Answer:
(a) 209 Watt
(b) 4482.8 seconds
Explanation:
(a) P = 50×4.18
Where P = rate of heat loss in watt
P = 209 Watt
Applying,
Q = cm(t₁-t₂)................ Equation 1
Where Q = amount of heat given off, c = specific heat capacity capacity of human, m = mass of the person, t₁ and t₂ = initial and final temperature.
From the question,
Given: m = 90 kg, t₁ = 40°C, t₂ = 37°C
Constant: c = 3470 J/kg.K
Substtut these values into equation 1
Q = 90×3470(40-37)
Q = 936900 J
But,
P = Q/t.............. Equation 2
Where t = time
t = Q/P............ Equation 3
Given: P = 209 Watt, Q = 936900
Substitute into equation 3
t = 936900/209
t = 4482.8 seconds
During a particular thunderstorm, the electric potential difference between a cloud and the ground is Vcloud - Vground = 4.20 108 V, with the cloud being at the higher potential. What is the change in an electron's electric potential energy when the electron moves from the ground to the cloud?
Answer:
The electric potential energy is 6.72 x 10^-11 J.
Explanation:
Potential difference, V = 4.2 x 10^8 V
charge of electron, q = - 1.6 x 10^-19 C
Let the potential energy is U.
U = q V
U = 1.6 x 10^-19 x 4.2 x 10^8
U = 6.72 x 10^-11 J
1. A turtle and a rabbit are to have a race. The turtle’s average speed is 0.9 m/s. The rabbit’s average speed is 9 m/s. The distance from the starting line to the finish line is 1500 m. The rabbit decides to let the turtle run before he starts running to give the turtle a head start. If the rabbit started to run 30 minutes after the turtle started, can he win the race? Explain.
Answer:no
Explanation:because 0.9*(30*60)=0.9*1800=1620
The turtle has already won the race
Yes rabbit will win the race will distance in 3.2 hours and turtle will cover in 27 hours
What will be the speed of the rabbit and the turtle?It is given
[tex]V_{t} = 0.9 \frac{m}{s}[/tex]
[tex]V_{r} = 9 \frac{m}{s}[/tex]
[tex]D=1500 m[/tex]
Time taken by turtle
[tex]T= \dfrac{D}{V_{t} }=\dfrac{1500}{0.9_{} }[/tex]
[tex]T=1666 minutes= 27 hours[/tex]
Time taken by rabbit
[tex]T= \dfrac{D}{V_{r} }=\dfrac{1500}{9_{} }[/tex]
[tex]T=166 minutes[/tex]
since rabbit started 30 minutes after turtle then
[tex]T= 136+30=196 minutes[/tex]
[tex]T= 3.2 hours[/tex]
Hence Yes rabbit will win the race will distance in 3.2 hours and turtle will cover in 27 hours
To know more about average velocity follow
https://brainly.com/question/6504879
An ideal parallel plate capacitor with a cross-sectional area of 0.4 cm2 contains a dielectric with a dielectric constant of 4 and a dielectric strength of 2 x 108 V/m. The separation between the plates of the capacitor is 5 mm. What is the maximum electric charge (in nC) that can be stored in the capacitor before dielectric breakdown
Answer: [tex]283.2\times 10^{-9}\ nC[/tex]
Explanation:
Given
Cross-sectional area [tex]A=0.4\ cm^2[/tex]
Dielectric constant [tex]k=4[/tex]
Dielectric strength [tex]E=2\times 10^8\ V/m[/tex]
Distance between capacitors [tex]d=5\ mm[/tex]
Maximum charge that can be stored before dielectric breakdown is given by
[tex]\Rightarrow Q=CV\\\\\Rightarrow Q=\dfrac{k\epsilon_oA}{d}\cdot (Ed)\quad\quad [V=E\cdot d]\\\\\Rightarrow Q=k\epsilon_oAE\\\\\Rightarrow Q=4\times 8.85\times 10^{-12}\times 0.4\times 10^{-4}\times 2\times 10^8\\\\\Rightarrow Q=28.32\times 10^{-8}\\\\\Rightarrow Q=283.2\times 10^{-9}\ nC[/tex]
Answer:
The maximum charge is 7.08 x 10^-8 C.
