Answer:
Hence the amount of heat transfer is 918.75 Btu.
Explanation:
Now,
Click Stop Using the slider set the following: coeff of restitution to 1.00 A velocity (m/s) to 6.0 A mass (kg) to 6.0 B velocity (m/s) to 0.0 Calculate what range can the mass of B be to cause mass A to bounce off after the collision. Calculate what range can the mass of B be to cause mass A to continue forward after the collision. Check your calculations with the simulation. What are the ranges of B mass (kg)
Answer:
[tex]M_b=6kg[/tex]
Explanation:
From the question we are told that:
Coefficient of restitution [tex]\mu=1.00[/tex]
Mass A [tex]M_a=6kg[/tex]
Initial Velocity of A [tex]U_a=6m/s[/tex]
Initial Velocity of B [tex]U_b=0m/s[/tex]
Generally the equation for Coefficient of restitution is mathematically given by
[tex]\mu=\frac{V_b-V_a}{U_a-U_b}[/tex]
[tex]1=\frac{v_B}{6}[/tex]
[tex]V_b=6*1[/tex]
[tex]V_b=6m/s[/tex]
Generally the equation for conservation of linear momentum is mathematically given by
[tex]M_aU_a+M_bU_b=M_aV_a+M_bV_b[/tex]
[tex]6*6+=M_b*6[/tex]
[tex]M_b=6kg[/tex]
Which of the following is a noncontact force?
O A. Friction between your hands
O B. A man pushing on a wall
O C. Air resistance on a car
D. Gravity between you and the Sun
Answer:
Gravity between you and the sun
Three 15-Ω and two 25-Ω light bulbs and a 24 V battery are connected in a series circuit. What is the current that passes through each bulb?
1) 0.18 A
2) 0.25 A
3) 0.51 A
4) 0.74 A
5) The current will be 1.6 A in the 15-Ω bulbs and 0.96 A in the 25-Ω bulbs.
Answer:
I = 0.25 A
Explanation:
Given that,
Three 15 ohms and two 25 ohms light bulbs and a 24 V battery are connected in a series circuit.
In series combination, the equivalent resistance is given by :
[tex]R=R_1+R_2+R_3+....[/tex]
So,
[tex]R=15+15+15+25+25\\\\=95\ \Omega[/tex]
The current each resistor remains the same in series combination. It can be calculated using Ohm's law i.e.
V = IR
[tex]I=\dfrac{V}{R}\\\\I=\dfrac{24}{95}\\\\I=0.25\ A[/tex]
So, the current of 0.25 A passes through each bulb.
Which of the following represents the velocity time relationship for a falling apple?
Answer "a" would be correct.
Answer:
d
Explanation:
There's an acceleration from gravity, thus the velocity is becoming faster and faster as it reaches the ground. Thus its D
Brainliest please~
Which physical phenomenon is illustrated by the fact that the prism has different refractive indices for different colors
Answer:
The incoming white light is composed of light of different colors,
Since these different colors have different refractive indices they are refracted at different angles from one another.
The output light is then separated by color creating a color spectrum.
Since n is greater for shorter wavelengths (violet colors) these wavelengths are refracted thru the larger angles.
A point charge of -3.0 x 10-5C is placed at the origin of coordinates. Find the electric field at the point 3. r= 50 m on the x-axis
Answer: -5×10-3
Explanation:
E=kq/r
A 10.0 L tank contains 0.329 kg of helium at 28.0 ∘C. The molar mass of helium is 4.00 g/mol . Part A How many moles of helium are in the tank? Express your answer in moles.
Answer:
82.25 moles of He
Explanation:
From the question given above, the following data were obtained:
Volume (V) = 10 L
Mass of He = 0.329 Kg
Temperature (T) = 28.0 °C
Molar mass of He = 4 g/mol
Mole of He =?
Next, we shall convert 0.329 Kg of He to g. This can be obtained as follow:
1 Kg = 1000 g
Therefore,
0.329 Kg = 0.329 Kg × 1000 g / 1 Kg
0.329 Kg = 329 g
Thus, 0.329 Kg is equivalent to 329 g.
Finally, we shall determine the number of mole of He in the tank. This can be obtained as illustrated below:
Mass of He = 329 g
Molar mass of He = 4 g/mol
Mole of He =?
Mole = mass / molar mass
Mole of He = 329 / 4
Mole of He = 82.25 moles
Therefore, there are 82.25 moles of He in the tank.
