A race-car drives around a circular track of radius RRR. The race-car speeds around its first lap at linear speed v_iv i ​ v, start subscript, i, end subscript. Later, its speed increases to 4v_i4v i ​ 4, v, start subscript, i, end subscript. How does the magnitude of the car's centripetal acceleration change after the linear speed increases

Answers

Answer 1

Answer:

The magnitude of the centripetal acceleration increases by 16 times when the linear speed increases by 4 times.

Explanation:

The initial centripetal acceleration, a of the race-car around the circular track of radius , R with a linear speed v is a = v²/R.

When the linear speed of the race-car increases to v' = 4v, the centripetal acceleration a' becomes a' = v'²/R = (4v)²/R = 16v²/R.

So the centripetal acceleration, a' = 16v²/R.

To know how much the magnitude of the car's centripetal acceleration changes, we take the ratio a'/a = 16v²/R ÷ v²/R = 16

a'/a = 16

a' = 16a.

So the magnitude of the centripetal acceleration increases by 16 times when the linear speed increases by 4 times.


Related Questions

At a department store, you adjust the mirrors in the dressing room so that they are parallel and 6.2 ft apart. You stand 1.8 ft from one mirror and face it. You see an infinite number of reflections of your front and back.(a) How far from you is the first "front" image? ft (b) How far from you is the first "back" image? ft

Answers

Answer:

a) 3.6 ft

b) 12.4 ft

Explanation:

Distance between mirrors = 6.2 ft

difference from from the mirror you face = 1.8 ft

a) you stand 1.8 ft in front of the mirror you face.

According to plane mirror rules, the image formed is the same distance inside the mirror surface as the distance of the object (you) from the mirror surface. From this,

your distance from your first "front" image = 1.8 ft + 1.8 ft = 3.6 ft

b) The mirror behind you is 6.2 - 1.8 = 4.4 ft behind you.

the back mirror will be reflected 3.6 + 4.4 = 8 ft into the front mirror,

the first image of your back will be 4.4 ft into the back mirror,

therefore your distance from your first "back" image = 8 + 4.4 = 12.4 ft

Light of wavelength 520 nm is used to illuminate normally two glass plates 21.1 cm in length that touch at one end and are separated at the other by a wire of radius 0.028 mm. How many bright fringes appear along the total length of the plates.

Answers

Answer:

The number is  [tex]Z = 216 \ fringes[/tex]

Explanation:

From the question we are told that

      The wavelength is  [tex]\lambda = 520 \ nm = 520 *10^{-9} \ m[/tex]

       The length of the glass plates is [tex]y = 21.1cm = 0.211 \ m[/tex]

      The distance between the plates (radius of wire ) =  [tex]d = 0.028 mm = 2.8 *10^{-5} \ m[/tex]

   Generally the condition for constructive  interference in a film is mathematically represented as

            [tex]2 * t = [m + \frac{1}{2} ]\lambda[/tex]

Where  t is the thickness of the separation between the glass i.e  

    t  = 0 at the edge where the glasses are touching each other and  

     t =  2d at the edge where the glasses are separated by the wire  

   m is the order of the fringe it starts from  0, 1 , 2 ...

So  

       [tex]2 * 2 * d = [m + \frac{1}{2} ] 520 *10^{-9}[/tex]

=>   [tex]2 * 2 * (2.8 *10^{-5}) = [m + \frac{1}{2} ] 520 *10^{-9}[/tex]

=>    

       [tex]m = 215[/tex]

given that we start counting m from zero

   it means that the number of  bright fringes that would appear is

         [tex]Z = m + 1[/tex]

=>    [tex]Z = 215 +1[/tex]

=>     [tex]Z = 216 \ fringes[/tex]

Find the current through a person and identify the likely effect on her if she touches a 120 V AC source in the following circumstances. (Note that currents above 10 mA lead to involuntarily muscle contraction.)
(a) if she is standing on a rubber mat and offers a total resistance of 300kΩ
(b) if she is standing barefoot on wet grass and has a resistance of only 4000kΩ

Answers

Answer:

A) 0.4 mA

B) 0.03 mA

Explanation:

Given that

voltage source, V = 120 V

to solve this question, we would be using the very basic Ohms Law, that voltage is proportional to the current and the resistance passing through the circuit, if temperature is constant.

mathematically, Ohms Law, V = IR

V = Voltage

I = Current

R = Resistance

from question a, we were given 300kΩ, substituting this value of resistance in the equation, we have

120 = I * 300*10^3 Ω

making I the subject of the formula,

I = 120 / 300000

I = 0.0004 A

I = 0.4 mA

Question said, currents above 10 mA causes involuntary muscle contraction, this current is way below 10 mA, so nothing happens.

B, we have Resistance, R = 4000kΩ

Substituting like in part A, we have

120 = I * 4000*10^3 Ω

I = 120 / 4000000

I = 0.00003 A

I = 0.03 mA

This also means nothing happens, because 0.03 mA is very much lesser compared to in the 10 mA

The current through a person will be:

a) 0.4 mA

b) 0.03 mA

Given:

Voltage, V = 120 V

Ohm's Law:

It states that the voltage or potential difference between two points is directly proportional to the current or electricity passing through the resistance, and directly proportional to the resistance of the circuit.

