Answer:
Equal to the frictional force
Explanation:
Question; The options given with regards to a similar question posted online are;
A. Equal (equivalent) to the frictional force
B. Larger than the frictional force
C. Equal to the object's weight
D. More than the object's weight
Explanation
According to Newton's first law of motion, every object shall remain at rest or continue moving with uniform (constant speed) motion unless there is a net force acting on the object
Given that the velocity of the massive block, lying on the surface that has friction, being pulled by the rope = Constant
Therefore;
The net force acting on the moving block while being pulled by the rope = 0
From which we have;
The pulling force = The resistive force
Where;
The pulling force = The (pulling) force (applied) on the rope
The resistive force = The frictional force of the surface which tends to prevent the motion of the block
Therefore, given that the net force acting on the block = 0
The force on the rope = The frictional force (of the surface)
The correct option is option A. Equal to the frictional force.
The energy of an electromagnetic wave changes proportionally to which
other property?
O A Speed
O B. Shift
O c. Wavelength
O D. Frequency
Answer:
D. Frequency
Explanation:
The energy of an electromagnetic wave is proportional to frequency, mathematically it is expressed as;
E ∝ f
E = hf
where;
h is Planck's constant = 6.626 x 10⁻³⁴ Js
The equation above can also be expanded to;
[tex]E = hf = h \frac{c}{\lambda}[/tex]
where;
c is speed of light = 3 x 10⁸ m/s
λ is the wavelength of the electromagnetic wave
Since the speed of light is constant, we can conclude that the energy of the electromagnetic wave is directly proportional to its frequency and inversely proportional to its wavelength.
Therefore, the correct option for direct proportionality is FREQUENCY
(b) During one day, 250 kg of water is pumped through
the solar panel. The température of this
water rises from 16°C to 38°C.
The water absorbs 25% of the energy incident on the solar panel. The
specific heat capacity
of water is 4200J/(kg °C).
Calculate the energy incident on the solar panel during that day.
Please explain how to find the incident energy
Answer: The energy incident on the solar panel during that day is [tex]9.24 \times 10^{7} J[/tex].
Explanation:
Given: Mass = 250 kg
Initial temperature = [tex]16^{o}C[/tex]
Final temperature = [tex]38^{o}C[/tex]
Specific heat capacity = 4200 [tex]J/kg^{o}C[/tex]
Formula used to calculate the energy is as follows.
[tex]q = m \times C \times (T_{2} - T_{1})[/tex]
where,
q = heat energy
m = mass of substance
C = specific heat capacity
[tex]T_{1}[/tex] = initial temperature
[tex]T_{2}[/tex] = final temperature
Substitute the values into above formula as follows.
[tex]q = 250 kg \times 4200 J/kg^{o}C \times (38 - 16)^{o}C\\= 250 kg \times 4200 J/kg^{o}C \times 22^{o}C[/tex]
As it is given that water absorbs 25% of the energy incident on the solar panel. Hence, energy incident on the solar panel can be calculated as follows.
[tex]\frac{25}{100} \times q = 250 kg \times 4200 J/kg^{o}C \times 22^{o}C\\q = 9.24 \times 10^{7} J[/tex]
Thus, we can conclude that the energy incident on the solar panel during that day is [tex]9.24 \times 10^{7} J[/tex].
10 points
Calculate the force of attraction between the moon and the earth, if their masses and distance apart are 10^22Kg, 10^24kg and 6.4x10^6m. Take g = 6.67x10^-11Nm^2Kg^-2
a) 0.63x10^24N
b) 1.63x10^22N
c) 2.63x10^20N
d) 3.63x10^18N
Answer:
Explanation:
You didn't fill in the proper masses which is why you never got an answer to this. But that's ok...I got you. I happen to know what they are! We will use the universal law of gravitation and the gravitational constant to solve this.
[tex]F_g=\frac{Gm_1m_2}{r^2}[/tex] and filling in:
[tex]F_g=\frac{(6.67*10^{-11})(5.98*10^{24})(7.36*10^{22})}{(3.84*10^8)^2}[/tex] The denominator is the radius of the earth plus the radius of the moon plus the distance between their surfaces, just FYI.
That gives us that
[tex]F_g=1.99*10^{20}N[/tex] Not sure what your choices entail, but I'd have to say, taking into consideration that maybe your problem didn't figure in the distance between the surfaces, you'd be at choice B.
help please!!
From the following images shown, classify the interactions that occur and say between which bodies, according to the following criteria:
a) Contact forces
b) Non-contact forces
Answer:
B= 4 A=5
Explanation:
a man runs 1200m on a straight line in 4 min . find his velocity.
Answer:
5m/sec^2
Explanation:
Distance=1200m
Time=4 min
1=60sec
4=4 x 60
=240sec
Velocity=Distance/Time
Velocity=1200/240
Velocity=5m/sec^2
Mark me as brainliest
Bones are composed of three main components, what are they? (Choose all that apply)
Answer:
funny bone and compact bone
Explanation:
your funny bone only reacts if you hit it against something the compact bone is the heaviest and strongest bone in your body and the bone marrow is soft sponge like tissue in the center if most bones that produces white and red blood cells
Multiplying a vector with another vector results in what type of answer.
A) a direction
B) a vector
C) either a vector or a scalar
D) a scalar
multiplication of two vectors yields a vector oroduy
As Courtney switches on the TV set to watch her favorite cartoon, the electron beam in the TV tube is steered across the screen by the field between two charged plates. If the electron experiences a force of 3.0 * 10^6 N, how large is the field between the deflection plates?
Answer:
Explanation:
Force= (q1q2)/(4/\Ęr2)
3×10^6= (1.602×10^-19)^2/(r^2)
r^2=(2.27×10^-33)/(3×10^6)
r^2=8.55×10^-45
r= 9.25×10^-23
How is an ammeter connected in a circuit to measure current flowing through it?
Answer:
It is connected in series with the circuit
Explanation:
This is because to measure the current in the circuit, the current in the circuit has to flow through the ammeter. As such, the ammeter must be connected in series with the circuit so as to measure the current flowing through the circuit.
So, to measure the current flowing through a circuit with an ammeter, the ammeter must be connected in series with the circuit.
what is parking orbit?
Answer:
A temporary orbit in which a spacecraft awaits the next phase of its mission .