Explanation:
Area, A = 0.4 cm^2
K = 4
Electric field, E = 2 x 10^8 V/m
separation, d = 5 mm = 0.005 m
Let the capacitance is C and the charge is q.
[tex]q = CV\\\\q=\frac{\varepsilon o A}{d}\times E d\\\\q = \varepsilon o A E\\\\q = 8.85\times 10^{-12}\times0.4\times 10^{-4}\times 2\times 10^8\\\\q = 7.08\times 10^{-8}C[/tex]
In a large chemical factory, a feed pipe carries a liquid at a speed of 5.5 m/s. A pump pushes the liquid along at a gauge pressure of 140,000 Pa. The liquid travels upward 6.0 m and enters a tank at a gauge pressure of 2,000 Pa. The diameter of the pipe remains constant. At what speed does the liquid enter the tank
Answer:
v₂ = 15.24 m / s
Explanation:
This is an exercise in fluid mechanics
Let's write Bernoulli's equation, where the subscript 1 is for the factory pipe and the subscript 2 is for the tank.
P₁ + ½ ρ v₁² + ρ g y₁ = P₂ + ½ ρ v₂² + ρ g y₂
They indicate the pressure in the factory P₁ = 140000 Pa, the velocity
v₁ = 5.5 m / s and the initial height is zero y₁ = 0
the tank is at a pressure of P2 = 2000 Pa and a height of y₂ = 6.0 m
P₁ -P₂ + ρ g (y₁ -y₂) + ½ ρ v₁² = ½ ρ v₂²
let's calculate
140,000 - 2000 + ρ 9.8 (0- 6) + ½ ρ 5.5² = ½ ρ v₂²
138000 - ρ 58.8 + ρ 15.125 = ½ ρ v2²
v₂² = 2 (138000 /ρ - 58.8 + 15.125)
v₂ = [tex]\sqrt{\frac{276000}{\rho } - 43.675 }[/tex]
In the exercise they do not indicate what type of liquid is being used, suppose it is water with
ρ = 1000 kg / m³
v₂ = [tex]\sqrt{\frac{276000}{1000} - 43.675}[/tex]
v₂ = 15.24 m / s
friction between two flat surfaces can be divided into two categories. what are the two most common kinds of friction?
Answer:
kinetic and static
Explanation:
hope it helps! ^w^
Calculate the buoyant force due to the surrounding air on a man weighing 600 N . Assume his average density is the same as that of water. Suppose that the density of air is 1.20 kg/m3.
Answer:
[tex]F_b= 0.720 N[/tex]
Explanation:
From the question we are told that:
Weight [tex]W=600N[/tex]
Average density [tex]\rho=1.20kg/m^3[/tex]
Mass
[tex]m=\frac{W}{g}[/tex]
[tex]m=\frac{600}{9.81}[/tex]
[tex]m=61.22kg[/tex]
Generally the equation for Volume is mathematically given by
[tex]V =\frac{ mass}{density}[/tex]
[tex]V= \frac{61.22}{1000}[/tex]
[tex]V=0.06122 m^3[/tex]
Therefore
Buoyant force [tex]F_b[/tex]
[tex]F_b=\rho*V*g[/tex]
[tex]F_b= rho_air*V*g[/tex]
[tex]F_b= 0.720 N[/tex]
A 3.00-kg ball swings rapidly in a complete vertical circle of radius 2.00 m by a light string that is fixed at one end. The ball moves so fast that the string is always taut and perpendicular to the velocity of the ball. As the ball swings from its lowest point to its highest point Group of answer choices the work done on it by gravity is -118 J and the work done on it by the tension in the string is zero. the work done on it by gravity is -118 J and the work done on it by the tension in the string is 118 J. the work done on it by gravity and the work done on it by the tension in the string are both equal to -118 J. the work done on it by gravity is 118 J and the work done on it by the tension in the string is -118 J. the work done on it by gravity and the work done on it by the tension in the string are both equal to zero.