Ohms Law, V = I*R

where,

V = Voltage

I = Current

R = Resistance

a)

Given: Resistance=  300kΩ

[tex]120 = I * 300*10^3 ohm\\\\I = 120 / 300000\\\\I = 0.0004 A[/tex]

Thus, current will be, I = 0.4 mA

b)

Given: R = 4000kΩ

[tex]120 = I * 4000*10^3 ohm\\\\I = 120 / 4000000\\\\I = 0.00003 A[/tex]

Thus, current will be, I = 0.03 mA

From calculations, we observe that nothing happens, because 0.03 mA is very much lesser compared to in the 10 mA.

Find more information about Current here:

brainly.com/question/24858512

The highest mountain on mars is olympus mons, rising 22000 meters above the martian surface. If we were to throw an object horizontaly off the mountain top, how long would it take to reach the surface? (Ignore atmospheric drag forces and use gMars=3.72m/s^2

a. 2.4 minutes
b. 0.79 minutes
c. 1.8 minutes
d. 3.0 minutes

Answers

Answer:

  t = 1.81 min ,     the correct answer is c

Explanation:

This is a missile throwing exercise

The object is thrown horizontally, so its vertical speed is zero (voy = 0), let's use the equation

             y = y₀ + [tex]v_{oy}[/tex] t - ½ g t²

the final height is y = 0 and the initial height is y₀ = 22000 m

            0 = y₀ + 0 - ½ g t²

             

            t = √y 2y₀ / g

let's calculate

           t = √(2  22000 / 3.72)

           t = 108.76 s

let's reduce to minutes

           t = 108.76 s (1 min / 60 s)

           t = 1.81 min

The correct answer is c

A parallel-plate vacuum capacitor has 7.72 J of energy stored in it. The separation between the plates is 3.30 mm. If the separation is decreased to 1.45 mm, For related problem-solving tips and strategies, you may want to view a Video Tutor Solution of Stored energy. Part A what is the energy now stored if the capacitor was disconnected from the potential source before the separation of the plates was changed

Answers

Answer

3.340J

Explanation;

Using the relation. Energy stored in capacitor = U = 7.72 J

U =(1/2)CV^2

C =(eo)A/d

C*d=(eo)A=constant

C2d2=C1d1

C2=C1d1/d2

The separation between the plates is 3.30mm . The separation is decreased to 1.45 mm.

Initial separation between the plates =d1= 3.30mm .

Final separation = d2 = 1.45 mm

(A) if the capacitor was disconnected from the potential source before the separation of the plates was changed, charge 'q' remains same

Energy=U =(1/2)q^2/C

U2C2 = U1C1

U2 =U1C1 /C2

U2 =U1d2/d1

Final energy = Uf = initial energy *d2/d1

Final energy = Uf =7.72*1.45/3.30

(A) Final energy = Uf = 3.340J

An intergalactic rock star bangs his drum every 1.30 s. A person on earth measures that the time between beats is 2.50 s. How fast is the rock star moving relative to the earth

Answers

Answer:

v = 0.89 c = 2.67 x 10⁸ m/s

Explanation:

The time dilation consequence of the special theory of relativity shall be used here, From time dilation formula we have:

t = t₀/√[1 - v²/c²]

where,

t = time measured by the person on earth = 2.50 s

t₀ = rest time of the intergalactic rock star = 1.30 s

v = relative speed of the rock star = ?

Therefore,

2.5 s = (1.3 s)/√[1 - v²/c²]

√[1 - v²/c²] = 1.3/2.5

√[1 - v²/c²] = 0.52

[1 - v²/c²] = 0.52²

[1 - v²/c²] = 0.2074

v²/c² = 1 - 0.2074

v²/c² = 0.7926

v/c = √0.7926

v = 0.89 c

where,

c = speed of light = 3 x 10⁸ m/s

v = (0.89)(3 x 10⁸ m/s)

v = 0.89 c = 2.67 x 10⁸ m/s

By what angle should the second polarized sheet be rotated relative to the first to reduce the transmitted intensity to one-half the intensity that was transmitted through both polarizing sheets when aligned

Answers

Answer:

   θ  = 45º

Explanation:

The light that falls on the second polarized is polarized, therefore it is governed by the law of Maluz

              I = I₀ cos² θ

in the problem they ask us

            I = ½ I₀

let's look for the angles

             ½ I₀ = I₀ cos² θ

             cos θ  = √ ½ = 0.707

            θ  = cos 0.707

           θ  = 45º

Consider two parallel plate capacitors. The plates on Capacitor B have half the area as the plates on Capacitor A, and the plates in Capacitor B are separated by twice the separation of the plates of Capacitor A. If Capacitor A has a capacitance of CA-17.8nF, what is the capacitance of Capacitor? .