David is driving a steady 30 m/s when he passes Tina, who is sitting in her car at rest. Tina begins to accelerate at a steady 2.0 m/s2 at the instant when David passes. How far does Tina drive before passing David?
Why don’t you see tides ( like those of the ocean ) in your swimming pool ?
A mass-spring system oscillates with an amplitude of 4.20 cm. If the spring constant is 262 N/m and the mass is 560 g, determine the mechanical energy of the system.
Answer:
[tex]M.E=41J[/tex]
Explanation:
From the question we are told that:
Amplitude [tex]a=4.20cm[/tex]
Spring Constant [tex]K=262N/m[/tex]
Mass [tex]m=560g[/tex]
Generally the equation for mechanical energy is mathematically given by
[tex]M.E=\frac{1}{2}km^2[/tex]
[tex]M.E=0.5*262*0.56^2[/tex]
[tex]M.E=41J[/tex]
What happens to the acceleration if you triple the force that you apply to the painting with your hand? (Use the values from the example given in the previous part of the lecture.) Submit All Answers Answer: Not yet correct, tries 1/5 3. A driver slams on the car brakes, and the car skids to a halt. Which of the free body diagrams below best matches the braking force on the car. (Note: The car is moving in the forward direction to the right.] (A) (B) (C) (D) No more tries. Hint: (Explanation) The answer is A. The car is moving to the right and slowing down, so the acceleration points to the left. The only significant force acting on the car is the braking force, so this must be pointing left because the net force always shares the same direction as the object's acceleration. 4. Suppose that the car comes to a stop from a speed of 40 mi/hr in 24 seconds. What was the car's acceleration rate (assuming it is constant). Answer: Submit Al Answers Last Answer: 55 N Only a number required, Computer reads units of N, tries 0/5. 5. What is the magnitude (or strength) of the braking force acting on the car? [The car's mass is 1200 kg.) Answer: Submit Al Answers Last Answer: 55N Not yet correct, tries 0/5
Answer:
2) when acceleration triples force triples, 3) a diagram with dynamic friction force in the opposite direction of movement of the car
4) a = 2.44 ft / s², 5) fr = 894.3 N
Explanation:
In this exercise you are asked to answer some short questions
2) Newton's second law is
F = m a
when acceleration triples force triples
3) Unfortunately, the diagrams are not shown, but the correct one is one where the axis of movement has a friction force in the opposite direction of movement, as well as indicating that the car slips, the friction coefficient of dynamic.
The correct answer is: a diagram with dynamic friction force in the opposite direction of movement of the car
4) let's use the scientific expressions
v = v₀ - a t
as the car stops v = 0
a = v₀ / t
let's reduce the magnitudes
v₀ = 40 mile / h ([tex]\frac{5280 ft}{1 mile}[/tex]) ([tex]\frac{1 h}{3600 s}[/tex]) = 58.667 ft / s
a = 58.667 / 24
a = 2.44 ft / s²
5) let's use Newton's second law
fr = m a
We must be careful not to mix the units, we will reduce the acceleration to the system Yes
a = 2.44 ft / s² (1 m / 3.28 ft) = 0.745 m / s²
fr = 1200 0.745
fr = 894.3 N
what is time taken by radio wave to go and return back from communication satellite to earth??
Answer:
Radio waves are used to carry satellite signals. These waves travel at 300,000 km/s (the speed of light). This means that a signal sent to a satellite 38,000 km away takes 0.13 s to reach the satellite and another 0.13 s for the return signal to be received back on Earth.
Explanation:
hope it help
The following two waves are sent in opposite directions on a horizontal string so as to create a standing wave in a vertical plane: y1(x, t) = (8.20 mm) sin(4.00πx - 430πt) y2(x, t) = (8.20 mm) sin(4.00πx + 430πt), with x in meters and t in seconds. An antinode is located at point A. In the time interval that point takes to move from maximum upward displacement to maximum downward displacement, how far does each wave move along the string?