Answer:
The ball moves from lowest to highest point:
W = M g h = 3 * 9.8 * 4 = 118 J
This is work done "against" gravity so work done by gravity is -118 J
The tension of the string does no work because the tension does not
move thru any distance W = T * x = 0 because the length of the string is fixed.
A baseball pitcher brings his arm forward during a pitch, rotating the forearm about the elbow. If the velocity of the ball in the pitcher's hand is 34.0 m/s and the ball is 0.310 m from the elbow joint, what is the angular velocity (in rad/s) of the forearm
Answer:
[tex]\omega=109.67\ rad/s[/tex]
Explanation:
Given that,
The speed of the ball, u = 34 m/s
The ball is 0.310 m from the elbow joint.
We need to find the angular velocity (in rad/s) of the forearm.
We know that,
[tex]v=r\omega\\\\\omega=\dfrac{v}{r}\\\\\omega=\dfrac{34}{0.31}\\\\\omega=109.67\ rad/s[/tex]
So, the required angular velocity of the forearm is 109.67 rad/s.
A barge is hauled along a straight-line section of canal by two horses harnessed to tow ropes and walking along the tow paths on
either side of the canal. Each horse pulls with a force of 839 N at an angle of 15° with the centerline of the canal. Find the sum of these
two forces on the barge.
answer in ___kN
Answer:
1.621 kN
Explanation:
Since each horse pulls with a force of 839 N at an angle of 15° with the centerline of the canal, the horizontal component of the force due to the first horse along the canal is F= 839cos15° N and its vertical component is F' = 839sin15° N(it is positive since it is perpendicular to the centerline of the canal and points upwards).
The horizontal component of the force due to the second horse along the canal is f = 839cos15° N and its vertical component is f' = -839sin15° N (it is negative since it is perpendicular to the centerline of the canal and points downwards).
So, the resultant horizontal component of force R = F + f = 839cos15° N + 839cos15° N = 2(839cos15°) N = 2(839 × 0.9659) = 2 × 810.412 = 1620.82 N
So, the resultant vertical component of force R' = F' + f' = 839sin15° N + (-839sin15° N) = 839sin15° N - 839sin15° N = 0 N
The magnitude of the resultant force which is the sum of the two forces is R" = √(R² + R'²)
= √(R² + 0²) (since R' = 0)
= √R²
= R
= 1620.82 N
= 1.62082 kN
≅ 1.621 kN
So, the sum of these two forces on the barge is 1.621 kN
A 1030 kg car has four 12.0 kg wheels. When the car is moving, what fraction of the total kinetic energy of the car is due to rotation of the wheels about their axles
Answer:
The required fraction is 0.023.
Explanation:
Given that
Mass of a car, m = 1030 kg
Mass of 4 wheels = 12 kg
We need to find the fraction of the total kinetic energy of the car is due to rotation of the wheels about their axles.
The rotational kinetic energy due to four wheel is
[tex]=4\times \dfrac{1}{2}I\omega^2\\\\=4\times \dfrac{1}{2}\times \dfrac{1}{2}mR^2(\dfrac{v}{R})^2\\\\=mv^2[/tex]
Linear kinetic Energy of the car is:
[tex]=\dfrac{1}{2}mv^2\\\\=\dfrac{1}{2}\times Mv^2[/tex]
Fraction,
[tex]f=\dfrac{mv^2}{\dfrac{1}{2}Mv^2}\\\\f=\dfrac{m}{\dfrac{1}{2}M}\\\\f=\dfrac{12}{\dfrac{1}{2}\times 1030}\\\\=0.023[/tex]
So, the required fraction is 0.023.