Answers

Answer:

CB = 4.45 x 10⁻⁹ F = 4.45 nF

Explanation:

The capacitance of a parallel plate capacitor is given by the following formula:

C = ε₀A/d

where,

C = Capacitance

ε₀ = Permeability of free space

A = Area of plates

d = Distance between plates

FOR CAPACITOR A:

C = CA = 17.8 nF = 17.8 x 10⁻⁹ F

A = A₁

d = d₁

Therefore,

CA = ε₀A₁/d₁ = 17.8 x 10⁻⁹ F   ----------------- equation 1

FOR CAPACITOR B:

C = CB = ?

A = A₁/2

d = 2 d₁

Therefore,

CB = ε₀(A₁/2)/2d₁

CB = (1/4)(ε₀A₁/d₁)

using equation 1:

CB = (1/4)(17.8 X 10⁻⁹ F)

CB = 4.45 x 10⁻⁹ F = 4.45 nF

Determine the magnitude and direction of the force between two parallel wires 30 m long and 6.0 cm apart, each carrying 30 A in the same direction.

Answers

Answer:

0.09N, attractive

Explanation:

It can be deducted from the question that the currents are arranged in parallel settings, then it is obvious that the force on each of the wire will be attractive toward the other wire.

the magnitude of force can be determined by using below formula;

F2 = (μ₀/2π)(I₁I₂/d)I₂

μ₀ = constant = 4π × 10^-7 H/m,

I₁, I₂ = currents= 30A

L = the length o the wire=30m

d = distance between these two wires= 0.06m

Since the current are arranged in the same direction, they exhibit attractive force on each other.

Then plugging the values Into the formula above we have

F₂ = (4π × 10^-7 T.m/A)/2π) × ((30A)²/ 0.06m)× 30 m

= 0.09 N, attractive

Therefore, the magnitude and direction of the force is 0.09 N, attractive

What is the mass of a rectangular block of
density 2.5 ×10³ k gm³that measures 10cm by 5 cm by 4 cm?
A. 0.002 kg
B. 0.080 kg
C. 0.200 kg
D. 0.500 kg
E. 1.000 kg​

Answers

Answer:

Option (D) : 0.5 kg

Explanation:

[tex]mass = density \times volume[/tex]

[tex]mass = {2500} \times 0.1 \times 0.05 \times 0.04[/tex]

Mass of block = 0.5 kg

the mass of a rectangular block of density 2.5 ×10³ k gm³ that measures 10cm by 5 cm by 4 cm is 0.5 kg.

What is density ?  

Density is the ratio of mass to volume. it tells how much mass a body is having for its unit volume. for example egg yolk has 1027kg/m³ of density, means if we collect numbers of egg yolk and keep it in a container having volume 1 m³ then total amount of mass it is having will be 1027kg. Density is a scalar quantity. when we add egg yolk into the water, egg yolk has greater density than water( 997 kg/m³), because of higher density of egg yolk it contains higher mass in same volume as water. hence due to higher mass higher gravitational force is acting on the egg yolk therefore it goes down on the inside the water. water will float upon the egg yolk. same situation we have seen when we spread oil in the water. ( in that case water has higher density than oil. thats why oil floats on the water)

The Volume of the block is,

V = LBD, where L = length, B = breadth , D = depth of the block.

V = 10 × 5 × 4 = 200 cm³

Density of Block = 2.5 ×10³ kg/m³

Density = Mass / Volume

2.5 ×10³ kg/m³ =  Mass /  200 cm³

2.5 ×10³ kg/m³ × 200 cm³ =  Mass

2.5 ×10³ kg/m³ × 0.2 × 10⁻³ m³ =  Mass

Mass = 0.5 kg

To know more about Mass :

https://brainly.com/question/19694949

#SPJ2.

Light with an intensity of 1 kW/m2 falls normally on a surface and is completely absorbed. The radiation pressure is

Answers

Answer:

The radiation pressure of the light is 3.33 x 10⁻ Pa.

Explanation:

Given;

intensity of light, I = 1 kW/m²

The radiation pressure of light is given as;

[tex]Radiation \ Pressure = \frac{Flux \ density}{Speed \ of \ light}[/tex]

I kW = 1000 J/s

The energy flux density = 1000 J/m².s

The speed of light = 3 x 10⁸ m/s

Thus, the radiation pressure of the light is calculated as;

[tex]Radiation \ pressure = \frac{1000}{3*10^{8}} \\\\Radiation \ pressure =3.33*10^{-6} \ Pa[/tex]

Therefore, the radiation pressure of the light is 3.33 x 10⁻ Pa.

An ac source of period T and maximum voltage V is connected to a single unknown ideal element that is either a resistor, and inductor, or a capacitor. At time t = 0 the voltage is zero. At time t = T/4 the current in the unknown element is equal to zero, and at time t = T/2 the current is I = -Imax, where Imax is the current amplitude. What is the unknown element?

Answers

Answer:

Capacitor, is the right answer.

Explanation:

The unknown element is a Capacitor.