Answer:
Explanation:
From the information given:
The angular frequency ω = 430 π rad/s
The wavenumber k = 4.00π which can be expressed by the equation:
k = ω/v
∴
4.00 = 430 /v
v = 430/4.00
v = 107.5 m/s
Similarly: k = ω/v = 2πf/fλ
We can say that:
k = 2π/λ
4.00 π = 2π/λ
wavelength λ = 2π/4.00 π
wavelength λ = 0.5 m
frequency of the wave can now be calculated by using the formula:
f = v/λ
f = 107.5/0.5
f = 215 Hz
Also, the Period(T) = 1/215 secs
The time at which particle proceeds from point A to its maximum upward displacement and to its maximum downward displacement can be computed as t = T/2;
Thus, the distance(x) covered by each wave during this time interval(T/2) will be:
x = v * t
x = v * T/2
x = λ/2
x = 0.5/2
x = 0.25 m
Suppose oil spills from a ruptured tanker and spreads in a circular pattern. If the radius of the oil spill increases at a constant rate of 2 m/s, exactly how fast (in m2/s) is the area of the spill increasing when the radius is 39 m?
Explanation:
The area of a circle of radius r is given by
[tex]A = \pi r^2[/tex]
Taking the derivative of A with respect to time t, we get
[tex]\dfrac{dA}{dt} = 2\pi r \dfrac{dr}{dt}[/tex]
We also know that
[tex]\dfrac{dr}{dt} = 2\:\text{m/s}\:\text{at}\:r = 39\:\text{m}[/tex]
[tex]\dfrac{dA}{dt} = 2\pi (39\:\text{m})(2\:\text{m/s})= 490\:\text{m}^2\text{/s}[/tex]
A body starts from rest and accelerates uniformly at 5m/s. Calculate the time taken by the body to cover a distance of 1km
Answer:
20 seconds
Explanation:
We are given 2 givens in the first statement
v0=0 and a=5
And we are trying to find time needed to cover 1km or 1000m.
So we use
x-x0=v0t+1/2at²
Plug in givens
1000=0+2.5t²
solve for t
t²=400
t=20s
A body of mass 2kg is released from from a point 100m above the ground level. calculate kinetic energy 80m from the point of released.
Answer:
1568J
Explanation:
Since the problem states 80 m from the point of drop, the height relative to the ground will be 100-80=20m.
Use conservation of Energy
ΔUg+ΔKE=0
ΔUg= mgΔh=2*9.8*(20-100)=-1568J
ΔKE-1568J=0
ΔKE=1568J
since KEi= 0 since the object is at rest 100m up, the kinetic energy 20meters above the ground is 1568J
Electrical resistance is a measure of resistance to the flow of _?____
Resistance is a measure of the opposition to current flow in an electrical circuit. Resistance is measured in ohms, symbolized by the Greek letter omega (Ω). Ohms are named after Georg Simon Ohm (1784-1854), a German physicist who studied the relationship between voltage, current and resistance.
Hope this helps!!!!
Answer:
electric current
Explanation:
The answer is electric current
A planet of mass m moves around the Sun of mass M in an elliptical orbit. The maximum and minimum distance of the planet from the Sun are r1 and r2, respectively. Find the relation between the time period of the planet in terms of r1 and r2.
Answer:
the relation between the time period of the planet is
T = 2π √[( r1 + r2 )³ / 8GM ]
Explanation:
Given the data i the question;
mass of sun = M
minimum and maximum distance = r1 and r2 respectively
Now, using Kepler's third law,
" the square of period T of any planet is proportional to the cube of average distance "
T² ∝ R³
average distance a = ( r1 + r2 ) / 2
we know that
T² = 4π²a³ / GM
T² = 4π² [( ( r1 + r2 ) / 2 )³ / GM ]
T² = 4π² [( ( r1 + r2 )³ / 8 ) / GM ]
T² = 4π² [( r1 + r2 )³ / 8GM ]
T = √[ 4π² [( r1 + r2 )³ / 8GM ] ]
T = 2π √[( r1 + r2 )³ / 8GM ]
Therefore, the relation between the time period of the planet is
T = 2π √[( r1 + r2 )³ / 8GM ]
1. A block of mass m = 10.0 kg is released with a speed v from a frictionless incline at height 7.00 m. The
block reaches the horizontal ground and then slides up another frictionless incline as shown in Fig. 1.1. If the
horizontal surface is also frictionless and the maximum height that the block can slide up to is 26.0 m, (a) what
is the speed v of the block equal to when it is released and (b) what is the speed of the block when it reaches
the horizontal ground? If a portion of length 1 2.00 m on the horizontal surface is frictional with coefficient
of kinetic friction uk = 0.500 (Fig. 1.2) and the block is released at the same height 7.00 m with the same
speed v determined in (a), (c) what is the maximum height that the block can reach, (d) what is the speed of the
block at half of the maximum height, and (e) how many times will the block cross the frictional region before
it stops completely?