1) Consider an electric power transmission line that carries a constant electric current of i = 500 A. The cylindrical copper cable used to transmit this current has a diameter o = 2.00 cm and a length L = 150 km. If there are 8.43x10^28 free electrons per cubic meter (m^3 ) in the cable, calculate how long it would take for an electron to cross the entire length of the transmitter line.
Answer:
t = 1.27 x 10⁹ s
Explanation:
First, we will find the volume of the wire:
Volume = V = AL
where,
A = Cross-sectional area of wire = πr² = π(1 cm)² = π(0.01 m)² = 3.14 x 10⁻⁴ m²
L = Length of wire = 150 km = 150000 m
Therefore,
V = 47.12 m³
Now, we will find the number of electrons in the wire:
No. of electrons = n = (Electrons per unit Volume)(V)
n = (8.43 x 10²⁸ electrons/m³)(47.12 m³)
n = 3.97 x 10³⁰ electrons
Now, we will use the formula of current to find out the time taken by each electron to cross the wire:
[tex]I =\frac{q}{t}[/tex]
where,
t = time = ?
I = current = 500 A
q = total charge = (n)(chareg on one electron)
q = (3.97 x 10³⁰ electrons)(1.6 x 10⁻¹⁹ C/electron)
q = 6.36 x 10¹¹ C
[tex]500\ A = \frac{6.36\ x\ 10^{11}\ C}{t}\\\\t = \frac{6.36\ x\ 10^{11}\ C}{500\ A}[/tex]
Therefore,
t = 1.27 x 10⁹ s
The mass of a hot-air balloon and its occupants is 381 kg (excluding the hot air inside the balloon). The air outside the balloon has a pressure of 1.01 x 105 Pa and a density of 1.29 kg/m3. To lift off, the air inside the balloon is heated. The volume of the heated balloon is 480 m3. The pressure of the heated air remains the same as that of the outside air. To what temperature in kelvins must the air be heated so that the balloon just lifts off
Answer:
In order to lift off the ground, the air in the balloon must be heated to 710.26 K
Explanation:
Given the data in the question;
P = 1.01 × 10⁵ Pa
V = 480 m³
ρ = 1.29 kg/m³
M = 381 kg
we know that; R = 8.31 J/mol.K and the molecular mass of air μ = 29 × 10⁻³ kg/mol
let F represent the force acting upward.
Now in a condition where the hot air balloon is just about to take off;
F - Mg - m[tex]_g[/tex]g = 0
where M is the mass of the balloon and its occupants, m[tex]_g[/tex] is the mass of the hot gas inside the balloon.
the force acting upward F = Vρg
so
Vρg - Mg - m[tex]_g[/tex]g = 0
solve for m[tex]_g[/tex]
m[tex]_g[/tex] = ( Vρg - Mg ) / g
m[tex]_g[/tex] = Vρg/g - Mg/g
m[tex]_g[/tex] = ρV - M ------- let this be equation 1
Now, from the ideal gas law, PV = nRT
we know that number of moles n = m[tex]_g[/tex] / μ
where μ is the molecular mass of air
so
PV = (m[tex]_g[/tex]/μ)RT
solve for T
μPV = m[tex]_g[/tex]RT
T = μPV / m[tex]_g[/tex]R -------- let this be equation 2
from equation 1 and 2
T = μPV / (ρV - M)R
so we substitute in our values;
P = 1.01 × 10⁵ Pa
V = 480 m³
ρ = 1.29 kg/m³
M = 381 kg
we know that; R = 8.31 J/mol.K and the molecular mass of air μ = 29 × 10⁻³ kg/mol
T = [ (29 × 10⁻³) × (1.01 × 10⁵) × 480 ] / [ (( 1.29 × 480 ) - 381)8.31 ]
T = 1405920 / 1979.442
T = 710.26 K
Therefore, In order to lift off the ground, the air in the balloon must be heated to 710.26 K
The temperature required for the air to be heated is 710.26 K.
Given data:
The mass of a hot air-balloon is, m = 381 kg.