Below is the calculation that proves that it is a capacitor.

We know that for the Capacitor

i = Imax × sin(wt+(pi/2)).

i = Imax × sin ((2 × pi/T) × (T/4) + (pi/2))

i = Imax × sin(3.142) = 0 A

at, t = T/2

wt = (2 × pi/T) × (T/2) = pi

wt + (pi/2) = pi + (pi/2) = ( 3 × pi/2) =

i = Imax × sin(3 × pi/2) = -Imax

Which is in a correct agreement with capacitor  therefore, the answer is a Capacitor.

When using a crowbar to remove a nail, the person should hold it at which of the following spots to increase the IMA of the lever? nearest the end prying out the nail furthest from the end prying out the nail right in the middle the location where the person holds it will not affect the IMA

Answers

Answer: the furthest from the end prying out the nail

Answer:

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

Explanation:

A person with a near point of 85 cm, but excellent distance vision normally wears corrective glasses. But he loses them while travelling. Fortunately he has his old pair as a spare. (a) If the lenses of the old pair have a power of 2.25 diopters, what is his near point (measured from the eye) when wearing the old glasses, if they rest 2.0 cm in front of the eye

Answers

Answer:

30.93 cm

Explanation:

Given that:

A person with a near point of 85 cm, but excellent distance vision normally wears corrective glasses

The power of the old pair of lens p = 2.25 diopters

The focal point length = 1/p

The focal point length =  1/2.25

The focal point length = 0.444 m

The focal point length = 44.4 cm

The near point of the person from the glass = (85 -2)cm , This is because the glasses are usually 2 cm from the lens

The near point of the person from the glass = 83 cm

Let consider s' to be the image on the same sides of the lens,

∴ s' = -83 cm

We known that:

the focal length of a mirror image 1/f =1/u +1/v

Assume the near point is at an excellent distance s from the glass where the person wears the corrective glasses.

Then:

1/f = 1/s + 1/s'

1/s = 1/f - 1/s'

1/s = (s' -f)/fs'

s = fs'/(s'-f)

s =( 44.4× -83)/(-83 - 44.4)

s = - 3685.2 / - 127.4

s = 28.93 cm

Thus , the near distance point measured from the eye wearing the old glasses, if they rest 2.0 cm in front of the eye = (28.93 +2.0)cm

= 30.93 cm

A 750 gram grinding wheel 25.0 cm in diameter is in the shape of a uniform solid disk. (we can ignore the small hole at the center). when it is in use, it turns at a consant 220 rpm about an axle perpendicular to its face through its center. When the power switch is turned off, you observe that the wheel stops in 45.0 s with constant angular acceleration due to friction at the axle. What torque does friction exert while this wheel is slowing down?

Answers

Answer:

Torque = 0.012 N.m

Explanation:

We are given;

Mass of wheel;m = 750 g = 0.75 kg

Radius of wheel;r = 25 cm = 0.25 m

Final angular velocity; ω_f = 0

Initial angular velocity; ω_i = 220 rpm

Time taken;t = 45 seconds

Converting 220 rpm to rad/s we have;

220 × 2π/60 = 22π/3 rad/s

Equation of rotational motion is;

ω_f = ω_i + αt

Where α is angular acceleration

Making α the subject, we have;

α = (ω_f - ω_i)/t

α = (0 - 22π/3)/45

α = -0.512 rad/s²

The formula for the Moment of inertia is given as;

I = ½mr²

I = (1/2) × 0.75 × 0.25²

I = 0.0234375 kg.m²

Formula for torque is;

Torque = Iα

For α, we will take the absolute value as the negative sign denotes decrease in acceleration.

Thus;

Torque = 0.0234375 × 0.512

Torque = 0.012 N.m

A belt is run over two drums. The larger drum has weight 4 lbs and a radius of gyration of 1.25 inches while the smaller drum has weight 2.7 lbs and a radius of gyration of 0.75 inches. The tension from the smaller drum is held constant at 6 lbs. If it is known that the speed of the belt is 11 ft/s after 0.16 s, what is the tension between the drums?

Answers

Answer:

269 lb

Explanation:

We first find the tangential acceleration, a on the drums

a = Δv/Δt since the speed of the belt is 11 ft/s after 0.16 s, Δv = 11 ft/s and Δt = 0.16 s

a = Δv/Δt = 11 ft/s ÷ 0.16 s = 68.75 ft/s²

Since torque τ = Tk = Iα where I = moment of inertia of larger drum = Mk² where m = mass of larger drum = 4 lbs, k = radius of gyration of larger drum = 1.25 inches, T = tension due to larger drum and α = angular acceleration of larger drum.

So, T = Iα/k = Mk²α/k = Mαk = Ma (since a = αk )

T = 4 lbs × 68.75 ft/s² = 275 lb

The tension due to the smaller drum is T' = 6 lb  .