1 = 2.00 m (frictional region)
Let A be the position of the block at the top of the first incline; B its position at the bottom of the first incline; C its position at the bottom of the second incline; and D its position at the top of the second incline. I'll denote the energy of the block at a given point by E (point).
At point A, the block has total energy
E (A) = (10.0 kg) (9.80 m/s²) (7.00 m) + 1/2 (10.0 kg) v₀²
E (A) = 686 J + 1/2 (10.0 kg) v₀²
At point B, the block's potential energy is converted into kinetic energy, so that its total energy is
E (B) = 1/2 (10.0 kg) v₁²
The block then slides over the horizontal surface with constant speed v₁ until it reaches point C and slides up a maximum height of 26.0 m to point D. Its total energy at D is purely potential energy,
E (D) = (10.0 kg) (9.80 m/s²) (26.0 m) = 2548 J
Throughout this whole process, energy is conserved, so
E (A) = E (B) = E (C) = E (D)
(a) Solve for v₀ :
686 J + 1/2 (10.0 kg) v₀² = 2548 J
==> v₀ ≈ 19.3 m/s
(b) Solve for v₁ :
1/2 (10.0 kg) v₁² = 2548 J
==> v₁ ≈ 22.6 m/s
Now if the horizontal surface is not frictionless, kinetic friction will contribute some negative work to slow down the block between points C and D. Check the net forces acting on the block over this region:
• net horizontal force:
∑ F = -f = ma
• net vertical force:
∑ F = n - mg = 0
where f is the magnitude of kinetic friction, a is the block's acceleration, n is the mag. of the normal force, and mg is the block's weight. Solve for a :
n = mg = (10.0 kg) (9.80 m/s²) = 98.0 N
f = µn = 0.500 (98.0 N) = 49.0 N
==> - (49.0 N) = (10.0 kg) a
==> a = - 4.90 m/s²
The block decelerates uniformly over a distance 2.00 m and slows down to a speed v₂ such that
v₂² - v₁² = 2 (-4.90 m/s²) (2.00 m)
==> v₂² = 490 m²/s²
and thus the block has total/kinetic energy
E (C) = 1/2 (10.0 kg) v₂² = 2450 J
(c) The block then slides a height h up the frictionless incline to D, where its kinetic energy is again converted to potential energy. With no friction, E (C) = E (D), so
2450 J = (10.0 kg) (9.80 m/s²) h
==> h = 25.0 m
(d) At half the maximum height, the block has speed v₃ such that
2450 J = (10.0 kg) (9.80 m/s²) (h/2) + 1/2 (10.0 kg) v₃²
==> v₃ ≈ 15.7 m/s
The block loses speed and thus energy as it moves between B and C, but its energy is conserved elsewhere. If we ignore the inclines and pretend that the block is sliding over a long horizontal surface, then its velocity v at time t is given by
v = v₁ + at = 22.6 m/s - (4.90 m/s²) t
The block comes to a rest when v = 0 :
0 = 22.6 m/s - (4.90 m/s²) t
==> t ≈ 4.61 s
It covers a distance x after time t of
x = v₁t + 1/2 at ²
so when it comes to a complete stop, it will have moved a distance of
x = (22.6 m/s) (4.61 s) + 1/2 (-4.90 m/s²) (4.61 s)² = 52.0 m
(e) The block crosses the rough region
(52.0 m) / (2.00 m) = 26 times
The weight of a hydraulic barber's chair with a client is 2100 N. When the barber steps on the input piston with a force of 44 N, the output plunger of a hydraulic system begins to lift the chair. Determine the ratio of the radius of the output plunger to the radius of the input piston.