The pressure of air outside the balloon is, [tex]P = 1.01 \times 10^{5} \;\rm Pa[/tex].
The density of air is, [tex]\rho = 1.29 \;\rm kg/m^{3}[/tex].
The volume of heated balloon is, [tex]V = 480 \;\rm m^{3}[/tex].
The condition where the hot air balloon is just about to take off is as follows:
[tex]F-mg - m'g =0[/tex]
Here,
m' is the mass of hot gas inside the balloon and g is the gravitational acceleration and F is the force acting on the balloon in upward direction. And its value is,
[tex]F = V \times \rho \times g[/tex]
Solving as,
[tex](V \times \rho \times g)-mg - m'g =0\\\\ m'=(V \rho )-m[/tex]
Now, apply the ideal gas law as,
PV = nRT
here, R is the universal gas constant and n is the number of moles and its value is,
[tex]n=\dfrac{m'}{M}[/tex]
M is the molecular mass of gas. Solving as,
[tex]PV = \dfrac{m'}{M} \times R \times T\\\\\\T=\dfrac{P \times V\times M}{m'R}\\\\\\T=\dfrac{P \times V\times M}{(V \rho - m)R}[/tex]
Since, the standard value for the molecular mass of air is, [tex]M = 29 \times 10^{-3} \;\rm kg/mol[/tex]. Then solve for the temperature as,
[tex]T=\dfrac{(1.01 \times 10^{5}) \times 480\times 381}{(480 \times (1.29) - 381)8.31}\\\\\\T = 710.26 \;\rm K[/tex]
Thus, we can conclude that the temperature required for the air to be heated is 710.26 K.
Learn more about the ideal gas equation here:
https://brainly.com/question/18518493
Two identical cars, each traveling at 16 m>s, slam into a concrete wall and come to rest. In car A the air bag does not deploy and the driver hits the steering wheel; in car B the driver contacts the deployed air bag. (a) Is the impulse delivered by the steering wheel to driver A greater than, less than, or equal to the impulse delivered by the air bag to driver B
Answer:
I = - m 16 the two impulses are the same,
Explanation:
The impulse is given by the relationship
I = Δp
I = p_f - p₀
in this case the final velocity is zero therefore p_f = 0
I = -p₀
For driver A the steering wheel impulse is
I = - m v₀
I = - m 16
For driver B, the airbag gives an impulse
I = - m 16
We can see that the two impulses are the same, the difference is that in the air bag more time is used to give this impulse therefore the force on the driver is less
The elastic extensibility of a piece of string is .08. If the string is 100 cm long, how long will the string be when it is stretched to the point where it becomes plastic?
Answer:
The elastic extensibility of a piece of string is .08. If the string is 100 cm long, how long will the string be when it is stretched to the point where it becomes plastic? is your ansewer dont take tension
The string will be 108 cm long when it is stretched to the point where it becomes plastic.
What is elasticity?Elasticity in physics and materials science refers to a body's capacity to withstand a force that causes distortion and to recover its original dimensions once the force has been withdrawn.
When sufficient loads are applied, solid objects will deform; if the material is elastic, the object will return to its original size and shape after the weights have been removed. Unlike plasticity, which prevents this from happening and causes the item to stay deformed,
Given parameters:
The elastic extensibility of a piece of string is 0.08.
The string is 100 cm long.
Hence, it becomes plastic, after it is stretched up to = 100 × 0.08 cm = 8 cm. The string will be 108 cm long.