So the net tension in the belt is T'' = T - T' = 275 lb - 6 lb = 269 lb

Two long straight wires carry currents perpendicular to the xy plane. One carries a current of 50 A and passes through the point x = 5.0 cm on the x axis. The second wire has a current of 80 A and passes through the point y = 4.0 cm on the y axis. What is the magnitude of the resulting magnetic field at the origin?

Answers

Answer:

450 x10^-6 T

Explanation:

We know that the magnetic of each wire is derived from

ByB= uoi/2pir

Thus B1= 4 x 3.14 x 10^-7 x50/( 2 x 3.142x 0.05)

= 0.2 x 10^ -3T

B2=

4 x 3.14 x 10^-7 x80/( 2 x 3.142x 0.04)

= 0.4 x 10^ -3T

So

(Bnet)² = (Bx)² + ( By)²

= (0.2² + 0.4²)mT

= 450 x10^-6T

The magnitude of magnetic field at the origin is required.

The magnitude of resulting magnetic field at origin is [tex]447.2\ \mu\text{T}[/tex]

x = Location at x axis = 5 cm

y = Location at y axis = 4 cm

[tex]I_x[/tex] = Current at the x axis point = 50 A

[tex]I_y[/tex] = Current at the y axis point = 80 A

[tex]\mu_0[/tex] = Vacuum permeability = [tex]4\pi\times 10^{-7}\ \text{H/m}[/tex]

Magnitude of the magnetic field is given by

[tex]B=\dfrac{\mu_0I}{2\pi r}[/tex]

Finding the net magnetic field using the Pythagoras theorem

[tex]B^2=B_x^2+B_y^2\\\Rightarrow B^2=\left(\dfrac{\mu_0I_x}{2\pi x}\right)^2+\left(\dfrac{\mu_0I_y}{2\pi y}\right)^2\\\Rightarrow B=\dfrac{\mu_0}{2\pi}\sqrt{\left(\dfrac{I_x}{x}\right)^2+\left(\dfrac{I_y}{y}\right)^2}\\\Rightarrow B=\dfrac{4\pi\times 10^{-7}}{2\pi}\sqrt{\left(\dfrac{50}{0.05}\right)^2+\left(\dfrac{80}{0.04}\right)^2}\\\Rightarrow B=0.0004472=447.2\ \mu\text{T}[/tex]

The magnitude of resulting magnetic field at origin is [tex]447.2\ \mu\text{T}[/tex]

Learn more:

https://brainly.com/question/14573987?referrer=searchResults

The valid digits in a measurement are called _____ digits. Question 10 options: insignificant significant uncertain non-zero

Answers

Answer:

Significant

Explanation:

Valid digits in measurements are called significant digits, or also called significant figures.

These significant digits allow data and measurements to be more accurate and exact.

Answer:

Significant digits

Explanation

Took the test got it right

An air-filled capacitor consists of two parallel plates, each with an area of 7.60 cm^2, separated by a distance of 1.70 mm. A 25.0-V potential difference is applied to these plates. Calculate: a. the electric field between the plates b. the surface charge density c. the capacitance d. the charge on each plate.

Answers

Answer:

(a) 1.47 x 10⁴ V/m

(b) 1.28 x 10⁻⁷C/m²

(c) 3.9 x 10⁻¹²F

(d) 9.75 x 10⁻¹¹C

Explanation:

(a) For a parallel plate capacitor, the electric field E between the plates is given by;

E = V / d               -----------(i)

Where;

V = potential difference applied to the plates

d = distance between these plates

From the question;

V = 25.0V

d = 1.70mm = 0.0017m

Substitute these values into equation (i) as follows;

E = 25.0 / 0.0017

E = 1.47 x 10⁴ V/m

(c) The capacitance of the capacitor is given by

C = Aε₀ / d

Where

C = capacitance

A = Area of the plates = 7.60cm² = 0.00076m²

ε₀ = permittivity of free space =  8.85 x 10⁻¹²F/m

d = 1.70mm = 0.0017m

C = 0.00076 x  8.85 x 10⁻¹² / 0.0017

C = 3.9 x 10⁻¹²F

(d) The charge, Q, on each plate can be found as follows;

Q = C V

Q =  3.9 x 10⁻¹² x 25.0

Q = 9.75 x 10⁻¹¹C

Now since we have found other quantities, it is way easier to find the surface charge density.

(b) The surface charge density, σ, is the ratio of the charge Q on each plate to the area A of the plates. i.e

σ = Q / A

σ = 9.75 x 10⁻¹¹ /  0.00076

σ = 1.28 x 10⁻⁷C/m²

Consider a hydraulic lift that uses an input piston with an area of 0.5m2. An input force of 15N is exerted on this piston. If the output piston has an area of 3.5m? What is the output force?

Answers

Answer:

The output force of the piston is 105 N.

Explanation:

Given;

the area of the input piston, A₁ = 0.5 m²

the input force of the piston, F₁ = 15 N

the area of the output piston, A₀ = 3.5 m²

the output force of the piston, F₀ = ?