Answer:
[tex]\frac{r_1}{r_2}=6.9[/tex]
Explanation:
According to Pascal's Law, the pressure transmitted from input pedal to the output plunger must be same:
[tex]P_1 = P_2\\\\\frac{F_1}{A_1}=\frac{F_2}{A_2}\\\\\frac{F_1}{F_2}=\frac{A_1}{A_2}\\\\\frac{F_1}{F_2}=\frac{\pi r_1^2}{\pi r_2^2}\\\\\frac{F_1}{F_2}=\frac{r_1^2}{r_2^2}[/tex]
where,
F₁ = Load lifted by output plunger = 2100 N
F₂ = Force applied on input piston = 44 N
r₁ = radius of output plunger
r₂ = radius of input piston
Therefore,
[tex]\frac{r_1^2}{r_2^2}=\frac{2100\ N}{44\ N}\\\\\frac{r_1}{r_2}=\sqrt{\frac{2100\ N}{44\ N}} \\\\\frac{r_1}{r_2}=6.9[/tex]
g A mass of 2.0 kg traveling at 3.0 m/s along a smooth, horizontal plane hits a relaxed spring. The mass is slowed to zero velocity when the spring has been compressed by 0.15 m. What is the spring constant of the spring
By the work-energy theorem, the total work done on the mass by the spring is equal to the change in the mass's kinetic energy:
W = ∆K
and the work done by a spring with constant k as it gets compressed a distance x is -1/2 kx ²; the work it does is negative because the restoring force of the spring points opposite the direction in which it's getting compressed.
So we have
-1/2 k (0.15 m)² = 0 - 1/2 (2.0 kg) (3.0 m/s)²
Solve for k to get k = 800 N/m.
Based on the information in the table, what
is the acceleration of this object?
t(s) v(m/s)
0.0
9.0
1.0
4.0
2.0
-1.0
3.0
-6.0
A. -5.0 m/s2
B. -2.0 m/s2
C. 4.0 m/s2
D. 0.0 m/s2
Answer:
Option A. –5 m/s²
Explanation:
From the question given above, the following data were obtained:
Initial velocity (v₁) = 9 m/s
Initial time (t₁) = 0 s
Final velocity (v₂) = –6 m/s
Final time (t₂) = 3 s
Acceleration (a) =?
Next, we shall determine the change in the velocity and time. This can be obtained as follow:
For velocity:
Initial velocity (v₁) = 9 m/s
Final velocity (v₂) = –6 m/s
Change in velocity (Δv) =?
ΔV = v₂ – v₁
ΔV = –6 – 9
ΔV = –15 m/s
For time:
Initial time (t₁) = 0 s
Final time (t₂) = 3 s
Change in time (Δt) =?
Δt = t₂ – t₁
Δt = 3 – 0
Δt = 3 s
Finally, we shall determine the acceleration of the object. This can be obtained as follow:
Change in velocity (Δv) = –15 m/s
Change in time (Δt) = 3 s
Acceleration (a) =?
a = Δv / Δt
a = –15 / 3
a = –5 m/s²
Thus, the acceleration of the object is
–5 m/s².
* A ball is projected horizontally from the top of
a building 19.6m high.
a, How long when the ball take to hit the ground?
b, If the line joining the point of projection to
the point where it hits the ground is 45
with the horizontal. What must be the
initial velocity of the ball?
c,with what vertical verocity does the ball strike
the grounds? (9= 9.8 M152)
Explanation:
Given
Ball is projected horizontally from a building of height [tex]h=19.6\ m[/tex]
time taken to reach ground is given by
[tex]\text{Cosidering vertical motion}\\\Rightarrow h=ut+0.5at^2\\\Rightarrow 19.6=0+0.5\times 9.8t^2\\\Rightarrow t^2=4\\\Rightarrow t=2\ s[/tex]
(b) Line joining the point of projection and the point where it hits the ground makes an angle of [tex]45^{\circ}[/tex]
From the figure, it can be written
[tex]\Rightarrow \tan 45^{\circ}=\dfrac{h}{x}\\\\\Rightarrow x=h\cdot 1\\\Rightarrow x=19.6[/tex]
Considering horizontal motion
[tex]\Rightarrow x=u_xt\\\Rightarrow 19.6=u_x\times 4\\\Rightarrow u_x=4.9\ m/s[/tex]
(c) The vertical velocity with which it strikes the ground is given by
[tex]\Rightarrow v^2-u_y^2=2as\\\Rightarrow v^2-0=2\times 9.8\times 19.6\\\Rightarrow v=\sqrt{384.16}\\\Rightarrow v=19.6\ m/s[/tex]
Thus, the ball strikes with a vertical velocity of [tex]19.6\ m/s[/tex]
Explanation:
Given
Ball is projected horizontally from a building of height
time taken to reach ground is given by
(b) Line joining the point of projection and the point where it hits the ground makes an angle of
From the figure, it can be written
Considering horizontal motion
(c) The vertical velocity with which it strikes the ground is given by
Thus, the ball strikes with a vertical velocity of
What is the total surface charge qint on the interior surface of the conductor (i.e., on the wall of the cavity)
Answer: hello your question is incomplete below is the missing part
A spherical cavity is hollowed out of the interior of a neutral conducting sphere. At the center of the cavity is a point charge, of positive charge q.