Learn more about elasticity here:
https://brainly.com/question/28790459
#SPJ5
A long, current-carrying solenoid with an air core has 1550 turns per meter of length and a radius of 0.0240 m. A coil of 200 turns is wrapped tightly around the outside of the solenoid, so it has virtually the same radius as the solenoid. What is the mutual inductance of this system
Answer:
[tex]M=7.05*10^{-4}[/tex]
Explanation:
From the question we are told that:
Coil one turns N_1=1550 Turns/m
Radius [tex]r=0.0240m[/tex]
Turns 2 [tex]N_2=200N[/tex]
Generally the equation for area is mathematically given by
[tex]A=\pi*r^2[/tex]
[tex]A=\pi*0.024^2[/tex]
[tex]A=\1.81*10^{-3} m^2[/tex]
Therefore
The mutual inductance of this system is
[tex]M=\mu*N_1*N_2*A[/tex]
[tex]M=(4 \pi*10^{-7})*1550*200*1.81*10^{-3}[/tex]
[tex]M=7.05*10^{-4}[/tex]
Place each description under the correct theory
Gravity is an attractive force.
Universal Law of Gravitation
General Theory of Relativity
Mass and distance affect force.
Time and space are absolute,
Time and space are relative.
Gravity is due to space-time curving.
Mass affects space-time curving.
Answer:
1) Law of Universal Gravitation Gravity is an attractive force
5) General relativity Gravity is due to the curvature of spacetime
Explanation:
In this exercise you are asked to relate the correct theory and its explanation
Theory Explanation
1) Law of Universal Gravitation Gravity is an attractive force
2) Law of universal gravitation Mass and distance affect force
3) Classical mechanics time and space are absolute
4) Special relativity Time and space are relative
5) General relativity Gravity is due to the curvature of
spacetime
6) General relativity Mass affects the curvature of space - time
Answer:
Explanation:
edge2022
An infinite plane lies in the yz-plane and it has a uniform surface charge density.
The electric field at a distance x from the plane
a.) decreases as 1/x^2
b.) increases linearly with x
c.) is undertermined
d.) decreases linearly with x
e.) is constant and does not depend on x
Answer:
So the correct answer is letter e)
Explanation:
The electric field of an infinite yz-plane with a uniform surface charge density (σ) is given by:
[tex]E=\frac{\sigma }{2\epsilon_{0}}[/tex]
Where ε₀ is the electric permitivity.
As we see, this electric field does not depend on distance, so the correct answer is letter e)
I hope it helps you!
A 12.0 g sample of gas occupies 19.2 L at STP. what is the of moles and molecular weight of this gas?
At STP, 1 mole of an ideal gas occupies a volume of about 22.4 L. So if n is the number of moles of this gas, then
n / (19.2 L) = (1 mole) / (22.4 L) ==> n = (19.2 L•mole) / (22.4 L) ≈ 0.857 mol
If the sample has a mass of 12.0 g, then its molecular weight is
(12.0 g) / n ≈ 14.0 g/mol
the product 17.10 ✕
Explanation:
pls write the full question
What would you expect to happen to the velocity of the bobber if the mass of the washers in the cylinder remained the same and the radius was doubled?
Answer:
The velocity becomes [tex]v\sqrt 2[/tex].
Explanation:
The force acting on the bobber is centripetal force.
The centripetal force is given by
[tex]F =\frac{mv^2}{r}[/tex]
when mass remains same, radius is doubled and the force is same, so the velocity is v'.
[tex]F =\frac{mv^2}{r}=\frac{mv'^2}{2r}\\\\v'=v\sqrt 2[/tex]
A bird has a kinetic energy of 3 J and a potential energy of 25 J. What is the mechanical energy of the bird?
Answer:
28 j
Explanation:
because when you add you get 28
Question 1 of 10
Which nucleus completes the following equation?
239UHe+?
A. 228 Th
B. 2220
c. 23. Pu
D. 78Th
SUBMIT
Answer:
Option D. ²²²₉₀Th
Explanation:
Let the unknown be ⁿₘZ. Thus, the equation becomes:
²²⁶₉₂U —> ⁴₂He + ⁿₘZ
Next, we shall determine n, m and Z. This can be obtained as follow:
For n:
226 = 4 + n
Collect like terms
226 – 4 = n
222 = n
n = 222
For m:
92 = 2 + m
Collect like terms
92 – 2 = m
90 = m
m = 90
For Z:
ⁿₘZ => ²²²₉₀Z => ²²²₉₀Th
Therefore, the complete equation becomes:
²²⁶₉₂U —> ⁴₂He + ⁿₘZ
²²⁶₉₂U —> ⁴₂He + ²²²₉₀Th
Thus, the unknown is ²²²₉₀Th
derive expression for pressure exerted by gas
Nhiệt dung riêng của một chất là ?