The pressure of the  hydraulic lift is given by;

[tex]P = \frac{F}{A}[/tex]

where;

P is the hydraulic pressure

F is the piston force

A is the area of the piston

[tex]P = \frac{F}{A} \\\\\frac{F_o}{A_o} = \frac{F_i}{A_i} \\\\F_o = \frac{F_iA_o}{A_i} \\\\F_o = \frac{15*3.5}{0.5} \\\\F_o = 105 \ N[/tex]

Therefore,  the output force of the piston is 105 N.

In a double‑slit interference experiment, the wavelength is lambda=487 nm , the slit separation is d=0.200 mm , and the screen is D=48.0 cm away from the slits. What is the linear distance Δx between the eighth order maximum and the fourth order maximum on the screen?

Answers

Answer:

Δx = 4.68 x 10⁻³ m = 4.68 mm

Explanation:

The distance between the consecutive maxima, in Young's Double Slit Experiment is given bu the following formula:

Δx = λD/d

So, the distance between the eighth order maximum and the fourth order maximum on the screen will be given as:

Δx = 4λD/d

where,

Δx = distance between eighth order maximum and fourth order maximum=?

λ = wavelength = 487 nm = 4.87 x 10⁻⁷ m

d = slit separation = 0.2 mm = 2 x 10⁻⁴ m

D = Distance between slits and screen = 48 cm = 0.48 m

Therefore,

Δx = (4)(4.87 x 10⁻⁷ m)(0.48 m)/(2 x 10⁻⁴ m)

Δx = 4.68 x 10⁻³ m = 4.68 mm

g Two point sources emit sound waves of 1.0-m wavelength. The source 1 is at x = 0 and source 2 is at x = 2.0 m along x-axis. The sources, 2.0 m apart, emit waves which are in phase with each other at the instant of emission. Where, along the line between the sources, are the waves out of phase with each other by π radians?

Answers

Answer:

constructive interferencia  0, 1 , 2 m

destructive inteferencia   1/4, 3/4. 5/4, 7/4 m

Explanation:

This exercise is equivalent to the double slit experiment, the two sources are in phase and separated by a distance, therefore the waves observed in the line between them have an optical path difference and a phase difference, given by the expression

            Δr / λ = Φ / 2π

            Δr = Φ/2π   λ

let's apply this expression to our case

λ = 1 m

            Δr = Φ 1 / 2π

We have constructive interference for angle of  Φ = 0, 2π, ...

let's find the values ​​where they occur

  Φ         Δr

   0          0

  2π         1

  4π        2

Destructive interference occurs by    Φ = π /2, 3π / 2, ...

 Φ          Δr

 π/2       ¼ m

 3π /2    ¾ m

5π /2     5/4 m

7π /2      7/4 m

A 6.7 cm diameter circular loop of wire is in a 1.27 T magnetic field. The loop is removed from the field in 0.16 ss . Assume that the loop is perpendicular to the magnetic field.

Required:
What is the average induced emf?

Answers

Answer:

The induced emf is [tex]\epsilon = 0.0280 \ V[/tex]

Explanation:

From the question we are told

    The diameter of the loop is  [tex]d = 6.7 cm = 0.067 \ m[/tex]

    The magnetic field is  [tex]B = 1.27 \ T[/tex]

    The time taken is  [tex]dt = 0.16 \ s[/tex]

Generally the induced emf is mathematically represented as

          [tex]\epsilon = - N * \frac{\Delta \phi}{dt}[/tex]

Where  N =  1 given that it is only a circular loop

            [tex]\Delta \phi = \Delta B * A[/tex]

Where  [tex]\Delta B = B_f - B_i[/tex]

   where [tex]B_i[/tex] is  1.27 T  given that the loop of wire was initially in the magnetic field

    and  [tex]B_f[/tex] is  0 T given that the loop was removed from the magnetic field

Now the area of the of the loop is evaluated as

          [tex]A = \pi r^2[/tex]

Where r is the radius which is mathematically represented as

       [tex]r = \frac{d}{2}[/tex]

substituting values

       [tex]r = \frac{0.067}{2}[/tex]

        [tex]r = 0.0335 \ m[/tex]

So

         [tex]A = 3.142 * (0.0335)^2[/tex]

          [tex]A = 0.00353 \ m^2[/tex]

So

      [tex]\Delta \phi = (0- 127)* (0.00353)[/tex]

      [tex]\Delta \phi = -0.00448 Weber[/tex]

=>    [tex]\epsilon = - 1 * \frac{-0.00448}{0.16}[/tex]

=>   [tex]\epsilon = 0.0280 \ V[/tex]

A series LR circuit contains an emf source of 19 V having no internal resistance, a resistor, a 22 H inductor having no appreciable resistance, and a switch. If the emf across the inductor is 80% of its maximum value 4 s after the switch is closed, what is the resistance of the resistor

Answers

Answer: R = 394.36ohm

Explanation: In a LR circuit, voltage for a resistor in function of time is given by:

[tex]V(t) = \epsilon. e^{-t.\frac{L}{R} }[/tex]

ε is emf

L is indutance of inductor

R is resistance of resistor

After 4s, emf = 0.8*19, so:

[tex]0.8*19 = 19. e^{-4.\frac{22}{R} }[/tex]

[tex]0.8 = e^{-\frac{88}{R} }[/tex]

[tex]ln(0.8) = ln(e^{-\frac{88}{R} })[/tex]

[tex]ln(0.8) = -\frac{88}{R}[/tex]

[tex]R = -\frac{88}{ln(0.8)}[/tex]

R = 394.36

In this LR circuit, the resistance of the resistor is 394.36ohms.

