4} } = \pm \dfrac{1}{2}}[/tex]
Therefore,
[tex]\sin(x)=\dfrac{1}{2} \implies x=\dfrac{\pi }{6} \text{ and } x=\dfrac{5\pi }{6}[/tex]
[tex]\sin(x)=-\dfrac{1}{2} \implies x=\dfrac{7\pi }{6} \text{ and } x=\dfrac{11\pi }{6}[/tex]
The solutions are
[tex]x=\dfrac{\pi }{6} \text{ and } x=\dfrac{5\pi }{6} \text{ and }x=\dfrac{7\pi }{6} \text{ and } x=\dfrac{11\pi }{6}[/tex]
a certain number plus two is five find the number
x=3
Step-by-step explanation:
x+2=5
x=5-2
x=3
Which of the fractions below are less than 2/5? Select two.
Answer:
1/8 is less than
Step-by-step explanation:
i dont see any fractions below gona have to edit your answer
pls help me asap !!!
Answer:
11
Step-by-step explanation:
Hopefully you can see that this is an isosceles triangle and remembering the inequality theorem of a triangle (4,4,11 triangle cannot exist). Iso triangle has two side the same length - as well as two angles the same.
a farmer needs 5 men to clear his farm in 10 days. How many men will he need if he must finish clearing the farm in two days if they work at the same rate?
Answer:
25 workers
Step-by-step explanation:
If you like my answer than please mark me brainliest thanks
,
The height of a triangle is 4 yards greater than the base. The area of the triangle is 70 square yards. Find the length of the base and the height of the triangle.
9514 1404 393
Answer:
base: 10 yardsheight: 14 yardsStep-by-step explanation:
Let b represent the length of the base. Then (b+4) is the height and the area of the triangle is ...
A = 1/2bh
70 = 1/2(b)(b+4)
b² +4b -140 = 0 . . . . . multiply by 2, put in standard form
(b +14)(b -10) = 0 . . . . factor
b = 10 . . . . the positive solution
The base of the triangle is 10 yards; the height is 14 yards.
[tex]\sqrt{25}[/tex]
Answer:
5
Step-by-step explanation:
Calculate the square root of 25 and get 5.
look at the image below
Answer:
117.8
Step-by-step explanation:
Surface area = πr²+πrl (whee r = radius and l = slant height)
= π×3²+π×3×9.5
= 75π/2
= 117.8
Suppose scores on exams in statistics are normally distributed with an unknown population mean and a population standard deviation of three points. A random sample of 36 scores is taken and gives a sample mean of 68. Find a 85 % confidence interval estimate for the population mean exam score. Explain what the confidence interval means
this the answer of queastions
Step-by-step explanation:
67.18,68.82
Let mu be the true population mean of statistics exam scores. We have a large random samples of n=36 scores with a sample mean of 68.we know that the population standard deviation is sigma=3.A pivotal quantity is 3^sqrt(36)=(3/6)=68(1/2) which is approximately normally distributed. Therefore the 85%confidence interval is 68-(1/2)(1.6449), 68+(1/2)(1.6449) i.e (67.18,68.82)