answer:
- q
Explanation:
Since the spherical cavity was carved out of a neutral conducting sphere hence the electric field inside this conductor = zero
given that there is a point charge +q at the center of the spherical cavity hence for the electric field inside the conductor to be = zero the total surface charge qint on the wall of the cavity will be -q
Which simple machine is shown in the diagram?
a wedge
a screw
an inclined plane
a wheel and axle
Answer:
Wheel and axle
Explanation:
Which simple machine is shown in the diagram?
a wheel and axle
From the given diagram, the machine shown is actually a wheel and axle
Description of wheel and axle
The wheel and axle is a machine consisting of a wheel attached to a smaller axle so that these two parts rotate together in which a force is transferred from one to the other.
Answer:
Wheel and axle
Explanation:
190 students sit in an auditorium listening to a physics lecture. Because they are thinking hard, each is using 125 W of metabolic power, slightly more than they would use at rest. An air conditioner with a COP of 5.0 is being used to keep the room at a constant temperature. What minimum electric power must be used to operate the air conditioner?
Answer:
W = 4.75 KW
Explanation:
First, we will calculate the heat to be removed:
Q = (No. of students)(Metabolic Power of Each Student)
Q = (190)(125 W)
Q = 23750 W = 23.75 KW
Now the formula of COP is:
[tex]COP = \frac{Q}{W}\\\\W = \frac{Q}{COP}\\\\W = \frac{23.75\ KW}{5}\\\\[/tex]
W = 4.75 KW
How do you find the product of gamma decay?
Answer:
The mass and atomic numbers don't change
Explanation:
An excited atom relaxes to the ground state emitting a photon...called a gamma ray.
The answer is that the mass and atomic numbers don't change.
In gamma decay, the product refers to the nucleus resulting from the emission of a gamma ray. Gamma decay occurs when an excited atomic nucleus releases excess energy in the form of a high-energy photon called a gamma ray.
To find the product of gamma decay, you need to identify the nucleus before and after the decay process. The product nucleus is determined by the parent nucleus that undergoes gamma decay.
During gamma decay, the number of protons and neutrons in the nucleus remains unchanged. Therefore, the identity of the element remains the same, but the energy state of the nucleus is altered.
The product nucleus is typically represented by the same chemical symbol as the parent nucleus, followed by a superscript indicating the mass number (total number of protons and neutrons) and a subscript indicating the atomic number (number of protons).
For example, if a parent nucleus with an atomic number of Z and a mass number of A undergoes gamma decay, the product nucleus will have the same atomic number Z and mass number A.
It's important to note that gamma decay does not involve the emission or absorption of any particles, only the release of electromagnetic radiation (gamma ray).
Thus, the product nucleus remains unchanged in terms of atomic number and mass number.
Know more about gamma decay:
https://brainly.com/question/16039775
#SPJ4
Cell phone conversations are transmitted by high-frequency radio waves. Suppose the signal has wavelength 35 cm while traveling through air. What are the
(a) frequency and
(b) wavelength as the signal travels through 3-mm-thick window glass into your room?
Answer:
(a) 8.57 x 10^8 Hz
(b) 23.3 cm
Explanation:
Wavelength = 35 cm = 0.35 m
speed =3 x10^8 m/s
Let the frequency is f.
(a) The relation is
speed = frequency x wavelength
3 x 10^8 = 0.35 x f
f = 8.57 x 10^8 Hz
(b) refractive index of glass is 1.5
The relation for the refractive index and the wavelength is
wavelength in glass= wavelength in air/ refractive index.
Wavelength in glass= 35/1.5 = 23.3 cm
vector A has a magnitude of 8 unit make an angle of 45° with posetive x axis vector B also has the same magnitude of 8 unit along negative x axis find the magnitude of A+B?
Answer:
45 × 8 units = A + B as formular
what is conservation energy?
Explanation:
Conservation of energy, principle of physics according to which the energy of interacting bodies or particles in a closed system remains constant
hope it is helpful to you