An electron moves through a uniform electric field E = (2.60i + 5.90j) V/m and a uniform magnetic field B= 0.400k in m/s^2.) T.

Required:
a. Determine the acceleration of the electron when it has a velocity v= 8.0i m/s.
b. What If? For the electron moving along the x-axis in the fields in part (a), what speed (in m/s) would result in the electron also experiencing an acceleration directed along the x-axis?

Answers

A) The acceleration of the electron along the x -axis is ; 4.57 * 10⁻¹¹ m /s²

B) The speed that would result in the electron experiencing an acceleration  along the x-axis is 4.57 * 10⁻¹¹  * time  m/s

Given Data :

Electric field ( E ) = ( 2.60i + 5.90j ) V/m

Magnetic field ( B ) = 0.400 k T

Velocity ( v ) = 8.0i m/s

A) Determine the acceleration of the electron

Applying Lorentz force

F = q ( E + ( v * B ) )

  = 1.6 * 10⁻¹⁹ ( 2.60 i  +  5.90 j  + ( 8.0 i * 0.4 k ) ) N

  = 1.6 * 10⁻¹⁹ ( 2.60 i  +  5.90 j + ( 3.2 ( -j ) ) N

  = 1.6 * 10⁻¹⁹ (  2.60 i  + 2.70 j ) N

Ax = 4.57 * 10⁻¹¹ m /s²

B)  The speed of the electron moving along the x-axis

Ax = Fx / Mc

    = ( 1.6 * 10⁻¹⁹ * 2.60 ) / 9.1 * 10⁻³¹

    = ( 4.16 * 10⁻¹⁹ ) / 9.1 * 10⁻³¹

    = 0.457 * 10¹²

    = 4.57 * 10⁻¹¹ m /s²

Therefore The speed that would result in the electron experiencing an acceleration  along the x-axis is 4.57 * 10⁻¹¹  * time

Learn more about acceleration of an electron: https://brainly.com/question/15585270

The unstretched rope is 20 meters. After getting dunked a few times the 80 kg jumper comes to rest above the water with the rope now stretched to 30 meters. What is the maximum length of the rope in meters when the jumper is being dunked?

Answers

Answer:

Therefore maximum stretch is y2 = 32.36 m

Explanation:

In this problem let's use the initial data to find the string constant, let's apply Newton's second law when in equilibrium

        [tex]F_{e}[/tex] - W = 0

         k Δx = mg

         k = mg / Δx

         k = 80 9.8 / (30-20)

         k = 78.4 N / m

now let's use conservation of energy to find the velocity of the body just as the string starts to stretch y = 20 m

starting point. When will you jump

         Em₀ = U = mg y

final point. Just when the rope starts to stretch

         [tex]Em_{f}[/tex] = K = ½ m v²

         Em₀ = Em_{f}

          mg y = ½ m v²

          v = √ 2g y

          v = √ (2 9.8 20)

          v = 19.8 m / s

now all kinetic energy is transformed into elastic energy

starting point

            Em₀ = K = ½ m v²

final point

            Em_{f} = [tex]K_{e}[/tex] + U = ½ k y² + m g y

            Emo = Em_{f}

           ½ m v² = ½ k y² + mgy

            k y² + 2 m g y - m v² = 0

         

we substitute the values ​​and solve the quadratic equation

            78.4 y² + 2 80 9.8 y - 80 19.8² = 0

            78.4 y² + 1568 y - 31363.2 = 0

              y² + 20 y - 400 = 0

              y = [- 20 ±√ (20 2 +4 400)] / 2

              y = [-20 ± 44.72] / 2

the solutions are

              y₁ = 12.36 m

              y₂ = 32.36 m

These solutions correspond to the maximum stretch and its rebound.