Answer:
enchantment table language
Explanation:
The mass is released from the top of the incline and slides down the incline. The maximum velocity (taken the instant before the mass reaches the bottom of the incline) is 1.06 m/s. What is the kinetic energy at that time
Answer:
0.28 J
Explanation:
Let the mass of the object is 0.5 kg
The maximum velocity of the object is 1.06 m/s.
We need to find the kinetic energy at that time. It is given by :
[tex]K=\dfrac{1}{2}mv^2\\\\=\dfrac{1}{2}\times 0.5\times (1.06)^2\\\\K=0.28\ J[/tex]
So, the required kinetic energy is equal to 0.28 J.
At what angle torque is half of the max
Do all substances conduct heat ?Why/ Why not ?
Answer:
no, all substances doesnot conduct heat
Answer:
No, all substances do not conduct heat easily because it depends on the nature of the substance. Some are good conductors of heat and some are bad. Therefore, it depends on their characteristics and their ability to conduct heat.
The bad conductors of heat are water, air, plastic, wood, etc.
Gold, Silver, Copper, Aluminium, Iron, etc. are good heat conductors as well as electrical conductors.
Put the balloon near (BUT NOT TOUCHING) the wall. Leave about as much space as the width of your pinky finger between the balloon and wall. Does the balloon move, if so which way
Answer:
Move towards the wall.
Explanation:
When the balloon is kept near to the wall not touching the wall, there is a force of electrostatic attraction so that the balloon moves towards the wall and stick to it.
As there is some charge on the balloon and the wall is uncharged so the force is there due to which the balloon moves towards the wall.
A wire carrying a 23.0 A current passes between the poles of a strong magnet such that the wire is perpendicular to the magnet's field, and there is a 2.45 N force on the 3.00 cm of wire in the field. What is the average field strength (in T) between the poles of the magnet?
Answer:
3.55 T
Explanation:
Applying,
F = BILsin∅.............. Equation 1
Where F = Force, B = magnetic Field, I = current, L = Length of the wire, ∅ = Angle between the wire and the magnetic field
make B the subject of the equation
B = F/ILsin∅.................. Equation 2
From the question,
Given: F = 2.45 N, L = 3.00 cm = 0.03 m, I = 23.0 A, ∅ = 90° (Perpendicular)
Substitute these values into equation 2
B = 2.45/(0.03×23×sin90)
B = 2.45/0.69
B = 3.55 T
An object moves in a direction parallel to its length with a velocity that approaches the velocity of light. The length of this object, as measured by a stationary observer:________
a. approaches infinity.
b. approaches zero.
c. increases slightly.
d. does not change.
Answer:
b. approaches zero.
Explanation:
The phenomenon is known as length contraction.
Length contraction is a result of Einstein's special theory of relativity. This theory states that an observer in an inertial frame of reference will observe a decrease in the length of any moving object placed at another inertial frame of reference.
let the length of the train = L
Let the length observed when the train is in motion = L₀
Apply Einstein's special theory of relativity;
[tex]L_0 = L \times \sqrt{1 - \frac{v^2}{c^2} } \\\\where;\\\\v \ is \ the \ velocity \ of \ the \ train\\\\c \ is \ the \ speed \ of \ light\\\\[/tex]
from the equation above, when v = 0, the length observed is equal to the initial length of the train. (L₀ = L)
As the velocity of the train (v) approaches the speed of light (c), the length of the train observed (L₀) becomes smaller than the initial length of the train (L). (L₀ < L)
Eventually, when v equals c, we will have a square root of zero (0), and the length observed will become zero. (L₀ = 0)
Thus, the length of this object, as measured by a stationary observer approaches zero