Therefore maximum stretch is y2 = 32.36 m

Charge of uniform linear density (6.7 nC/m) is distributed along the entire x axis. Determine the magnitude of the electric field on the y axis at y

Answers

Thw question is not complete. The complete question is;

Charge of uniform linear density (6.7 nCim) is distributed along the entire x axis. Determine the magnitude of the electric field on the y axis at y = 1.6 m. a. 32 N/C b. 150 NC c 75 N/C d. 49 N/C e. 63 NC

Answer:

Option C: E = 75 N/C

Explanation:

We are given;

Uniform linear density; λ = 6.7 nC/m = 6.7 × 10^(-9) C/m

Distance on the y-axis; d = 1.6 m

Now, the formula for electric field with uniform linear density is given as;

E = λ/(2•π•r•ε_o)

Where;

E is electric field

λ is uniform linear density = 6.7 × 10^(-9) C/m

r is distance = 1.6m

ε_o is a constant = 8.85 × 10^(-12) C²/N.m²

Thus;

E = (6.7 × 10^(-9))/(2π × 1.6 × 8.85 × 10^(-12))

E = 75.31 N/C ≈ 75 N/C

an electric device is plugged into a 110v wall socket. if the device consumes 500 w of power, what is the resistance of the device

Answers

Answer: R=24.2Ω

Explanation: Power is rate of work being done in an electric circuit. It relates to voltage, current and resistance through the following formulas:

P=V.i

P=R.i²

[tex]P=\frac{V^{2}}{R}[/tex]

The resistance of the system is:

[tex]P=\frac{V^{2}}{R}[/tex]

[tex]R=\frac{V^{2}}{P}[/tex]

[tex]R=\frac{110^{2}}{500}[/tex]

R = 24.2Ω

For the device, resistance is 24.2Ω.

Suppose that a sound source is emitting waves uniformly in all directions. If you move to a point twice as far away from the source, the frequency of the sound will be:________.
a. one-fourth as great.
b. half as great.
c. twice as great.
d. unchanged.

Answers

Answer:

d. unchanged.

Explanation:

The frequency of a wave is dependent on the speed of the wave and the wavelength of the wave. The frequency is characteristic for a wave, and does not change with distance. This is unlike the amplitude which determines the intensity, which decreases with distance.

In a wave, the velocity of propagation of a wave is the product of its wavelength and its frequency. The speed of sound does not change with distance, except when entering from one medium to another, and we can see from

v = fλ

that the frequency is tied to the wave, and does not change throughout the waveform.

where v is the speed of the sound wave

f is the frequency

λ is the wavelength of the sound wave.

g In the atmosphere, the shortest wavelength electromagnetic waves are called A. infrared waves. B. ultraviolet waves. C. X-rays. D. gamma rays. E.

Answers

Answer:gamma ray

Explanation:

Other Questions
Want our companion from birth to death , familiar as the seasons or the earth varying only degrees .Which theme is represented in this excerpt from Nectar in a Sieve?A. Knowledge as powerB. The necessary of hope for survivalC. Suffering as a way of lifeD. The imminence of loss What is the equation that is perpendicular to the line y=2x-3 and passes through the point (-6,5)? Show all of your work. Gary frequently types his class assignment. His ring automatically types the letter O. What is Gary using when he types?A.Keyboard shortcut B.Home row C.Muscle memory D.Windows logo Though not specifically cited in the producer's contract, the producer is expected to telephone prospects on the insurer's behalf to arrange sales appointments. This is an example of what kind of producer authority? A container in form of a frustum of a cone is 16 cm in diameter at the open end and 24 cm diameter at the bottom. If the vertical depth of the container is 8 cm calculate the capacity of the container. Does the moon light originate from the moon only A 30-cm long string, with one end clamped and the other free to move transversely, is vibrating in its second harmonic. The wavelength of the constituent traveling waves is: Payroll deductions are the same for all employees. True False what is the frequency and wavelength of a remote control? PLEASE HURRY Graph the function. h ( x ) = 8 ( 3 4 ) x h(x)=8( 4 3 ) A firm has current assets of $36,000, cash of $5,000, current liabilities of $20,000, total assets of $80,000 and total liabilities of $45,000. What is its net working capital? a. $16,000 b. $28,000 c. $35,000 d. $44,000 arner HomeClasswork for Alge.VNext >Pretest: Circles with and Without CoordinatesSubmit TestReade18The curved parts of the figure are arcs centered at points A and C. What is the approximate length of boundary ABCD? Use the value = 3and round the answer to one decimal place.5301205 The entire graph of the function h is shown below write the domain and range of h using interval notation. Which statement describes one feature of Rutherford's model of the atom?O The atom is mostly empty space.O The atom cannot be divided into smaller particles.O Electron clouds are regions where electrons are likely to be found.O The electrons are located within the positive material of the nucleus. A car is traveling to the right with a speed of 2.0\,\dfrac{\text m}{\text s}2.0 s m 2, point, 0, start fraction, start text, m, end text, divided by, start text, s, end text, end fraction on an icy road when the brakes are applied. The car slows down with constant acceleration for 3.0\,\text m3.0m3, point, 0, start text, m, end text until it comes to a stop. How long does it take the car to slide to a stop? Marigold Corp. issues $220,000, 20-year, 8% bonds at 104. Prepare the journal entry to record the sale of these bonds on June 1, 2020 the sum of the prime divisors of 2001 is a) 55, b) 56, c) 670, d) 671, e) 2001 verb of search in english y x1 x210 1 1611 5 1115 5 1415 9 1120 7 123 11 827 16 732 21 3a. Using technology, construct a multiple regression model with the given data.b. Interpret the meaning of the values for b1 and b2. why does human want change over a period of time ?